6.3平面向量的数量积 1

合集下载

2020届高考数学一轮复习学霸提分秘籍专题6.3 平面向量的数量积及其应用(解析版)

2020届高考数学一轮复习学霸提分秘籍专题6.3 平面向量的数量积及其应用(解析版)

第六篇 平面向量与复数 专题6.03 平面向量的数量积及其应用【考试要求】1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题. 【知识梳理】1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos__θ.规定:零向量与任一向量的数量积为0,即0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a·b =0⇔x 1x 2+y 1y 2=0.(5)|a·b|≤|a||b|(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2. 3.平面向量数量积的运算律(1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律).【微点提醒】1.两个向量a ,b 的夹角为锐角⇔a·b>0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a·b<0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( ) (2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (4)若a ·b =a ·c (a ≠0),则b =c .( ) 【答案】 (1)× (2)√ (3)√ (4)× 【解析】 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等. 【教材衍化】2.(必修4P108A10改编)设a ,b 是非零向量.“a ·b =|a ||b |”是“a ∥b ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件【答案】 A【解析】 设a 与b 的夹角为θ.因为a ·b =|a |·|b |cos θ=|a |·|b |,所以cos θ=1,即a 与b 的夹角为0°,故a ∥b .当a ∥b 时,a 与b 的夹角为0°或180°, 所以a ·b =|a |·|b |cos θ=±|a |·|b |,所以“a ·b =|a |·|b |”是“a ∥b ”的充分而不必要条件.3.(必修4P108A2改编)在圆O 中,长度为2的弦AB 不经过圆心,则AO →·AB →的值为________. 【答案】 1【解析】 设向量AO →,AB →的夹角为θ,则AO →·AB →=|AO →||AB →|·cos θ=|AO →|cos θ·|AB →|=12|AB →|·|AB→|=12×(2)2=1. 【真题体验】4.(2018·全国Ⅱ卷)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A.4 B.3C.2D.0【答案】 B【解析】 a ·(2a -b )=2|a |2-a ·b =2×12-(-1)=3.5.(2018·上海嘉定区调研)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A.13+6 2 B.2 5 C.30D.34【答案】 D【解析】 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34.6.(2017·全国Ⅰ卷)已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________. 【答案】 7【解析】 由题意得a +b =(m -1,3),因为a +b 与a 垂直,所以(a +b )·a =0,所以-(m -1)+2×3=0,解得m =7. 【考点聚焦】考点一 平面向量数量积的运算【例1】 (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A.0B.4C.-92D.-172(2)(2018·天津卷)在如图的平面图形中,已知OM =1,ON =2,∠MON =120°,BM →=2MA →,CN →=2NA →,则BC →·OM →的值为( )A.-15B.-9C.-6D.0【答案】 (1)D (2)C【解析】 (1)由题意得2k -1-4k =0,解得k =-12,即m =⎝⎛⎭⎫-2,-12, 所以m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)连接OA .在△ABC 中,BC →=AC →-AB →=3AN →-3AM →=3(ON →-OA →)-3(OM →-OA →)=3(ON →-OM →),∴BC →·OM →=3(ON →-OM →)·OM →=3(ON →·OM →-OM →2)=3×(2×1×cos 120°-12)=3×(-2)=-6.【规律方法】 1.数量积公式a ·b =|a ||b |cos θ在解题中的运用,解题过程具有一定的技巧性,需要借助向量加、减法的运算及其几何意义进行适当变形;也可建立平面直角坐标系,借助数量积的坐标运算公式a ·b =x 1x 2+y 1y 2求解,较为简捷、明了.2.在分析两向量的夹角时,必须使两个向量的起点重合,如果起点不重合,可通过“平移”实现.【训练1】 (1)在△ABC 中,AB =4,BC =6,∠ABC =π2,D 是AC 的中点,E 在BC 上,且AE ⊥BD ,则AE →·BC →等于( ) A.16B.12C.8D.-4(2)(2019·皖南八校三模)已知|a |=|b |=1,向量a 与b 的夹角为45°,则(a +2b )·a =________. 【答案】 (1)A (2)1+ 2【解析】 (1)以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立平面直角坐标系(图略),A (4,0),B (0,0),C (0,6),D (2,3).设E (0,t ),BD →·AE →=(2,3)·(-4,t )=-8+3t =0,∴t=83,即E ⎝⎛⎭⎫0,83, AE →·BC →=⎝⎛⎭⎫-4,83·(0,6)=16. (2)因为|a |=|b |=1,向量a 与b 的夹角为45°, 所以(a +2b )·a =a 2+2a ·b =|a |2+2|a |·|b |cos 45°=1+ 2. 考点二 平面向量数量积的应用 角度1 平面向量的垂直【例2-1】 (1)(2018·北京卷)设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________. (2)(2019·宜昌二模)已知△ABC 中,∠A =120°,且AB =3,AC =4,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为( ) A.2215B.103C.6D.127【答案】 (1)-1 (2)A【解析】 (1)a =(1,0),b =(-1,m ),∴a 2=1,a ·b =-1, 由a ⊥(m a -b )得a ·(m a -b )=0,即m a 2-a ·b =0. ∴m -(-1)=0,∴m =-1. (2)因为AP →=λAB →+AC →,且AP →⊥BC →,所以有AP →·BC →=(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λAB →2+AC →2-AB →·AC →=(λ-1)AB →·AC →-λAB →2+AC →2=0,整理可得(λ-1)×3×4×cos 120°-9λ+16=0, 解得λ=2215.【规律方法】1.当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算.2.数量积的运算a·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a·b =0,但不能说a ⊥b.角度2 平面向量的模【例2-2】 (1)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________. (2)(2019·杭州调研)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. 【答案】 (1)10 (2)5【解析】 (1)由α⊥(α-2β)得α·(α-2β)=α2-2α·β=0, 所以α·β=12,所以(2α+β)2=4α2+β2+4α·β=4×12+22+4×12=10,所以|2α+β|=10.(2)建立平面直角坐标系如图所示,则A (2,0),设P (0,y ),C (0,b ),则B (1,b ).所以PA →+3PB →=(2,-y )+3(1,b -y )=(5,3b -4y ), 所以|PA →+3PB →|=25+(3b -4y )2(0≤y ≤b ),所以当y =34b 时,|PA →+3PB →|取得最小值5.【规律方法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.角度3 平面向量的夹角【例2-3】 (1)(2019·衡水中学调研)已知非零向量a ,b 满足|a +b |=|a -b |=233|a |,则向量a +b 与a -b 的夹角为________.(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.【答案】 (1)π3(2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 【解析】 (1)将|a +b |=|a -b |两边平方,得a 2+b 2+2a ·b =a 2+b 2-2a ·b ,∴a ·b =0. 将|a +b |=233|a |两边平方,得a 2+b 2+2a ·b =43a 2,∴b 2=13a 2.设a +b 与a -b 的夹角为θ,∴cos θ=(a +b )·(a -b )|a +b |·|a -b |=a 2-b 2233|a |·233|a |=23a 243a 2=12.又∵θ∈[0,π],∴θ=π3.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,解得k <3. 又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,此时2a -3b 与c 反向,不合题意.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3. 【规律方法】1.研究向量的夹角应注意“共起点”;两个非零共线向量的夹角可能是0或π;注意向量夹角的取值范围是[0,π];若题目给出向量的坐标表示,可直接套用公式cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【训练2】 (1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.(2)(一题多解)(2017·全国Ⅰ卷)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.(3)(2017·山东卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 【答案】 (1)2 (2)23 (3)33【解析】 (1)由a ⊥b ,得a ·b =0, 又a =(-2,3),b =(3,m ), ∴-6+3m =0,则m =2. (2)法一 |a +2b |=(a +2b )2=a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12=12=2 3.法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3. (3)由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2.同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33. 考点三 平面向量与三角函数【例3】 (2019·潍坊摸底)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 【答案】见解析【解析】(1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =bsin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.【规律方法】 平面向量与三角函数的综合问题的解题思路:(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【训练3】 (2019·石家庄模拟)已知A ,B ,C 分别为△ABC 的三边a ,b ,c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n =sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长. 【答案】见解析【解析】(1)由已知得m ·n =sin A cos B +cos A sin B =sin(A +B ), 因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C , 所以m ·n =sin C ,又m ·n =sin 2C , 所以sin 2C =sin C ,所以cos C =12.又0<C <π,所以C =π3.(2)由已知及正弦定理得2c =a +b . 因为CA →·(AB →-AC →)=CA →·CB →=18, 所以ab cos C =18,所以ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab 所以c 2=4c 2-3×36, 所以c 2=36,所以c =6. 【反思与感悟】1.计算向量数量积的三种方法定义、坐标运算、数量积的几何意义,要灵活运用,与图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. 【易错防范】数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.数量积运算不满足结合律,(a ·b )·c 不一定等于a ·(b ·c ). 【核心素养提升】【数学运算、数学建模】——平面向量与三角形的“四心”1.数学运算是指在明晰运算的基础上,依据运算法则解决数学问题的素养.通过学习平面向量与三角形的“四心”,学生能进一步发展数学运算能力,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神.2.数学建模要求在熟悉的情境中,发现问题并转化为数学问题,能够在关联的情境中,经历数学建模的过程,理解数学建模的意义.本系列通过学习平面向量与三角形的“四心”模型,能够培养学生用模型的思想解决相关问题.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a2sin A. (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0. 类型1 平面向量与三角形的“重心”【例1】 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA→+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( ) A.△ABC 的内心 B.△ABC 的垂心 C.△ABC 的重心D.AB 边的中点 【答案】 C【解析】 取AB 的中点D ,则2OD →=OA →+OB →, ∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP →=13[2(1-λ)OD →+(1+2λ)OC →]=2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心. 类型2 平面向量与三角形的“内心”问题【例2】 在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B.1463C.4 3D.6 2【答案】 B【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则 12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463.类型3 平面向量与三角形的“垂心”问题【例3】 已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP→=OA →+λ⎝⎛⎭⎪⎫AB →|AB →|cos B + AC →|AC →|cos C ,λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.重心 B.垂心C.外心D.内心【答案】 B【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|cos B + AC →|AC →|cos C , 所以AP →=OP →-OA →=λ⎝⎛⎭⎪⎫AB →|AB →|cos B + AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎫AB→|AB →|cos B + AC →|AC →|cos C =λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上, 即动点P 的轨迹一定通过△ABC 的垂心. 类型4 平面向量与三角形的“外心”问题【例4】 已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎫45,35 B.⎝⎛⎭⎫35,45 C.⎝⎛⎭⎫-45,35D.⎝⎛⎭⎫-35,45 【答案】 A【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝⎛⎭⎫12-x AB →-yAC →, ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝⎛⎭⎫12-y AC →-xAB →. 由OM →⊥AB →,得⎝⎛⎭⎫12-x AB →2-yAC →·AB →=0,① 由ON →⊥AC →,得⎝⎛⎭⎫12-y AC →2-xAC →·AB →=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC→22=-12,③把③代入①、②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝⎛⎭⎫45,35.【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.已知向量a =(m -1,1),b =(m ,-2),则“m =2”是“a ⊥b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 【答案】 A【解析】 当m =2时,a =(1,1),b =(2,-2), 所以a ·b =(1,1)·(2,-2)=2-2=0, 所以a ⊥b ,充分性成立;当a ⊥b 时,a ·b =(m -1,1)·(m ,-2)=m (m -1)-2=0, 解得m =2或m =-1,必要性不成立. 所以“m =2”是“a ⊥b ”的充分不必要条件.2.(2019·北京通州区二模)已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B.1C. 2D.2【答案】 A【解析】 由题意得a ·b =|a |×1×12=|a |2,又|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,即4|a |2-2|a |=0,又|a |≠0, 解得|a |=12.3.(2019·石家庄二模)若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |,则向量a +b 与a 的夹角为( ) A.π3B.2π3C.5π6D.π6【答案】 D【解析】 设|b |=1,则|a +b |=|a -b |=2. 由|a +b |=|a -b |,得a ·b =0,故以a 、b 为邻边的平行四边形是矩形,且|a |=3, 设向量a +b 与a 的夹角为θ,则cos θ=a ·(a +b )|a |·|a +b |=a 2+a ·b |a |·|a +b |=|a ||a +b |=32,又0≤θ≤π,所以θ=π6.4.如图,在等腰梯形ABCD 中,AB =4,BC =CD =2,若E ,F 分别是边BC ,AB 上的点,且满足BE BC =AF AB=λ,则当AE →·DF →=0时,λ的值所在的区间是( )A.⎝⎛⎭⎫18,14B.⎝⎛⎭⎫14,38 C.⎝⎛⎭⎫38,12D.⎝⎛⎭⎫12,58【答案】 B【解析】 在等腰梯形ABCD 中,AB =4,BC =CD =2, 可得〈AD →,BC →〉=60°,所以〈AB →,AD →〉=60°,〈AB →,BC →〉=120°,所以AB →·AD →=4×2×12=4,AB →·BC →=4×2×⎝⎛⎭⎫-12=-4,AD →·BC →=2×2×12=2, 又BE BC =AF AB=λ,所以BE →=λBC →,AF →=λAB →, 则AE →=AB →+BE →=AB →+λBC →, DF →=AF →-AD →=λAB →-AD →, 所以AE →·DF →=(AB →+λBC →)·(λAB →-AD →) =λAB →2-AB →·AD →+λ2AB →·BC →-λAD →·BC →=0,即2λ2-7λ+2=0,解得λ=7+334(舍去)或λ=7-334∈⎝⎛⎭⎫14,38. 5.(2017·浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A.I 1<I 2<I 3B.I 1<I 3<I 2C.I 3<I 1<I 2D.I 2<I 1<I 3【答案】 C【解析】 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角,根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →||CA →|·cos ∠AOB <0,∴I 1<I 2,同理I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,∴OB <BG =GD <OD ,而OA <AF =FC <OC ,∴|OA →||OB →|<|OC →||OD →|, 而cos ∠AOB =cos ∠COD <0,∴OA →·OB →>OC →·OD →, 即I 1>I 3.∴I 3<I 1<I 2. 二、填空题6.(2019·杭州二模)在△ABC 中,三个顶点的坐标分别为A (3,t ),B (t ,-1),C (-3,-1),若△ABC 是以B 为直角顶点的直角三角形,则t =________. 【答案】 3【解析】 由已知,得BA →·BC →=0, 则(3-t ,t +1)·(-3-t ,0)=0,∴(3-t )(-3-t )=0,解得t =3或t =-3, 当t =-3时,点B 与点C 重合,舍去.故t =3.7.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a ,b 夹角θ的余弦值为________. 【答案】 -13【解析】 |a |=|a +2b |,两边平方得, |a |2=|a |2+4|b |2+4a ·b =|a |2+4|b |2+4|a ||b |·cos θ. 又|a |=3|b |,所以0=4|b |2+12|b |2cos θ,得cos θ=-13.8.(2019·佛山二模)在Rt △ABC 中,∠B =90°,BC =2,AB =1,D 为BC 的中点,E 在斜边AC 上,若AE →=2EC →,则DE →·AC →=________. 【答案】 13【解析】 如图,以B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y 轴,建立平面直角坐标系,则B (0,0),A (1,0),C (0,2),所以AC →=(-1,2).因为D 为BC 的中点,所以D (0,1), 因为AE →=2EC →,所以E ⎝⎛⎭⎫13,43, 所以DE →=⎝⎛⎭⎫13,13,所以DE →·AC →=⎝⎛⎭⎫13,13·(-1,2)=-13+23=13.三、解答题9.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值. 【答案】见解析【解析】(1)由题设知AB →=(3,5),AC →=(-1,1), 则AB →+AC →=(2,6),AB →-AC →=(4,4). 所以|AB →+AC →|=210,|AB →-AC →|=4 2. 故所求的两条对角线的长分别为42,210.(2)由题设知:OC →=(-2,-1),AB →-tOC →=(3+2t ,5+t ). 由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11,所以t =-115.10.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )(0≤θ≤π2).(1)若AB →⊥a ,且|AB →|=5|OA →|,求向量OB →;(2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.【答案】见解析【解析】(1)由题设知AB →=(n -8,t ), ∵AB →⊥a ,∴8-n +2t =0. 又∵5|OA →|=|AB →|,∴5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, ∴OB →=(24,8)或OB →=(-8,-8). (2)由题设知AC →=(k sin θ-8,t ), ∵AC →与a 共线,∴t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ =-2k (sin θ-4k )2+32k .∵k >4,∴0<4k<1,∴当sin θ=4k 时,t sin θ取得最大值32k .由32k =4,得k =8, 此时θ=π6,OC →=(4,8),∴OA →·OC →=(8,0)·(4,8)=32. 【能力提升题组】(建议用时:20分钟)11.在△ABC 中,∠C =90°,AB =6,点P 满足CP =2,则PA →·PB →的最大值为( ) A.9 B.16C.18D.25【答案】 B【解析】 ∵∠C =90°,AB =6,∴CA →·CB →=0,∴|CA →+CB →|=|CA →-CB →|=|BA →|=6,∴PA →·PB →=(PC →+CA →)·(PC →+CB →)=PC →2+PC →·(CA →+CB →)+CA →·CB → =PC →·(CA →+CB →)+4,∴当PC →与CA →+CB →方向相同时,PC →·(CA →+CB →)取得最大值2×6=12, ∴PA →·PB →的最大值为16.12.(2018·浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( ) A.3-1 B.3+1 C.2D.2- 3【答案】 A【解析】 设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min=|CA →|-|CB →|=3-1.13.(2019·安徽师大附中二模)在△ABC 中,AB =2AC =6,BA →·BC →=BA →2,点P 是△ABC 所在平面内一点,则当PA →2+PB →2+PC →2取得最小值时,AP →·BC →=________. 【答案】 -9【解析】 ∵BA →·BC →=|BA →|·|BC →|·cos B =|BA →|2, ∴|BC →|·cos B =|BA →|=6, ∴CA →⊥AB →,即A =π2,以A 为坐标原点建立如图所示的坐标系,则B (6,0),C (0,3),设P (x ,y ),则PA →2+PB →2+PC →2=x 2+y 2+(x -6)2+y 2+x 2+(y -3)2=3x 2-12x +3y 2-6y +45=3[(x -2)2+(y -1)2+10]∴当x =2,y =1时,PA →2+PB →2+PC →2取得最小值,此时AP →·BC →=(2,1)·(-6,3)=-9.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值.【答案】见解析【解析】(1)由题意得(2a -c )cos B =b cos C .根据正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ), 即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0,所以cos B =22,又B ∈(0,π),所以B =π4. (2)因为|BA →-BC →|=6,所以|CA →|=6,即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2).故△ABC 的面积S =12ac sin B ≤3(2+1)2, 因此△ABC 的面积的最大值为32+32. 【新高考创新预测】15.(新定义题型)对任意两个非零的平面向量α和β,定义α⊗β=|α||β|cos θ,其中θ为α和β的夹角.若两个非零的平面向量a 和b 满足:①|a |≥|b |;②a 和b 的夹角θ∈⎝⎛⎭⎫0,π4;③a ⊗b 和b ⊗a 的值都在集合{x |x =n 2,n ∈N }中,则a ⊗b 的值为________. 【答案】 32【解析】 a ⊗b =|a ||b |cos θ=n 2,b ⊗a =|b ||a |cos θ=m 2,m ,n ∈N .由a 与b 的夹角θ∈⎝⎛⎭⎫0,π4,知cos 2θ=mn 4∈⎝⎛⎭⎫12,1,故mn =3,m ,n ∈N .因为|a |≥|b |,所以0<b ⊗a =m 2<1,所以m =1,n =3,所以a ⊗b =32.。

