九江县三中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九江县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 执行如图所示的程序框图,若输出的结果是
,则循环体的判断框内①处应填( )
A .11?
B .12?
C .13?
D .14?
2. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )
A.18
B.12
C.9
D.0
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.
3. 函数y=2|x|的图象是( )
A .
B .
C .
D .
4. 某几何体三视图如下图所示,则该几何体的体积是( )
A .1+
B .1+
C .1+
D .1+π
5. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 6. “p q ∨为真”是“p ⌝为假”的( )条件
A .充分不必要
B .必要不充分
C .充要
D .既不充分也不必要
7. 如果向量满足,且,则
的夹角大小为( )
A .30°
B .45°
C .75°
D .135°
8. 设函数()()()
21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得
()()12f x f x =,则实数的最大值为( )
A .
94 B . C.9
2
D .4 9. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120
10.若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )
A .3
B .2
C .3
D .4
11.设命题p :函数
的定义域为R ;命题q :3x ﹣9x
<a 对一切的实数x 恒成立,如果
命题“p 且q ”为假命题,则实数a 的取值范围是( ) A .a <2 B .a ≤2 C .a ≥2 D .a >2 12.已知椭圆
(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|
的最大值为8,则b 的值是( )
A .
B .
C .
D .
二、填空题
13.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .
14.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .
15.在△ABC 中,a=4,b=5,c=6,则
= .
16.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④
sin sin sin a b c
A B C
+=+.其中恒成立的等式序号为_________.
17.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值
是 .
18.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.
三、解答题
19.若{a n }的前n 项和为S n ,点(n ,S n )均在函数y=的图象上.
(1)求数列{a n }的通项公式;
(2)设,T n 是数列{b n }的前n 项和,求:使得对所有n ∈N *
都成立的最大正整数m .
20.已知矩阵M=
的一个属于特质值3的特征向量=,正方形区域OABC 在矩阵N 应对的变换作
用下得到矩形区域OA ′B ′C ′,如图所示. (1)求矩阵M ;
(2)求矩阵N 及矩阵(MN )﹣1

21.(本小题满分12分)
设椭圆2222:1(0)x y C a b a b
+=>>的离心率12e =,圆22
127x y +=与直线1x y a b +=相切,O 为坐标原
点.
(1)求椭圆C 的方程;
(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.
22.已知椭圆C:=1(a>2)上一点P到它的两个焦点F1(左),F2(右)的距离的和是6.
(1)求椭圆C的离心率的值;
(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.
23.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
24.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点
(1)求证:直线AF∥平面BEC1
(2)求A到平面BEC1的距离.
九江县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
【解析】解:由已知可得该程序的功能是计算并输出S=+
+
+…+
=
的值,
若输出的结果是

则最后一次执行累加的k 值为12, 则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?, 故选:C
【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.
2. 【答案】A.
【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A. 3. 【答案】B
【解析】解:∵f (﹣x )=2|﹣x|=2|x|
=f (x )
∴y=2|x|
是偶函数,
又∵函数y=2|x|
在[0,+∞)上单调递增,故C 错误.
且当x=0时,y=1;x=1时,y=2,故A ,D 错误
故选B
【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.
4. 【答案】A
【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1; 正方体的边长为1,
∴几何体的体积V=V 正方体+=13+××π×12×1=1+

故选:A .
【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.
5. 【答案】D
【解析】解:∵f (x+2)为奇函数, ∴f (﹣x+2)=﹣f (x+2),
∵f (x )是偶函数,
∴f (﹣x+2)=﹣f (x+2)=f (x ﹣2), 即﹣f (x+4)=f (x ),
则f (x+4)=﹣f (x ),f (x+8)=﹣f (x+4)=f (x ),
即函数f (x )是周期为8的周期函数, 则f (89)=f (88+1)=f (1)=1, f (90)=f (88+2)=f (2), 由﹣f (x+4)=f (x ), 得当x=﹣2时,﹣f (2)=f (﹣2)=f (2),
则f (2)=0, 故f (89)+f (90)=0+1=1,
故选:D .
【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.
6. 【答案】B 【解析】
试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 7. 【答案】B
【解析】解:由题意故,即
故两向量夹角的余弦值为=
故两向量夹角的取值范围是45°
故选B
【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.
8. 【答案】] 【解析】
试题分析:设()()
2ln 31g x ax x =-+的值域为A ,因为函数()1f x =[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],
中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940
a a >⎧⎨∆=-≥⎩,解得9
4a ≤.
考点:函数的性质.
【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。

首先求出A ,再利用转化思想将命题条件转化为(0]A -∞⊆,,进而转化为()231h x ax x =-+至少要取遍(01],
中的每一个数,再利用数形结合思想建立不等式组:0a ≤或0940
a a >⎧⎨∆=-≥⎩,从而解得9
4a ≤.
9. 【答案】C
【解析】解析:本题考查程序框图中的循环结构.12
1123
m
n n n n n m S C m
---+=
⋅⋅⋅⋅
=,当8,10m n ==时,82
101045m n C C C ===,选C .
10.【答案】A
【解析】解:∵l 1:x+y ﹣7=0和l 2:x+y ﹣5=0是平行直线, ∴可判断:过原点且与直线垂直时,中的M 到原点的距离的最小值
∵直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0,
∴两直线的距离为
=

