磁共振特殊成像技术ppt课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
血流的信号比较复杂,与周围静止组织相比,血流可表现为高信号、等信号或低信号,取决于血流形式、血流方向、血流速度、脉冲序列及其成像参数等。
血管内血液流体因质子群发生移动,影响MR信号强弱变化,与周围固体组织相比显示不同的MR信号特征。 层流—血流质点与血管长轴呈平行运动,靠血管壁近质点流动速度慢,越向中心流速越快。层流血液使信号减弱。 湍流(涡流)—血液在血管内不沿血管直线运动,向其他方向不规则迅速流动,引起质子群去相位移动,产生流空效应使血管呈低信号。血液通过狭窄处后在血流两侧形成旋涡状运动。
基本原理: 使用强度相同、持续时间相等的极性相反的两个梯度(流动编码梯度) 静止组织,净相位改变为零,无信号 流动组织,由于相位漂移,产生一个净相位,有信号 减影技术
二、相位对比MRA (Phase contrast,PC)
PC序列及作用 2D-PC 时间短:空间分辨力低,常用于3D-PC的流速预测,可反应血流的流速及方向,进行血流方向和流速定量分析
TOF(Time of Flight)时空飞逝法 通过血液流入流动相关增强效应,静止组织信号弱,相对流动血液信号对比增强而获得 TOF MRA的对比主要依赖于血管进入的角度一般要求扫描层面垂直于血管走向
2DTOF ─ 是逐层的进行激励和图像数据采集,然后将整个感兴趣区以一连续多层方式进行图像数据重建和处理的方法。 2D TOF MRA的层厚限制了投影影像的空间分辨率,这种血管成像不适合细小血管的显示。为了保证一条血管在不同层面始终具有流入效应,不会出现血管衔接不吻合,选择扫描参数时,必须采用最短的TR、TE,及最小的采集次数,以缩短扫描时间。
2D-TOF 因层面较厚、空间分辨率差,对弯曲血管亦产生信号丢失, 3D-TOF成像面薄,空间分辨率高,对弯曲血管信号丢失少,更适合小血管、弯曲血管检查。 相同容积2D-TOF较3D-TOF 成像时间短
临床应用 1、血管走行。走行方向比较直如颈部和下肢血管----二维,而走行迂曲的血管如脑动脉则三维效果好。 2、血流速度。速度快如大多数动脉特别是头颈部动脉多三维,而血流速度慢的静脉多二维。 3、目标血管长度。小用三维,长度大的血管如下肢血管用二维。 临床:脑动脉----三维;颈动脉---二维或三维;下肢----二维;静脉---二维。 二维速度快,腹部血管特别是静脉可多次屏气分段采集。 采用TOF技术采集的MRA可同时显示动脉和静脉,但有时会重叠。血流上游加饱和带,选择性显示动脉或静脉。
2D TOF SPGR
临床应用: 颈动脉成像 颅内静脉系统成像 作为ceMRA的定位像
参数设置和定位: TE = min; TR = min 翻转角=50~60 ˚ 层面定位方向逆血流而行以减小饱和效应
头部2D TOF血管成像
3DTOF ─ 是对整个扫描区进行全容积层块或分成几个层块的数据采集,然后用最大强度投影(MIP)处理这一组三维信息 。 3D TOF是同时激励一个容积(通常3~8mm厚,其中含有几十个薄层面)的成像技术。它采用短TR梯度回波序列,其最大优点因可采集簿层(可薄于lmm)而产生很高分辨率的影像。 3D TOF因对容积内任何方向的血流敏感,在显示迂曲血管,如脑动脉时有一定优势。但对于慢血流,因其反复接受多个脉冲激励,则可能在流出层块远端之前产生饱和而丢失信号,因此,3D TOF不适于慢血流、大范围血管(例如颈部血管)成像。