高一数学平面向量的数量积1

高一数学平面向量的数量积1
向上的投影│b│cosθ的积
OB= │b│cosθb源自θaOB南方向突然出现了五片厉声尖叫的亮红色光蛙,似银光一样直奔白象牙色粼光而来。,朝着蘑菇王子青春光洁,好似小天神般的手掌横抓过来……紧跟着R.布基希大夫也窜 耍着咒符像烟妖般的怪影一样向蘑菇王子横抓过来蘑菇王子超然像亮红色的金鳞雪原羊一样长嘘了一声,突然来了一出曲身狂舞的特技神功,身上顷刻生出了四只犹如柳枝似
运算律:
1. a b b a
2.a b a b a b 3. a bc a c b c
平面向量数量积的坐标表示
设a x1, y1 ,b x2, y2
ab x1i y1 jx2i y2 j
x1x2i2 x1 y2i j x2 y1i j y1 y2 j2
x1x2 y1 y2
两个向量的数量积等于它们对应坐标的乘积的和,即
a b x1x2 y1 y2
平面向量的模、夹角
(1)设a =(x,y),则 | a |2 x2 y2 或|a |= x2 y2 .
x2 x1 2 y2 y1 2
即平面内两点间的距离公式.
(2)写出向量夹角公式的坐标式,向量平行和垂直的坐
的灰蓝色手掌。接着演了一套,摇羊油条翻三百; 快乐作文培训加盟 作文班加盟 ;六十度外加蛙啸纸条旋三周半的招数!接着又耍了一套,云体羊 窜冲天翻七百二十度外加狂转两千周的艺术招式。紧接着直挺滑润的鼻子闪眼间转化颤动起来……活力充沛、极似淡红色古树般的嘴唇跃出墨黑色的缕缕弧云……清秀俊朗、
作业:
课本P121A组6 ~ 9
a b | a || b | cos
│b│cosθ叫做向量b在向量a上的投影。
规定:零向量与任意向量的数量积为0,即 a 0 0. 注: 两向量的数量积是一个数量,而不是向量,符号由夹 角决定