∴AB 的中点M 到原点的距离的最小值为+=3

故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题.
11.【答案】B
【解析】解:若函数的定义域为R ,
故恒成立,


解得:a>2,
故命题p:a>2,
若3x﹣9x<a对一切的实数x恒成立,
则t﹣t2<a对一切的正实数t恒成立,
故a>,
故命题q:a>,
若命题“p且q”为真命题,则a>2,
故命题“p且q”为假命题时,a≤2,
故选:B
12.【答案】D
【解析】解:∵|AF1|+|AF2|=|BF1|+|BF2|=2a=6,|AF2|+|BF2|的最大值为8,
∴|AB|的最小值为4,
当AB⊥x轴时,|AB|取得最小值为4,
∴=4,解得b2=6,b=.
故选:D.
【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
二、填空题
13.【答案】25
【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km,
由正弦定理可得AC==25km,
故答案为:25.
【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.14.【答案】114.
【解析】解:根据题目要求得出:
当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114. 故答案为:114
【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.
15.【答案】 1 .
【解析】解:∵△ABC 中,a=4,b=5,c=6,
∴cosC==,cosA=
=
∴sinC=
,sinA=

∴==1.
故答案为:1.
【点评】本题考查余弦定理,考查学生的计算能力,比较基础.
16.【答案】②④ 【解析】
试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2
A B π
+=
,所以三角形为等腰三角
形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正
确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知
sin sin sin a b c
A B C
+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换. 17.【答案】 4 .
【解析】解:画出满足条件的平面区域,如图示:

由,解得:A (3,4),
显然直线z=ax+by 过A (3,4)时z 取到最大值12,
此时:3a+4b=12,即+=1,
∴+=(+)(+)=2++
≥2+2
=4,
当且仅当3a=4b 时“=”成立, 故答案为:4.
【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.
18.【答案】
【解析】【知识点】空间几何体的三视图与直观图 【试题解析】正方体中,BC 中点为E ,CD 中点为F ,
则截面为
即截去一个三棱锥
其体积为:
所以该几何体的体积为:
故答案为:
三、解答题
19.【答案】
【解析】解:(1)由题意知:S n=n2﹣n,
当n≥2时,a n=S n﹣S n﹣1=3n﹣2,
当n=1时,a1=1,适合上式,
则a n=3n﹣2;
(2)根据题意得:b n===﹣,T n=b1+b2+…+b n=1﹣+﹣+…+
﹣=1﹣,
∴{T n}在n∈N*上是增函数,∴(T n)min=T1=,
要使T n>对所有n∈N*都成立,只需<,即m<15,
则最大的正整数m为14.
20.【答案】
【解析】解:(1)根据题意,可得,
故,解得
所以矩阵M=;
(2)矩阵N所对应的变换为,
故N=,
MN=.
∵det(MN)=,

=.
【点评】本题考查矩阵与变换、矩阵的特征值、特征向量等基础知识,考查运算求解能力,考查函数与方程的思想.
21.【答案】(1)22
143
x y +=;(2)点R 在定直线1x =-上. 【解析】

题解析:
(1)由12e =,∴2214e a =,∴22
34a b =7=

解得2,a b ==,所以椭圆C 的方程为22
143
x y +=.
设点R 的坐标为00(,)x y ,则由MR RN λ=-⋅,得0120()x x x x λ-=--, 解得112
12
21212011224
424()
41()814
x x x x x x x x x x x x x x x λλ
++
⋅-+++=
==+-+++
+
又221212222
64123224
24()24343434k k x x x x k k k ---++=⨯+⨯=+++,
212223224()883434k x x k k -++=+=++,从而12120
1224()
1()8
x x x x x x x ++==-++, 故点R 在定直线1x =-上.
考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系. 22.【答案】
【解析】解:(1)根据椭圆的定义得2a=6,a=3; ∴
c=;


即椭圆的离心率是

(2);
∴x=带入椭圆方程得,y=;
所以Q(0,).
23.【答案】
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,

设平面PBC的法向量=(x,y,z)
则=0,
所以令,
平面PBC的法向量所以,
同理平面PDC的法向量,因为平面PBC⊥平面PDC,
所以=0,即﹣6+=0,解得t=,
所以PA=.
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
24.【答案】
【解析】解:(1)取BC1的中点H,连接HE、HF,
则△BCC1中,HF∥CC1且HF=CC1
又∵平行四边形AA1C1C中,AE∥CC1且AE=CC1
∴AE∥HF且AE=HF,可得四边形AFHE为平行四边形,
∴AF∥HE,
∵AF⊄平面REC1,HE⊂平面REC1
∴AF∥平面REC1.…
(2)等边△ABC中,高AF==,所以EH=AF=
由三棱柱ABC﹣A
B1C1是正三棱柱,得C1到平面AA1B1B的距离等于
1
∵Rt△A1C1E≌Rt△ABE,∴EC1=EB,得EH⊥BC1
可得S
△=BC1•EH=××=,
而S△ABE=AB×BE=2
由等体积法得V A﹣BEC1=V C1﹣BEC,
∴S△×d=S△ABE×,(d为点A到平面BEC1的距离)
即××d=×2×,解之得d=
∴点A到平面BEC1的距离等于.…
【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.。

相关文档
最新文档