分析TOF MRA注意事项: 1、如果光滑整齐,没有狭窄,则正常。 2、可出现血管狭窄的假象----湍流造成的失相位,血管转弯处----颈内动脉虹吸段和血管分叉处----颈内外动脉分叉处。 3、狭窄程度常被夸大,因狭窄处容易湍流,造成信号丢失。 4、动脉瘤有可能被遗漏。因动脉瘤内多有湍流,造成信号丢失。 5、应注意观察薄层原始图像。 6、当考虑到有假象的时候,增强。
流入相关增强
当TR较短时,成像体积内静止的质子 被饱和,显示低或无信号。
流动的质子未被先前的激发脉冲饱和,产生高信号。
流动去相位效应 ─血流动改变相位反映出信号有高有低。运动自旋都会产生相位变化,包括移动、流动及水分子的弥散运动等,这种单个自旋在梯度磁场中的相位改变称为相位漂移效应,是由横向磁化的变化所致。
三维TOF MRA的血流饱和现象不容忽视,饱和现象主要有两个方面的影响 1、慢血流信号明显减弱 2、容积内血流远侧的信号明显减弱
3D TOF SPGR
临床应用: 颅内动脉成像
参数设置和定位: TE = min or outphase; 翻转角=20 ˚ 采用斜坡脉冲使厚块内血流信号强度均一 可加磁化对比转移增加背景抑制 多块采集时厚块之间须有至少1/4的层面重叠
流空效应(Flow void)─由于信号采集需一定的时间,快速流动的血液不产生或只产生极低信号,与周围组织、结构间形成良好的对比,这种现象就是“流空效应”。
20
9 0°脉冲
血流方向
180°脉冲
血流方向
层面选择梯度
层面选择梯度
流空效应: 应用SE技术,以一定速度流动的液体产生流空效应,呈无或低信号。 产生此效应的原因在于:射频脉冲所激发的质子在接收线圈获取MR信号时,因流动已移出成像层面,而此时成像层面内原部位的质子为新流人的非激发质子,故不产生MRI信号。与流动的液体相比,周围静止组织发出的MRI信号强度不变。
在选择3D TOF MRA扫描参数时 为有效抑制静止组织信号,TR应短于静止组织的T1; 为削除流动伪影,应利用流动补偿技术; 为减少湍流引起的相为弥散,应选取尽量短的TE。
优点:1、空间分辨率高,特别是层面方向,原始图像层厚可<1mm;2、体素小,流动失相位相对较轻,受湍流的影响小。3、信噪比高。4、后处理效果好。 缺点:1、血流的饱和较明显,不利于慢血流的显示;2、为了减轻血流的饱和效应需要缩小激发角度,背景的抑制效果不及二维TOF MRA;3、扫描时间相对较长。
头部2D PC血管成像
头部3D PC血管成像
3D-PC 分辨力高,对快慢血流均敏感,静止组织抑制效果好 缺点:时间长
PC与TOF的比较 TOF PC 时间 长 2D短,3D长 湍流信号 好 差 复合血流信号 好 差 相位移位 少 多 慢血流 差 好 末梢血流 差 好(平均) 短T1伪迹 有 无 夸大狭窄 多 少 背景 差 好 分辨力 好 差
流入增强效应(Flow related enhancement) 如果血流垂直或基本垂直于扫描层面,同时所选用的TR比较短,这样层面内静止组织的质子群因没有足够的时间发生充分的纵向弛豫,出现饱和现象,因而信号发生衰减。 而对于血流来讲,总有未经激发的质子群流入扫描平面,经射频脉冲激发后产生较强的信号,与静止组织相比表现为高信号。 流入增强效应常出现在梯度回波序列,也可出现在自旋回波序列。 在二维多层面扫描时,血流上游方向第一层内血流的流入效应最强,信号高,而血流方向的其他层面内由于血流中饱和的质子群逐渐增多,信号逐渐减弱
MRA成像的几种方法
TOF(Time of Flight)时空飞逝法 2D—TOF 3D—TOF PC(Phase Contrast)相位对比法
一、时间飞跃法(Time of fly TOF) 基本原理: GRE 短TR 短TE 饱和效应(静态组织) 流动(入)相关增强效应(血液)