平面向量的数量积1

平面向量的数量积1

即: (a b) c a (b c)
1.有四个式子: 10 a 0, 2 0 a 0, 3a b a c b c, 4 a b a b , (5)(a b ) c a (b c ) D 其中正确的个数为 :
复习目标:
1、掌握向量数量积定义,几何意义,坐标表示及其 在物理学上的应用。 2、掌握平面两点间的距离公式和向量垂直的坐标表示 的充要条件。
3、利用向量的数量积来处理长度、角度、垂直等问题。
一、知识复习
1、数量积的定义: a b | a || b | cos
是a和b的夹角 , 范围是0
三、向量与二次曲线的结合
x 2 例3、设F1 , F2是双曲线 y 1的两个焦点 4 点P在双曲线上,且 PF1 PF2 0, 则 PF1 PF2 的值等于( ) A A. 2 B. 2 2 C. 4 D. 8
2
变题 : (1)若O为ABC所在平面内一点 , 且满足(OB OC ) (OB OC 2OA) 0
C ) 则ABC的形状为(
A. 正三角形 B. 直角三角形 C. 等腰三角形 D. 以上均不是
(2)ABC的外接圆的圆心为 O, 两条边上 的高的交点为H , OH m(OA OB OC )
2.当a与b同向时, a b a b ;当向量a与b反向时, a b a b
特别地, a a a 或 a a a
2
设a x, y , 则 a x 2 y 2 用于计算向量的模
3. cos ห้องสมุดไป่ตู้
a b ab
.
用于计算向量的夹角

高考数学一轮复习第六章平面向量解三角形复数6.3平面向量的数量积与平面向量的应用人教A版

高考数学一轮复习第六章平面向量解三角形复数6.3平面向量的数量积与平面向量的应用人教A版

-2e1·e2-8������22. e1,e2 为单位向量,且
e1

e2
的夹角为π3,
所以 b1·b2=3-2×12-8=3-1-8=-6.
-15-
考点1
考点2
考点3
考点 2 平面向量的模及应用
例 2(1)在平面内,定点 A,B,C,D 满足|������������|=|������������|=|������������|,������������ ·������������ =
-13-
考点1
考点2
考点3
对点训练 1(1)已知△ABC 是边长为 1 的等边三角形,点 D,E 分别
是边 AB,BC 的中点,连接 DE 并延长到点 F,使得 DE=2EF,则������������ ·������������
的值为( B )
A.-58
B.18
C.14
D.181
(2)已知 a=(1,2),2a-b=(3,1),则 a·b=( D )
+
3 4
=
18,应选
B.
(2)因为a=(1,2),2a-b=(3,1),
所以b=2a-(3,1)=2(1,2)-(3,1)=(-1,3).
所以a·b=(1,2)·(-1,3)=-1+2×3=5.
(3)b1=e1-2e2,b2=3e1+4e2,则 b1·b2=(e1-2e2)·(3e1+4e2)
=3������12 因为
6.向量在三角函数中的应用 对于向量与三角函数结合的题目,其解题思路是用向量运算进行 转化,化归为三角函数问题或三角恒等变形等问题或解三角形问题.
7.向量在解析几何中的应用 向量在解析几何中的应用,主要是以向量的数量积给出一种条件, 通过向量转化,进而利用直线和圆锥曲线的位置关系等相关知识来 解答.

平面向量的数量积PPT课件

平面向量的数量积PPT课件

运算律
向量与标量乘法结合律
对于任意向量$mathbf{a}$和标量$k$,有$kmathbf{a} cdot mathbf{b} = (kmathbf{a}) cdot mathbf{b} = k(mathbf{a} cdot mathbf{b})$。
向量与标量乘法交换律
对于任意向量$mathbf{a}$和标量$k$,有$mathbf{a} cdot kmathbf{b} = k(mathbf{a} cdot mathbf{b}) = (kmathbf{b}) cdot mathbf{a}$。
向量数量积的性质
向量数量积满足交换律和结合 律,即a·b=b·a和 (a+b)·c=a·c+b·c。
向量数量积满足分配律,即 (a+b)·c=a·c+b·c。
向量数量积满足正弦律,即 a·b=|a||b|sinθ,其中θ为向量a 和b之间的夹角。
02 平面向量的数量积的运算
计算公式
定义
平面向量$mathbf{a}$和$mathbf{b}$的数量积定义为 $mathbf{a} cdot mathbf{b} = |mathbf{a}| times |mathbf{b}| times cos theta$,其中$theta$是向量 $mathbf{a}$和$mathbf{b}$之间的夹角。
交换律
平面向量的数量积满足交换律,即$mathbf{a} cdot mathbf{b} = mathbf{b} cdot mathbf{a}$。
分配律
平面向量的数量积满足分配律,即$(mathbf{a} + mathbf{b}) cdot mathbf{c} = mathbf{a} cdot mathbf{c} + mathbf{b} cdot mathbf{c}$。

平面向量的数量积(1)

平面向量的数量积(1)

§5.3平面向量的数量积定向.学习目标1、通过物理中功等实例,掌握平面向量数量积的概念2、通过几何直观,掌握平面向量投影的概念以及投影的几何意义定向.重点、难点重点:数量积的概念、投影向量的概念难点:极化恒等式求数量积预学.自主梳理1.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.几何表示坐标表示数量积a·b=|a||b|cosθa·b=__________模|a|=________|a|=____________夹角cosθ=________cosθ=________________a⊥b的充要条件a·b=0a·b=|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤(x21+y21)(x22+y22) 2、求平面向量数量积的五种方法:(1)定义法(2)坐标法(3)投影法(4)极化恒等式(5)分解法(基向量法)这节课我们将重点学习求数量积的3种方法并探究一下不同方法的适用条件。

研学.任务探究题型一投影法求数量积问题1我们来看数量积的结构a·b=|a||b|cosθ,|b|cosθ表示什么?你能否在图中画出来?当cosθ>0,则|b|cosθ>0;当cosθ<0,则|b|cosθ0;当cosθ=0时,则|b|cosθ=0。

问题2如图,设每个格子长度为1,请同学们试着把b在a上的投影向量画出来,并分别求出a·b问题3如图,在圆C 中,是不是只需知道圆C 的半径或弦AB 的长度,就可以求出AB →·A的值.?例1(2024·揭阳模拟)已知点P 是边长为2的菱形ABCD 内的一点(包含边界),且∠BAD =120°,则AP →·AB →的取值范围是()A .[-2,4]B .(-2,4)C .[-2,2]D .(-2,2)跟踪训练1(1)在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.则BD →·BM →=________;若D 是线段AM 上的任意一点,则BD →·BM →=请思考:为什么点D 在AM 上的位置发生变化,却不影响数量积的大小?(2)(2020山东卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则•的取值范围是()A .(﹣2,6)B .(﹣6,2)C .(﹣2,4)D .(﹣4,6)题型二极化恒等式求数量积(难点)问题在△ABC 中,AB →=a ,AC →=b ,AM 为中线,则a ·b =|AM →|2-|MB →|2.请试着证明这个结论()例2(1)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则•=()A .9B .16C .﹣16D .与三角形形状有关(2)(2017全国卷)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是()A .-2B .-32C .-43D .-1跟踪训练2已知点A ,B ,C 均在半径为的圆上,若|AB |=2,则的最大值为________.题型三分解法(基向量法)求数量积思考:若一个向量固定不动,用投影法;若两个向量共起点且底边长度固定,用极化恒等式;如果两向量都不固定,或者都不共起点,那如何求数量积?例3在边长为2的等边△ABC 中,点M 是BC 上靠近点B 的一个三等分点,点Q 为AC 的中点,BQ 交AM 于点N .求A·B 提示:如果BM :MC=m:n ,则跟踪训练3在ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,则•=.总结感悟3种求数量积的方法的适用条件1、投影法(几何法):a·b=|a||b|cosθ,其中|b|cosθ为b在a方向上的投影适用条件:有一个向量固定,用投影法2、极化恒等式适用条件:两向量共起点,且底边固定,用极化恒等式3、分解法(基向量法)适用条件:两向量横七竖八,用分解法达标检测1.如图,△ABC,△BDE都是边长为1的等边三角形,A,B,D三点共线,则A ·A 等于A.1B.2C.3D.42、(2023·安康模拟)已知四边形ABCD为平行四边形如图,|AB→|=,|AD→|=2,DN→=2NC→,BM→=3MC→,则AM→·NM→等于()A.7B.1 C.34D.1 43.如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.。

平面向量的数量积

平面向量的数量积

平面向量的数量积
什么是平面向量的数量积?
平面向量的数量积,也被称为点积或内积,是指两个向量之间
的运算结果。

它通过将两个向量的对应分量相乘,并将乘积相加得
到一个标量值。

数量积的计算公式
假设有两个平面向量A和B,其坐标分别为(Ax, Ay)和(Bx, By),则它们的数量积被定义为以下公式:
A ·
B = (Ax * Bx) + (Ay * By)
数量积的性质
交换律
两个向量的数量积满足交换律,即 A · B = B · A。

分配律
数量积满足分配律,即对于向量A和向量B,以及标量k,有
以下等式成立:
k(A · B) = k(Ax * Bx) + k(Ay * By)
数量积的意义
计算角度
通过数量积的计算公式,我们可以得到两个向量之间的夹角的
余弦值。

具体地,设向量A和向量B之间的夹角为θ,则有以下等
式成立:
cosθ = (A · B) / (|A| * |B|)
其中,|A| 和 |B| 分别表示向量A和向量B的长度。

因此,通过计算数量积,我们可以得到向量之间的夹角。

判断垂直与平行关系
若两个向量的数量积为0,则它们垂直;若两个向量的数量积
不为0且它们的长度相等,则它们平行。

该文档介绍了平面向量的数量积的定义、计算公式以及性质。

同时,说明了数量积在计算角度和判断垂直与平行关系方面的意义。

平面向量的数量积(1)

平面向量的数量积(1)
课题
平面向量的数量积(1)
编制人:刘翠姣
审核人:邱兆雪
教学目标
1.理解平面向量数量积的含义及其物理意义;
2能运用数量积处理有关长度,角度的问题。
教学重点
1.理解平面向量数量积的含义及其物理意义2能运用数量积处理有关长度,角度的问题
教学难点
1.两个向量的数量积与实数积的区别2.向量数量积与实数乘法在运算律上的区别
变式:(1)(2017·苏北四市期末)已知非零向量a,b满足|a|=|b|=|a+b|,则a与2a-b夹角的余弦值为_______
(2)已知a=(1,2),b=(1,1),且a与a+λb的夹角为锐角,那么实数λ的取值范围
学生活动
学生黑板展示,师生共同点评。
二次备课
教师活动
学生活动
二次备课
课堂小结:
课堂检测:
授课方法
讲练结合
教学辅助手段
教学多媒体
教师活动
课前自学:
1. (必修4P81习题2改编)已知向量a与向量b的夹角为30°,|a|=2,|b|= ,
那么向量a和向量b的数量积a·b=________.
2(必修4P88练习4改编)已知向量a=(1,-1),b=(2,x).若a·b=1,则
实数x=_______
3(必修4P89习题2改编)已知向量a,b的夹角为120°, =1, =3,那
么 =_______
4 (必修4P88练习4改编)已知向量a=(1,2),=(x,4),且a·b=10,则
|a-b|=______
5.(必修4P81习题13改编)若|a|=2,|b|=4,且(a+b)⊥a,则a与b的夹角为_______
例2:(1)(2017·扬州中学)若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为______

《平面向量》第3讲 平面向量的数量积(1)

《平面向量》第3讲 平面向量的数量积(1)

a 2, b 4, 向量 a 与 b 的
夹角60°,求 a 与 2a b 的夹角.
一、理清向量夹角的概念.
[检测题] 在等边△ABC中.
① 向量 AB与BC 夹角的大小是

1 计算 AB BC BC CA AC AB 2
120
.
.
二、落实向量的数量积基本的运算方法.
1
.
能力提升
1 [变式2] 向量 a , b , c 满足 a b 1, a b , 2
a c, b c 60 , 则|c|的最大值为 2
.
能力与提升
[题目].向量 a 与 b 满足 a 2b 1,则 a b 的最大值是
1 8
小结
1. 数量的代数运算.
课题:
平面向量的数量积 ( 1 )
引例
[题目].已知 a 2, b 4, 向量 a 与 b 的夹角60°,
(1).求 a b a 的值.
(2).求 a b 的值.


【变1】已知
a 2, b 4, 且 a b a ,求


向量 a 与 b 的夹角.
引例
【变2】已知
[检测题] 在边长为1正方形ABCD中,点E是AB边 上的一个动点,则 DE CB 的值为
1

DE DC 最大值是
1
.
能力与提升
[例题3] 若a,b,c均为单位向量,且a· b= 0 ,
(a-c)· (b-c)=0,则|c|的最大值为
2
.
[变式1] 若a,b,c均为单位向量,且a· b= 0, (a-c)· (b-c)≤0,则|a+b-c|的最大值为

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。

高一数学平面向量的数量积1

高一数学平面向量的数量积1

运算律:
1. a b b a
2.ab a b a b 3. a bc a c bc
平面向量数量积的坐标表示
设a x1, y1,b x2, y2
a b x1i y1 jx2i y2 j
x1x2i 2 x1 y2i j x2 y1i j y1 y2 j2
x1x2 y1 y2
两个向量的数量积等于它们对应坐标的乘积的和,即
a b x1ቤተ መጻሕፍቲ ባይዱ2 y1 y2
平面向量的模、夹角
(1)设a =(x,y),则 | a |2 x2 y2 或|a |= x2 y2 .
x2 x1 2 y2 y12
即平面内两点间的距离公式.
数量积a•b等于a的长度│a│与b在a的方
向上的投影│b│cosθ的积
OB= │b│cosθ
b
θa
O
B
;数码快印 数码快印
;

,像鼠群,人生像仓库。 空间被它霸占,时间被它噬碎,心力被它耗尽。 表面上,人人参与社会机器的庞大运转,但无一是主人,皆奴婢和下人。我们越来越成为自己工具的工具了。 我们的课程太多,作业太重。 我们无休止地准备生活,然而生活迟迟没有开始。 像一个永远留级的学生, 等不来毕业,等不到卸下书包的那一天。 现代人死于累,死于心绞痛,死于童年的消逝。 谁设计了这样的生活?谁捏造了这样的共识? 想想古代,那会儿灵魂和肉体多轻盈啊。无论时间、空间,都有辽阔的场子、足够的宽松和僻静。古代的最伟大之处在于,它收养了一大帮精神松弛的人, 比如真正的游手好闲者,真正的隐士和散人,且总有生动山林,供之随心所欲使唤。 何谓自由? 我觉得,大概即一个人能决定哪些事和自己有关或无关。 蟋蟀入我床下纪念虫鸣文化 ? 夜晚,