表现为高信号的血流 1、流入增强效应。 2、偶回波效应。SE多回波成像时,奇数回波的图像上血流表现为低信号,偶数回波的图像上表现为高信号。也叫偶回波相位重聚。 3、非常缓慢的血流。椎旁静脉丛或盆腔静脉丛等血管内的血流非常缓慢,流动造成的失相位或流空效应表现的不明显,那么这些血管内血流的信号与流动本身关系不大,而主要取决于血液的T1和T2值,由于血液具有较长的T2值,在T2WI可表现为高信号。
预饱和效应─用额外的 RF 脉冲在选定区域内饱和全部组织的磁化向量,使该区组织在MR 图像上呈黑色低信号。预饱和区通常位于成像容积层厚之外,血流经过即处于饱和状态,进入成像容积时已呈黑色低信号。
表现为低信号的血流 1、流空效应:血流方向垂直于扫描层面(TE/2越长,流空效应越明显)。 2、扫描层面内质子群位置移动造成的信号衰减。
3D TOF SPGR
优点: SNR 分辨率 对各个方向血流的敏感度一致
缺点: 背景抑制 慢血流饱和 成像范围
头部3D TOF血管成像
3D TOF SPGR—Multi Slab
优点: 成像范围 饱和效应 对慢血流和动脉细小分支显示
缺点: 层块交界处因饱和程度不同而出现分界线
2D-TOF与3D-TOF MRA的比较 2D-TOF具有较小的流入饱和效应,对慢血流成像较好,对血流方向一致的血管显示良好,便适合大范围大血管、慢血流。 3D-TOF 流入饱和效应明显,成像容积厚度受到血液流速的制约。
磁共振特殊成像技术
磁共振血管成像
MRA主要特点
非介入性、无损伤技术 三维信息多画面 显示多方位及动态观察(电影) 不用造影剂 扫描、重建时间越来越短
磁共振血管成像技术作为一种无创伤性的检查,与CT 及常规放射学相比,具有特殊的优势,不需穿刺插管、不需注入造影剂和无X 射线,流体的流动即是MR 成像固有的生理造影剂。
流动液体的MR信号特征
层流和湍流示意图 图a为层流示意图,越靠近血管壁的血流速度越慢,越接近血管中心的血流速度越快,这样实际上血管腔中的血流速度表现为一个沿血流方向的抛物线。图b示血管狭窄引起的湍流,表现为狭窄后方的血流变得不规则,不仅有向前的运动,同时产生大小不一的漩涡。Leabharlann MRA成像中流体的流动效应
4、血流在梯度回波序列上表现为高信号。 与SE序列不同,GRE序列的回波是利用梯度场的切换产生的,而梯度场的切换不需要进行层面选择,因此受小角度激发产生宏观横向磁化矢量的血流尽管离开了扫描层面,但只要不超出有效梯度场和采集线圈的有效范围,还是可以感受梯度场的切换而产生回波,因而不表现为流空而呈现相对高的信号强度。
2D TOF SPGR
优点: 血流/背景对比 慢血流的显示 成像速度
缺点: 1、层面方向空间分辨率较低,体素较大,流动失相位较明显,特别是受湍流的影响较大,容易出现相应的假象。 2、后处理效果不好。 3、容易因原始图像变形引起的层间配准错误而出现血管影扭曲。
提高二维TOF MRA质量的方法: 1、在时间和信噪比允许的情况下,尽量扫薄; 2、保持扫描层面与血流方向垂直; 3、尽量把技术用于走向比较直的血管。
3、层流流速差别造成的失相位。 4、层流引起的分子旋转造成的失相位。 5、湍流。使血流出现方向和速度无规律的运动,因而体素内的质子群将失相位,MR信号明显衰减。湍流容易发生在血管狭窄处的远侧、血管分叉处、血管转弯处、动脉瘤等部位。 6、血流的长T1特性。在某些TR和TE很短的超快速T1WI中,流动对血液的信号影响很小,决定血液信号的主要是其T1值。血液的T1值很长,在1.5T场强下约为1200ms,因此呈现相对低信号。
相关文档
最新文档