平面向量的数量积

平面向量的数量积

平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。

6.3.5平面向量数量积的坐标表示讲义- 高一下学期数学人教A版(2019)必修第二册

6.3.5平面向量数量积的坐标表示讲义- 高一下学期数学人教A版(2019)必修第二册

6.3.5 平面向量数量积的坐标表示(教师独具内容)课程标准:1.能用坐标表示平面向量的数量积,会表示两个平面向量的夹角.2.能用坐标表示平面向量垂直的条件.教学重点:平面向量数量积的坐标表示以及模、角度、垂直关系的坐标表示.教学难点:用坐标法处理模、角度、垂直问题.核心素养:1.通过平面向量数量积的坐标表示的推导过程培养逻辑推理和数学运算素养.2.通过运用平面向量数量积的坐标表示来解决模、角度、垂直等问题进一步提升数学运算素养.1.平面向量数量积的坐标表示主要解决的问题向量的坐标表示和向量的坐标运算实现了向量运算的完全代数化,并将数与形紧密结合起来.本节主要应用有:(1)求两点间的距离(求向量的模).(2)求两向量的夹角.(3)证明两向量垂直.2.解决向量夹角问题的方法及注意事项(1)先利用平面向量的坐标表示求出这两个向量的数量积a·b以及|a||b|,再由cosθ=a·b|a||b|求出cosθ,也可由坐标表示cosθ=x1x2+y1y2x21+y21x22+y22直接求出cosθ.由三角函数值cosθ求角θ时,应注意角θ的取值范围是0≤θ≤π.(2)由于0≤θ≤π,利用cosθ=a·b|a||b|来判断角θ时,要注意cosθ<0有两种情况:一是θ是钝角,二是θ=π;cosθ>0也有两种情况:一是θ是锐角,二是θ=0.1.判一判(正确的打“√”,错误的打“×”)(1)向量的模等于向量坐标的平方和.( )(2)若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0.( )(3)若两个非零向量的夹角θ满足cosθ<0,则两向量的夹角θ一定是钝角.( )2.做一做(1)已知a,b为平面向量,a=(4,3),2a+b=(3,18),则a,b的夹角θ的余弦值等于( )A.865B.-865C.1665D.-1665(2)若向量a=(3,m),b=(2,1),a·b=0,则实数m的值为____.(3)已知a=(1,3),b=(-2,0),则|a+b|=____.题型一平面向量数量积的坐标表示例1 已知向量a与b同向,b=(1,2),a·b=10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.[条件探究] 若将本例改为a与b反向,b=(1,2),a·b=-10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.[跟踪训练1] 向量a=(1,-1),b=(-1,2),则(2a+b)·a=( ) A.-1 B.0C.1 D.2题型二向量的模的问题例2 (1)若向量a=(2x-1,3-x),b=(1-x,2x-1),则|a-b|的最小值为____.(2)若向量a的始点为A(-2,4),终点为B(2,1),求:①向量a的模;②与a 平行的单位向量的坐标; ③与a 垂直的单位向量的坐标.[跟踪训练2] 设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( )A. 5 B .10 C .2 5D .10题型三 向量垂直的坐标表示例3 设OA →=(2,-1), OB →=(3,1), OC →=(m,3).(1)当m =2时,用OA →和OB →表示OC →; (2)若AB →⊥BC →,求实数m 的值.[跟踪训练3] 已知在△ABC 中,A (2,-1),B (3,2),C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.题型四 平面向量的夹角问题例4 已知△ABC 顶点的坐标分别为A (3,4),B (0,0),C (c,0), (1)若c =5,求sin A 的值; (2)若∠A 是钝角,求c 的取值范围.[跟踪训练4] 已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且a ∥b ,a ⊥c .(1)求b 与c ;(2)若m =2a -b ,n =a +c ,求向量m ,n 的夹角的大小. 题型五 向量数量积的综合应用例5 已知三点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 的对角线的长度. [跟踪训练5] 已知a ,b ,m ,n ∈R ,设(a 2+b 2)(m 2+n 2)=(am +bn )2,其中mn ≠0,用向量方法求证:a m =b n.1.若a =(2,-3),b =(x,2x ),且3a ·b =4,则x 等于( ) A .3 B .13 C .-13D .-32.已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝ ⎛⎭⎪⎫79,73 B .⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79 D .⎝ ⎛⎭⎪⎫-79,-733.已知a =(1,2),b =(x,4),且a ·b =10,则|a -b |=____.4.设向量a 与b 的夹角为θ,且a =(3,3),2b -a =(-1,1),则cos θ=____.5.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.一、选择题1.已知|a |=1,b =(0,2),且a ·b =1,则向量a 与b 夹角的大小为( ) A.π6 B .π4 C .π3D .π22.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8D .8 23.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3,则b =( )A.⎝ ⎛⎭⎪⎫32,12 B .⎝ ⎛⎭⎪⎫12,32 C.⎝ ⎛⎭⎪⎫14,334 D .(1,0)4.(多选)在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,则k 的值可能为( )A .-23B .113C.3±132D .235.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3(-2<x <10)的图象与x 轴交于点A ,过点A的直线l 与函数的图象交于B ,C 两点(除点A 外),则(OB →+OC →)·OA →=( )A .-32B .-16C .16D .32二、填空题6.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a与c 的夹角为____.7.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN →的模为____.8.已知a =(1,3),b =(2+λ,1),且a 与b 的夹角为锐角,则实数λ的取值范围是____.三、解答题9.设平面向量a =(cos α,sin α)(0≤α<2π),b =⎝ ⎛⎭⎪⎫-12,32,且a 与b不共线.(1)求证:向量a +b 与a -b 垂直;(2)若两个向量3a +b 与a -3b 的模相等,求角α.1.已知点A (-2,0),B (1,9),C (m ,n ),O 是原点. (1)若A ,B ,C 三点共线,求m 与n 满足的关系式; (2)若△AOC 的面积等于3,且AC →⊥B C →,求OC →.2.已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)OA →+λOB →(λ2≠λ). (1)证明:A ,B ,C 三点共线,并在AB →=BC →时,求λ的值; (2)求|OC →|的最小值.6.3.5 平面向量数量积的坐标表示(教师独具内容)课程标准:1.能用坐标表示平面向量的数量积,会表示两个平面向量的夹角.2.能用坐标表示平面向量垂直的条件.教学重点:平面向量数量积的坐标表示以及模、角度、垂直关系的坐标表示. 教学难点:用坐标法处理模、角度、垂直问题.核心素养:1.通过平面向量数量积的坐标表示的推导过程培养逻辑推理和数学运算素养.2.通过运用平面向量数量积的坐标表示来解决模、角度、垂直等问题进一步提升数学运算素养.1.平面向量数量积的坐标表示主要解决的问题向量的坐标表示和向量的坐标运算实现了向量运算的完全代数化,并将数与形紧密结合起来.本节主要应用有:(1)求两点间的距离(求向量的模). (2)求两向量的夹角. (3)证明两向量垂直.2.解决向量夹角问题的方法及注意事项(1)先利用平面向量的坐标表示求出这两个向量的数量积a ·b 以及|a ||b |,再由cosθ=a·b|a||b|求出cosθ,也可由坐标表示cosθ=x1x2+y1y2x21+y21x22+y22直接求出cosθ.由三角函数值cosθ求角θ时,应注意角θ的取值范围是0≤θ≤π.(2)由于0≤θ≤π,利用cosθ=a·b|a||b|来判断角θ时,要注意cosθ<0有两种情况:一是θ是钝角,二是θ=π;cosθ>0也有两种情况:一是θ是锐角,二是θ=0.1.判一判(正确的打“√”,错误的打“×”)(1)向量的模等于向量坐标的平方和.( )(2)若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0.( )(3)若两个非零向量的夹角θ满足cosθ<0,则两向量的夹角θ一定是钝角.( )答案(1)×(2)√(3)×2.做一做(1)已知a,b为平面向量,a=(4,3),2a+b=(3,18),则a,b的夹角θ的余弦值等于( )A.865B.-865C.1665D.-1665(2)若向量a=(3,m),b=(2,1),a·b=0,则实数m的值为____.(3)已知a=(1,3),b=(-2,0),则|a+b|=____.答案(1)C (2)-6 (3)2题型一平面向量数量积的坐标表示例1 已知向量a与b同向,b=(1,2),a·b=10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.[解](1)∵a与b同向,且b=(1,2),∴a=λb=(λ,2λ)(λ>0).又a·b=10,∴λ+4λ=10,∴λ=2,∴a=(2,4).(2)∵a·c=2×2+4×(-1)=0,∴(a·c)b=0.[条件探究] 若将本例改为a与b反向,b=(1,2),a·b=-10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.解(1)∵a与b反向,且b=(1,2),∴设a=λb(λ<0),∴a=(λ,2λ),又a·b=-10,∴λ+4λ=-10,∴λ=-2,∴a=(-2,-4).(2)∵a·c=(-2)×2+(-4)×(-1)=-4+4=0,∴(a·c)b=0.数量积坐标运算的两条途径进行向量的数量积运算,前提是牢记有关的运算法则和运算性质.解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.[跟踪训练1] 向量a=(1,-1),b=(-1,2),则(2a+b)·a=( ) A.-1 B.0C.1 D.2答案 C解析a=(1,-1),b=(-1,2),∴(2a+b)·a=(1,0)·(1,-1)=1.题型二向量的模的问题例2 (1)若向量a=(2x-1,3-x),b=(1-x,2x-1),则|a-b|的最小值为____.(2)若向量a的始点为A(-2,4),终点为B(2,1),求:①向量a的模;②与a 平行的单位向量的坐标; ③与a 垂直的单位向量的坐标.[解析] (1)∵a =(2x -1,3-x ),b =(1-x,2x -1), ∴a -b =(2x -1,3-x )-(1-x,2x -1)=(3x -2,4-3x ), ∴|a -b |=3x -22+4-3x2=18x 2-36x +20=18x -12+2,∴当x =1时,|a -b |取最小值为 2. (2)①∵a =AB →=(2,1)-(-2,4)=(4,-3), ∴|a |=42+-32=5.②与a 平行的单位向量是±a |a |=±15(4,-3),即坐标为⎝ ⎛⎭⎪⎫45,-35或⎝ ⎛⎭⎪⎫-45,35.③设与a 垂直的单位向量为e =(m ,n ),则a ·e =4m -3n =0,∴m n =34.又|e |=1,∴m 2+n 2=1. 解得⎩⎪⎨⎪⎧m =35,n =45或⎩⎪⎨⎪⎧m =-35,n =-45,∴e =⎝ ⎛⎭⎪⎫35,45或⎝ ⎛⎭⎪⎫-35,-45.[答案] (1) 2 (2)见解析求向量的模的两种基本策略 (1)字母表示下的运算利用|a |2=a 2,将向量模的运算转化为向量与向量的数量积的问题. (2)坐标表示下的运算若a =(x ,y ),则a ·a =a 2=|a |2=x 2+y 2,于是有|a |=x 2+y 2.[跟踪训练2] 设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( )A. 5 B .10C .25D .10答案 B解析 由a ⊥b ,可得a ·b =0,即x -2=0,解得x =2,所以a +b =(3,-1),故|a +b |=32+-12=10.故选B.题型三 向量垂直的坐标表示例3 设OA →=(2,-1), OB →=(3,1), OC →=(m,3).(1)当m =2时,用OA →和OB →表示OC →; (2)若AB →⊥BC →,求实数m 的值.[解] (1)当m =2时,设OC →=xOA→+yOB →, 则有⎩⎨⎧2x +3y =2,-x +y =3,解得⎩⎪⎨⎪⎧x =-75,y =85,即OC →=-75 OA →+85OB →.(2) AB →=OB →-OA →=(1,2), BC →=OC →-OB →=(m -3,2). 因为AB →⊥BC →,所以AB →·BC →=0, 即1×(m -3)+2×2=0,解得m =-1.用向量数量积的坐标表示解决垂直问题利用坐标表示是把垂直条件代数化.因此判定方法更简捷、运算更直接,体现了向量问题代数化的思想.[跟踪训练3] 已知在△ABC 中,A (2,-1),B (3,2),C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.解 设D 点坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3),BD →=(x -3,y -2).∵D 在直线BC 上,即BD →与BC →共线, ∴存在实数λ,使BD →=λBC →,即(x -3,y -2)=λ(-6,-3).∴⎩⎨⎧x -3=-6λ,y -2=-3λ,∴x -3=2(y -2),即x -2y +1=0.① 又AD ⊥BC ,∴AD →·BC →=0, 即(x -2,y +1)·(-6,-3)=0. ∴-6(x -2)-3(y +1)=0. 即2x +y -3=0.② 由①②可得⎩⎨⎧x =1,y =1.∴D (1,1). ∴|AD →|=1-22+1+12=5,故|AD →|=5,点D 的坐标为(1,1). 题型四 平面向量的夹角问题例4 已知△ABC 顶点的坐标分别为A (3,4),B (0,0),C (c,0), (1)若c =5,求sin A 的值; (2)若∠A 是钝角,求c 的取值范围. [解] AB →=(-3,-4),AC →=(c -3,-4). (1)若c =5,则AC →=(2,-4).∴cos A =cos 〈AC →,AB →〉=AC →·AB →|AC →||AB →|=55.∵∠A 是△ABC 的内角,∴sin A =1-cos 2A =255. (2)若∠A 为钝角,则AC →·AB →<0且AC →,AB →不反向共线.由AC→·AB→<0,得-3(c-3)+16<0,即c>25 3.显然此时AC→,AB→不共线,故当∠A为钝角时,c>25 3.求平面向量夹角的步骤若a=(x1,y1),b=(x2,y2),(1)求出a·b=x1x2+y1y2;(2)求出|a|=x21+y21,|b|=x22+y22;(3)代入公式:cosθ=a·b|a||b|(θ是a与b的夹角).[跟踪训练4] 已知平面向量a=(3,4),b=(9,x),c=(4,y),且a∥b,a⊥c.(1)求b与c;(2)若m=2a-b,n=a+c,求向量m,n的夹角的大小.解(1)∵a∥b,∴3x=4×9,∴x=12.∵a⊥c,∴3×4+4y=0,∴y=-3,∴b=(9,12),c=(4,-3).(2)m=2a-b=(6,8)-(9,12)=(-3,-4),n=a+c=(3,4)+(4,-3)=(7,1).设m,n的夹角为θ,则cosθ=m·n|m||n|=-3×7+-4×1-32+-42×72+12=-25252=-22.∵θ∈[0,π],∴θ=3π4,即向量m,n的夹角为3π4.题型五向量数量积的综合应用例5 已知三点A(2,1),B(3,2),D(-1,4).(1)求证:AB⊥AD;(2)要使四边形ABCD为矩形,求点C的坐标并求矩形ABCD的对角线的长度.[解] (1)证明:∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3). 则AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)∵AB →⊥AD →,四边形ABCD 为矩形,∴AB →=DC →. 设点C 的坐标为(x ,y ),则DC →=(x +1,y -4), 又AB →=(1,1). 从而有⎩⎨⎧x +1=1,y -4=1,解得⎩⎨⎧x =0,y =5,∴点C 的坐标为(0,5). ∴AC →=(-2,4),|AC →|=-22+42=25,故矩形ABCD 的对角线的长度为2 5.利用向量的坐标运算解决平面图形问题,常见的题型有:(1)求点的坐标:设出所求点的坐标,利用终点坐标与始点坐标的差得到向量的坐标,根据向量间的关系求解.(2)证明两线段垂直:证明两线段所对应的向量的数量积为零即可. (3)求线段的长度:求出线段所对应的向量的模即可.[跟踪训练5] 已知a ,b ,m ,n ∈R ,设(a 2+b 2)(m 2+n 2)=(am +bn )2,其中mn ≠0,用向量方法求证:a m =b n.证明 设向量c =(a ,b ),d =(m ,n ), 且它们的夹角为θ(0°≤θ≤180°), 则c ·d =am +bn ,|c |2=a 2+b 2,|d |2=m 2+n 2. ∵(a 2+b 2)(m 2+n 2)=(am +bn )2, ∴|c |2|d |2=(c ·d )2.又c ·d =|c ||d |cos θ,∴cos 2θ=c ·d 2|c |2|d |2=1,∴cos 2θ=1.又0°≤θ≤180°,∴θ=0°或180°,即c ∥d ,∴an -bm =0. 又mn ≠0,∴a m =b n.1.若a =(2,-3),b =(x,2x ),且3a ·b =4,则x 等于( ) A .3 B .13 C .-13D .-3答案 C解析 3a ·b =3(2x -6x )=-12x =4,∴x =-13.故选C.2.已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝ ⎛⎭⎪⎫79,73 B .⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79 D .⎝ ⎛⎭⎪⎫-79,-73答案 D解析 设c =(x ,y ),则c +a =(1+x,2+y ),a +b =(3,-1),由已知可得⎩⎨⎧22+y +3x +1=0,3x -y =0,解得⎩⎪⎨⎪⎧x =-79,y =-73,即c =⎝ ⎛⎭⎪⎫-79,-73.3.已知a =(1,2),b =(x,4),且a ·b =10,则|a -b |=____. 答案5解析由题意,得a·b=x+8=10,∴x=2,∴a-b=(-1,-2),∴|a -b|= 5.4.设向量a与b的夹角为θ,且a=(3,3),2b-a=(-1,1),则cosθ=____.答案310 10解析2b-a=2b-(3,3)=(-1,1),∴2b=(-1,1)+(3,3)=(2,4),∴b=(1,2).cosθ=a·b|a||b|=3,3·1,232+32×12+22=9310=31010.5.已知平面向量a=(1,x),b=(2x+3,-x),x∈R.(1)若a⊥b,求x的值;(2)若a∥b,求|a-b|.解(1)若a⊥b,则a·b=(1,x)·(2x+3,-x)=1×(2x+3)+x(-x)=0,即x2-2x-3=0,解得x=-1或x=3.(2)若a∥b,则1×(-x)-x(2x+3)=0,即x(2x+4)=0,解得x=0或x=-2.当x=0时,a=(1,0),b=(3,0),a-b=(-2,0),|a-b|=2.当x=-2时,a=(1,-2),b=(-1,2),a-b=(2,-4),|a-b|=4+16=2 5.综上,|a-b|=2或2 5.一、选择题1.已知|a|=1,b=(0,2),且a·b=1,则向量a与b夹角的大小为( )A.π6B.π4C .π3D .π2答案 C解析 ∵|a |=1,b =(0,2),且a ·b =1,∴cos 〈a ,b 〉=a ·b |a ||b |=11×0+22=12.∴向量a 与b 夹角的大小为π3.故选C. 2.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8 D .8 2答案 D解析 易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=82+-82=8 2.3.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3,则b =( )A.⎝ ⎛⎭⎪⎫32,12 B .⎝ ⎛⎭⎪⎫12,32 C.⎝ ⎛⎭⎪⎫14,334 D .(1,0)答案 B解析 设b =(x ,y ),其中y ≠0,则a ·b =3x +y = 3.由⎩⎨⎧x 2+y 2=1,3x +y =3,y ≠0,解得⎩⎪⎨⎪⎧x =12,y =32,即b =⎝ ⎛⎭⎪⎫12,32.故选B.4.(多选)在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,则k 的值可能为( )A .-23B .113C.3±132D .23答案 ABC解析 ∵AB →=(2,3),AC →=(1,k ),∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0,∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k-3)=0,∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0,∴k =3±132.故所求k 的值为-23或113或3±132. 5.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3(-2<x <10)的图象与x 轴交于点A ,过点A的直线l 与函数的图象交于B ,C 两点(除点A 外),则(OB →+OC →)·OA →=( )A .-32B .-16C .16D .32答案 D解析 由函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3=0可得πx 6+π3=k π,k ∈Z ,即x =6k-2,k ∈Z .因为-2<x <10,所以x =4,即A (4,0).设B (x 1,y 1),C (x 2,y 2).由题意知B ,C 两点关于点A 对称,所以x 1+x 2=8,y 1+y 2=0.又OA →=(4,0),OB →=(x 1,y 1),OC →=(x 2,y 2),所以(OB →+OC →)·OA →=(x 1+x 2,y 1+y 2)·(4,0)=4(x 1+x 2)=32.二、填空题6.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a与c 的夹角为____.答案2π3解析 设c =(x ,y ),∵a +b =(-1,-2), 且|a |=5,|c |=5,(a +b )·c =52,∴(-1,-2)·(x ,y )=52.∴-x -2y =52,∴x +2y =-52.设a 与c 的夹角为θ,∴cos θ=a ·c |a ||c |=x +2y 5·5=-12.∵0≤θ≤π,∴θ=2π3. 7.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN →的模为____.答案 8 2解析 ∵a ∥b ,∴2×(-2)-(-1)x =0,解得x =4,∴b =(4,-2),∴a +b =(6,-3),b -c =(1,-2-y ).∵(a +b )⊥(b -c ),∴(a +b )·(b -c )=0,即6-3(-2-y )=0,解得y =-4,∴MN →=(y -x ,x -y )=(-8,8),∴|MN →|=8 2.8.已知a =(1,3),b =(2+λ,1),且a 与b 的夹角为锐角,则实数λ的取值范围是____.答案 λ>-5且λ≠-53解析 因为a 与b 的夹角为锐角,则cos 〈a ,b 〉>0,且cos 〈a ,b 〉≠1,即a ·b =2+λ+3>0,且b ≠k a ,则λ>-5且λ≠-53.三、解答题9.设平面向量a =(cos α,sin α)(0≤α<2π),b =⎝ ⎛⎭⎪⎫-12,32,且a 与b不共线.(1)求证:向量a +b 与a -b 垂直;(2)若两个向量3a +b 与a -3b 的模相等,求角α. 解 (1)证明:由题意,知a +b =⎝⎛⎭⎪⎫cos α-12,sin α+32,a -b =⎝⎛⎭⎪⎫cos α+12,sin α-32,∵(a +b )·(a -b )=cos 2α-14+sin 2α-34=0,∴(a +b )⊥(a -b ).(2)|a |=1,|b |=1,由题意知(3a +b )2=(a -3b )2, 化简得a ·b =0,∴-12cos α+32sin α=0,∴tan α=33.又0≤α<2π,∴α=π6或α=7π6.1.已知点A (-2,0),B (1,9),C (m ,n ),O 是原点. (1)若A ,B ,C 三点共线,求m 与n 满足的关系式; (2)若△AOC 的面积等于3,且AC →⊥B C →,求OC →. 解 (1)由已知,得AB →=(3,9),AC →=(m +2,n ). 由A ,B ,C 三点共线,知AB →∥AC →, ∴3n -9(m +2)=0,即n -3m -6=0.(2)由△AOC 的面积是3,得12·2·|n |=3,∴n =±3.∵BC →=(m -1,n -9),且AC →⊥BC →, ∴(m +2)(m -1)+n (n -9)=0, 即m 2+n 2+m -9n -2=0,∴当n =3时,m 2+m -20=0,解得m =4或m =-5. 当n =-3时,m 2+m +34=0,方程没有实数根, ∴OC →=(4,3)或OC →=(-5,3).2.已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)OA →+λOB →(λ2≠λ). (1)证明:A ,B ,C 三点共线,并在AB →=BC →时,求λ的值; (2)求|OC →|的最小值.解 (1)证明:AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,因为AB →与BC →有公共点B ,所以A ,B ,C 三点共线. 当AB →=BC →时,λ-1=1,所以λ=2.(2)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2 =16λ2-16λ+16=16⎝ ⎛⎭⎪⎫λ-122+12. 所以当λ=12时,|OC →|取到最小值2 3.。

人教A版(2019)必修第二册 第6章6-3-4 平面向量数量积的坐标表示 课件(31张)

人教A版(2019)必修第二册 第6章6-3-4 平面向量数量积的坐标表示 课件(31张)
内容索引
3. 若两个向量a=(x1,y1),b=(x2,y2).i,j分别是x轴,y轴上的单 位向量.
(1) 将a,b用向量i和j表示; 【解析】 a=x1i+y1j,b=x2i+y2j. (2) 根据向量数量积的定义及上面的结论计算a·b; 【解析】 a·b=(x1i+y1j)·(x2i+y2j)=x1x2+y1y2. (3) 由(1)(2)得出用a,b的坐标来表示它们的数量积a·b. 【解析】 a·b=x1x2+y1y2.
(2) |a|2=14+34=1,|b|2=3+1=4, x·y=[a+(t2-2)b]·(-ka+t2b)=0, 即-k+4t2(t2-2)+(t2-kt2+2k)a·b=0, 所以 k=4t4-8t2.
内容索引
利用两个平面向量垂直的充要条件x1x2+y1y2=0,列出相应的关系, 从而解决一些相关问题.
【解析】 在平面直角坐标系中画出点A,B,C(画图略)发现△ABC 是直角三角形,证明如下:
由题意,得A→B=(1,1),A→C=(-3,3), 所以A→B·A→C=0,即A→B⊥A→C, 所以△ABC 是直角三角形.
内容索引
因为两个平面向量垂直的充要条件是a·b=0,又两个向量的数量积 的坐标运算为a·b=x1x2+y1y2,所以在平面直角坐标系中,要得到垂直关 系,只要说明x1x2+y1y2=0,其中(x1,y1),(x2,y2)分别表示两个向量的 坐标.
12345
内容索引
5. (2022·咸宁期末)已知向量a=(-1,2),b=(m,-4). (1) 若(a+b)⊥(-2a),求m的值; (2) 若a与b的夹角为钝角,求m的取值范围.
【解析】 (1) a+b=(m-1,-2),-2a=(2,-4).
因为(a+b)⊥(-2a),所以(a+b)·(-2a)=0,

高中数学必修二 6 3 5 平面向量数量积的坐标表示学案

高中数学必修二  6 3 5 平面向量数量积的坐标表示学案

6.3.5 平面向量数量积的坐标表示【学习目标】一.两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a=(x1,y1),b=(x2,y2)注意:公式a·b=|a||b|cos〈a,b〉与a·b=x1x2+y1y2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.二.与向量的模、夹角相关的三个重要公式1.向量的模:设a=(x,y),则|a|=.2.两点间的距离公式:若A(x1,y1),B(x2,y2),则|AB→|=.3.向量的夹角公式:设两非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,则cos θ=a·b|a||b|=.注意:由三角函数值cos θ求角θ时,应注意角θ的取值范围是0≤θ≤π.【小试牛刀】思维辨析(对的打“√”,错的打“×”)(1)向量的模等于向量坐标的平方和.()(2)若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0.()(3)若两个非零向量的夹角θ满足cos θ<0,则两向量的夹角θ一定是钝角.()(4)若a·b>0,则a,b的夹角为锐角.()(5)若a·b=|a||b|,则a,b共线.()【经典例题】题型一 数量积的坐标运算点拨:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.例1 已知向量a =(1,3),b =(2,5),求a ·b ,(a +b )·(2a -b ).【跟踪训练】1已知向量a =(1,-1),b =(2,x ).若a ·b =1,则x =( ) A .-1 B .-12 C.12D .1题型二 平面向量的模点拨:求向量的模的两种方法:1.字母表示下的运算,利用|a |2=a 2,将向量的模的运算转化为向量与向量的数量积的问题. (2)坐标表示下的运算,若a =(x ,y ),则a·a =a 2=|a |2=x 2+y 2,于是有|a |= x 2+y2.例2 已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .25 C .8D .82【跟踪训练】2 已知点A (0,1),B (1,-2),向量AC →=(4,-1),则|BC →|=________.题型三 平面向量的夹角和垂直问题 点拨:解决向量夹角问题的方法1.先利用平面向量的坐标求出这两个向量的数量积a ·b 以及|a |,|b |,再由cos θ=a ·b|a ||b |,求出cos θ,也可由cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22直接求出cos θ.由三角函数值cos θ求角θ时,应注意角θ的取值范围是0≤θ≤π.2.由于0≤θ≤π,所以利用cos θ=a ·b|a ||b |来判断角θ时,要注意cos θ<0有两种情况:一是θ是钝角,二是θ=π;cos θ>0也有两种情况:一是θ为锐角,二是θ=0.例3 已知a=(4,3),b=(-1,2).(1)求a与b夹角的余弦值;(2)若(a-λb)⊥(2a+b),求实数λ的值.【跟踪训练】3已知向量a=(-2,-1),b=(λ,1),且a与b的夹角为钝角,试求实数λ的取值范围.【当堂达标】1.向量a=(1,-1),b=(-1,2),则(2a+b)·a=(C)A.-1B.0C.1D.22.已知向量a=(2,1),a·b=10,|a+b|=52,则|b|=()A. 5 B.10 C.5 D.253.已知向量a=(1,3),b=(3,m).若向量a,b的夹角为π6,则实数m=()A.23 B.3C.0 D.-34.已知A(-2,1),B(6,-3),C(0,5),则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形5.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________.6.已知向量a与b同向,b=(1,2),a·b=10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.【课堂小结】3个公式1.数量积:若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.2.模长:若a=(x,y),则a·a=a2=|a|2=x2+y2,于是有|a|=x2+y2.3.夹角:若a=(x1,y1),b=(x2,y2),a与b的夹角为θ,可由cos θ=x1x2+y1y2x21+y21x22+y22直接求出cos θ.由三角函数值cosθ求角θ时,应注意角θ的取值范围是0≤θ≤π.【参考答案】【自主学习】对应坐标的乘积之和 x 1x 2+y 1y 2 x 1x 2+y 1y 2=0 x 2+y 2 √(x 1−x 2)2+(y 1−y 2)2x 1x 2+y 1y 2x 21+y 21· x 22+y 22 【小试牛刀】(1) × (2) × (3) × (4) ×(5) √ 【经典例题】例1 解 a ·b =1×2+3×5=17.∵a +b =(3,8),2a =(2,6),∴2a -b =(2,6)-(2,5)=(0,1), ∴(a +b )·(2a -b )=3×0+8×1=8.【跟踪训练】1 D 解析:(1)a ·b =2-x =1,解得x =1.故选D.例 2 D 解析:易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=√82+(−8)2=8 2.【跟踪训练】2 13 解析:设C (x ,y ),因为点A (0,1),向量AC→=(4,-1),所以AC →=(x ,y-1)=(4,-1),所以⎩⎨⎧x =4,y -1=-1,解得x =4,y =0,所以C (4,0),所以BC→=(3,2),|BC →|=9+4=13.例3解 (1)因为a ·b =4×(-1)+3×2=2,|a |=42+32=5,|b |=(-1)2+22=5,设a 与b 的夹角为θ,所以cos θ=a ·b |a ||b |=255=2525.(2)因为a -λb =(4+λ,3-2λ),2a +b =(7,8),又(a -λb )⊥(2a +b ),所以7(4+λ)+8(3-2λ)=0,所以λ=529.【跟踪训练】3 解 ∵a 与b 的夹角为钝角,∴a ·b <0,即(-2,-1)·(λ,1)=-2λ-1<0,∴λ>-12.又当a 与b 反向时,夹角为180°,即a ·b =-|a |·|b |,则2λ+1=5·λ2+1,解得λ=2.由于a 与b 的夹角为钝角,故应排除a 与b 反向共线的情况,即排除λ=2,则实数λ的取值范围为⎝ ⎛⎭⎪⎫-12,2∪(2,+∞). 【当堂达标】1.C 解析:a =(1,-1),b =(-1,2),∴(2a +b )·a =(1,0)·(1,-1)=1.2.C 解析:∵|a +b |=52,∴|a +b |2=a 2+2a ·b +b 2=5+2×10+b 2=(52)2,∴|b |=5,故选C .3.B 解析:因为a =(1,3),b =(3,m ).所以|a |=2,|b |=9+m 2,a ·b =3+3m , 又a ,b 的夹角为π6,所以a ·b |a |·|b |=cos π6,即3+3m 29+m 2=32,所以3+m =9+m 2,解得m = 3.4.A 解析:选A.由题设知AB→=(8,-4),AC →=(2,4),BC →=(-6,8),所以AB →·AC →=2×8+(-4)×4=0,即AB→⊥AC →.所以∠BAC =90°,故△ABC 是直角三角形.5. 7 解析:因为a +b =(m -1,3),a +b 与a 垂直,所以(m -1)×(-1)+3×2=0,解得m =7.6.解 (1)∵a 与b 同向,且b =(1,2),∴a =λb =(λ,2λ)(λ>0). 又∵a ·b =10,∴λ+4λ=10,∴λ=2,∴a =(2,4). (2)∵a ·c =2×2+(-1)×4=0,∴(a ·c )b =0·b =0.。

平面向量的数量积知识点及归纳总结

平面向量的数量积知识点及归纳总结

平面向量的数量积知识点及归纳总结知识点精讲一、平面向量的数量积(1) 已知两个非零向量a 和b ,作OA →=a ,OB →=b ,∠AOB =θ(0≤θ≤π)叫作向量a 与b 的夹角.记作,a b ,并规定,a b []0,π∈.如果a 与b 的夹角是2π,就称a 与b 垂直,记为a b ⊥.(2) |a || b |cos ,a b 叫作a 与b 的数量积(或内积),记作a b ⋅,即a b ⋅=| a || b |cos ,a b . 规定:零向量与任一向量的数量积为0.两个非零向量a 与b 垂直的充要条件是a b ⋅=0. 两个非零向量a 与b 平行的充要条件是a b ⋅=±| a || b |. 二、平面向量数量积的几何意义数量积a b ⋅等于a 的长度| a |与b 在a 方向上的射影| b |cos θ的乘积.即a b ⋅=| a || b |cos θ.( b 在a 方向上的射影| b |cos θa b a⋅=;a 在b 方向上的射影| a |cos θa b b⋅=).三.平面向量数量积的重要性质 性质1 ||cos e a a e a θ⋅=⋅=. 性质2 .a b a b 0⊥⇔⋅=性质3 当a 与b 同向时||||a b a b ⋅=;当当a 与b 反向时-||||a b a b ⋅=.22||a a a a ⋅==或||a 性质4 cos ().||||a ba 0b 0a b 且θ⋅=≠≠性质5 ||||||.a b a b ⋅≤注利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题. 四、平面向量数量积满足的运算律 (1)a b=b a ⋅⋅(交换律);(2)()=()(a b a b a b λλλλ⋅⋅=⋅为实数); (3)(+)=a b c a c b c ⋅⋅+⋅(分配律)。

平面向量数量积1:定义

平面向量数量积1:定义

平面向量数量积的物理背景及其含义一只猴子捡到一把钝刀,连小树也砍不断.于是它向砍柴人请教,砍柴人说“把刀放到石上磨一磨”.于是猴子高兴地飞奔回去,立刻把刀放在一块石头上拼命地磨.直到它发现刀口和刀背差不多厚了,便停下来…结果当然是失败的.难道猴子没有做功吗?不!难道猴子没有用心吗?不!但是做功≠成功.物理学当中的做功在数学中叫做什么,是如何表示的呢?1.平面向量的数量积的定义2.两个向量数量积的性质设a、b都是非零向量,(1)a⊥b⇔a·b=0.(2)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地,a·a =a2=|a|2或|a|=a·a.(3)|a·b|≤|a||b|.3.平面向量数量积的运算律已知向量a、b、c和实数λ.(1)交换律:a·b=b·a.(2)结合律:(λa)·b=λ(a·b)=a·(λb).(3)分配律:(a+b)·c=a·c+b·c.1.若|a|=3,|b|=4,a,b的夹角为135°,则a·b=(B)A.-32B.-6 2C.6 2 D.12[解析]∵a·b=|a||b|cos135°=3×4×(-22)=-62.2.已知|a|=3,|b|=5,且〈a,b〉=45°,则向量a在向量b上的投影为(A)A .322B .3C .4D .5[解析] 向量a 在向量b 上的投影为|a |·cos θ=3×22=322. 3.给出以下命题:①a ·0=0;②0a =0;③0-AB →=BA →;④|a ·b |=|a ||b |;⑤若a ≠0,则对任一非零向量b 有a ·b ≠0;⑥a ·b =0,则a 与b 中至少有一个为0;⑦a 与b 是两个单位向量,则a 2=b 2.其中正确命题的序号是__③⑦__.[解析] 本题考查数量积的概念及向量运算.上述7个命题中只有③⑦正确.对于①,两个向量的数量积是一个实数,应有0·a =0;对于②,应为0a =0;对于④,由数量积定义,有|a ·b |=|a ||b ||cos θ|≤|a ||b |,这里θ是a 与b 的夹角,只有θ=0或θ=π时,才有|a ·b |=|a ||b |;对于⑤,若非零向量a 、b 垂直,有a ·b =0;对于⑥,由a ·b =0可知a ⊥b ,即可以都非零.4.(2018·全国卷Ⅱ理,4)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( B ) A .4 B .3 C .2D .0[解析] a ·(2a -b )=2a 2-a ·b =2|a |2-a ·b . ∵ |a |=1,a ·b =-1,∴ 原式=2×12+1=3. 故选B .命题方向1 ⇨平面向量的数量积典例1 已知|a |=2,|b |=3,a 与b 的夹角为120°,试求: (1)a ·b ;(2)(a +b )·(a -b ); (3)(2a -b )·(a +3b ).[思路分析] 根据数量积、模、夹角的定义,逐一进行计算即可. [解析] (1)a ·b =|a |·|b |cos120°=2×3×(-12)=-3.(2)(a +b )·(a -b )=a 2-a ·b +a ·b -b 2=a 2-b 2=|a |2-|b |2=4-9=-5.(3)(2a -b )·(a +3b )=2a 2+6a ·b -a ·b -3b 2=2|a |2+5a ·b -3|b |2=2×4-5×3-3×9=-34.『规律总结』 求向量的数量积的两个关键点求向量的数量积时,需明确两个关键点:相关向量的模和夹角.若相关向量是两个或两个以上向量的线性运算,则需先利用向量数量积的运算律及多项式乘法的相关公式进行化简.〔跟踪练习1〕已知|a |=4,|b |=5,当(1)a ∥b ;(2)a ⊥b ;(3)a 与b 的夹角为60°时,分别求a 与b 的数量积.[解析] (1)∵a ∥b ,若a 与b 同向,则θ=0°, ∴a ·b =|a ||b |cos0°=4×5=20; 若a 与b 反向,则θ=180°,∴a ·b =|a ||b |cos180°=4×5×(-1)=-20. (2)当a ⊥b 时,θ=90°,∴a ·b =|a ||b |cos90°=0. (3)当a 与b 夹角为60°时, a ·b =|a ||b |cos60°=4×5×12=10.命题方向2 ⇨向量的投影典例2 (1)若|a |=4,a·b =6,求b 在a 方向上的投影;(2)已知|a |=6,e 为单位向量,当它们之间的夹角θ分别等于60°,90°,120°时,求出a 在e 方向上的投影.[解析] (1)设a 与b 的夹角为θ. 因为a·b =|a||b|cos θ=6,且|a |=4,所以4|b |cos θ=6,所以b 在a 方向上的投影为|b|cos θ=32.(2)a 在e 方向上的投影为|a |cos θ.当θ=60°时,a 在e 方向上的投影为|a |cos60°=3; 当θ=90°时,a 在e 方向上的投影为|a |cos90°=0; 当θ=120°时,a 在e 方向上的投影为|a |cos120°=-3.『规律总结』 求一个向量在另一个向量方向上的投影时,首先要根据题意确定向量的模及两向量的夹角,然后代入公式计算即可.〔跟踪练习2〕在等腰三角形ABC 中,AB =AC =2,∠ABC =30°,D 为BC 的中点. (1)求BA →在CD →方向上的投影; (2)求CD →在BA →方向上的投影.[解析] 如图所示,连接AD .(1)因为D 为BC 的中点,AB =AC ,所以AD ⊥BC . 又AB =2,∠ABC =30°,所以CD =BD =AB cos30°=3. 由图可知BA →与CD →的夹角为∠ABC 的补角,所以向量BA →与CD →的夹角为150°.因此BA →在CD →方向上的投影为|BA →|cos150°=2×cos150°=-3. (2)CD →在BA →方向上的投影为|CD →|cos150°=3cos150°=-32.命题方向3 ⇨利用向量的数量积解决有关模、夹角问题 典例3 (1)已知|a |=|b |=5,向量a 、b 夹角θ=π3,求|a +b |.(2)已知a ,b 是两个非零向量,且|a |=|b |=|a -b |.求a 与a +b 的夹角. [思路分析] (1)先求a ·b ,再用|a +b |与a ·b 的联系求解.(2)根据题中所给等式求出向量a 与a +b 的夹角公式中涉及的所有量,代入公式求解即可.[解析] (1)a ·b =|a ||b |cos θ=5×5×cos π3=252.|a +b |=(a +b )2=|a |2+2a ·b +|b |2 =25+2×252+25=53.(2)∵|a |=|a -b |,∴|a |2=|a -b |2=|a |2-2a ·b +|b |2. 又|a |=|b |,∴a ·b =12|a |2,又|a +b |=(a +b )2=|a |2+2a ·b +|b |2=3|a |, 设a 与a +b 的夹角为θ,则cos θ=a ·(a +b )|a ||a +b |=a 2+a ·b |a ||a +b |=|a |2+12|a |2|a |·3|a |=32,又θ∈[0,π],∴θ=π6,即a 与a +b 的夹角为π6.『规律总结』 1.利用数量积求解长度问题是数量积的重要应用,要掌握此类问题的处理方法:(1)a =a ·a =|a |2或|a |=a ·a . (2)|a ±b |=(a ±b )2=a 2+b 2±2a ·b .2.向量夹角公式cos 〈a ,b 〉=a ·b|a ||b |的计算中涉及了向量运算和数量运算,计算时要区别进行的是向量运算还是数量运算.从而保证计算结果准确无误.〔跟踪练习3〕(1)已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=__3__.(2)(2017全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b | [解析] (1)因为a 2=(3e 1-2e 2)2=9-2×3×2×cos α+4=9,所以|a |=3.(2)|a +2b|=a 2+4a·b +4b 2=(a +2b )2=22+4×2×1×cos 60°+4×12=12=23. 利用向量的数量积判断几何图形的形状典例4 在△ABC 中,AB →=c ,BC →=a ,CA →=b ,且a ·b =b ·c =c ·a ,试判断△ABC 的形状.[思路分析] 易知a +b +c =0,分别将a 、b 、c 移至等号右边,得到三个等式,分别平方可得a ·b 、b ·c 、c ·a ,选取两个等式相减即可得到a 、b 、c 中两个向量的长度之间的关系.[解析] 在△ABC 中,易知AB →+BC →+CA →=0, 即a +b +c =0,因此a +c =-b ,a +b =-c ,从而⎩⎪⎨⎪⎧(a +b )2=(-c )2,(a +c )2=(-b )2,两式相减可得b 2+2a ·b -c 2-2a ·c =c 2-b 2, 则2b 2+2(a ·b -a ·c )=2c 2, 因为a ·b =c ·a =a ·c , 所以2b 2=2c 2,即|b |=|c |.同理可得|a |=|b |,故|AB →|=|BC →|=|CA →|,即△ABC 是等边三角形.『规律总结』 依据向量数量积的有关知识判断平面图形的形状,关键是由已知条件建立数量积、向量的长度、向量的夹角等之间关系,移项、两边平方是常用手段,这样可以出现数量积及向量的长度等信息,为说明边相等、边垂直指明方向.〔跟踪练习4〕若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为( B )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形[解析] OB →+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →, 于是|AB →+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,即AB →·AC →=0,从而AB ⊥AC .故△ABC 为直角三角形.混淆向量的模与实数的运算典例5 已知|a |=2,|b |=3,a 与b 的夹角为120°,求|a +b |及|a -b |的值. [错解] 由题意,得a ·b =|a ||b |cos120°=-3. ∴|a +b |=a 2+2a ·b +b 2 =22+2×(-3)+32=7.∴|a -b |=|a 2-b 2||a +b |=57=577.[错因分析] 该解法错误地类比实数运算中的法则,实际上|a 2-b 2|=|(a +b )·(a -b )|≤|a +b ||a -b |.[思路分析] 直接利用完全平方和(差)公式. [正解] 由题意,得a ·b =|a ||b |cos120°=-3. ∴|a +b |=a 2+2a ·b +b 2 =22+2×(-3)+32=7,|a -b |=a 2-2a ·b +b 2=22-2×(-3)+32=19.『规律总结』 利用数量积求解模的问题,是数量积的重要应用,解决此类问题的方法是对向量进行平方,即利用公式:a ·a =|a |2,从而达到将向量转化为实数的目的.〔跟踪练习5〕已知向量a 、b 的夹角为120°,|a |=|b |=1,c 与a +b 共线,则|a +c |的最小值为( D )A .1B .12C .34D .32[解析] ∵|a |=|b |=1,c 与a +b 共线. ∴a 与c 的夹角为60°或120°. 当θ=60°时|a +c |=a 2+2a ·c +c 2 =1+|c |+|c |2=(|c |+12)2+34,∴|a +c |min =1.当θ=120°时,|a +c |=1-|c |+|c |2 =(|c |-12)2+34,∴|a +c |min =32. 1.若a ·c =b ·c (c ≠0),则( D ) A .a =b B .a ≠b C .|a |=|b |D .a 在c 方向上的投影与b 在c 方向上的投影必相等 [解析] 设a 与c 的夹角为θ1,b 与c 的夹角为θ2, ∵a ·c =b ·c ,∴|a ||c |cos θ1=|b |·|c |cos θ2, 即|a |cos θ1=|b |cos θ2,故选D .2.下列命题正确的是( D ) A .|a ·b |=|a ||b | B .a ·b ≠0⇔|a |+|b |≠0 C .a ·b =0⇔|a ||b |=0D .(a +b )·c =a ·c +b ·c[解析] 选项D 是分配律,正确,A 、B 、C 不正确.3.(2018·江西高安中学期末)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →=( A ) A .16 B .-8 C .8D .-16[解析] AB →·AC →=(AC →+CB →)·AC →=AC →2+CB →·AC →=|AB →|2=16.4.(山东高考)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( D ) A .-32a 2B .-34a 2C .34a 2D .32a 2[解析] 在菱形ABCD 中,BA →=CD →,BD →=BA →+BC →,所以BD →·CD →=(BA →+BC →)·CD →=BA →·CD →+BC →·CD →=a 2+a ×a ×cos60°=a 2+12a 2=32a 2.5.已知|b |=5,a ·b =12,则向量a 与b 方向上投影为125. [解析] ∵a 在b 方向上的投影为|a |cos θ,又cos θ=a ·b |a ||b |,∴|a |cos θ=a·b |b |=125.A 级 基础巩固一、选择题1.已知△ABC 中,AB →=a ,AC →=b ,若a ·b <0,则△ABC 是( A ) A .钝角三角形 B .直角三角形 C .锐角三角形D .任意三角形[解析] 由a ·b <0易知〈a ,b 〉为钝角.2.若|a |=4,|b |=2,a 和b 的夹角为30°,则a 在b 方向上的投影为( C ) A .2 B . 3 C .2 3D .4[解析] a 在b 方向上的投影为|a |cos a ,b =4×cos30°=23,故选C . 3.对于向量a 、b 、c 和实数λ,下列命题中真命题是( B ) A .若a ·b =0,则a =0或b =0 B .若λa =0,则λ=0或a =0 C .若a 2=b 2,则a =b 或a =-bD .若a ·b =a ·c ,则b =c[解析] A 中,若a ·b =0,则a =0或b =0或a ⊥b ,故A 错;C 中,若a 2=b 2,则|a |=|b |,C 错;D 中,若a ·b =a ·c ,则可能有a ⊥b ,a ⊥c ,但b ≠c ,故只有选项B 正确,故选B .4.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则|a |=( C ) A .2 B .4 C .6D .12[解析] ∵(a +2b )·(a -3b )=-72, ∴a 2-a·b -6b 2=-72.∴|a |2-|a ||b |cos60°-6|b |2=-72. ∴|a |2-2|a |-24=0.又∵|a |≥0,∴|a |=6.5.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( C ) A .π3B .π2C .2π3D .5π6[解析] 由题意,得a ·(2a +b )=2a 2+a ·b =0,即a ·b =-2a 2,所以cos a ,b =a ·b |a |·|b |=-2a 24a 2=-12,所以a ,b =2π3,故选C . 6.P 是△ABC 所在平面上一点,若P A →·PB →=PB →·PC →=PC →·P A →,则P 是△ABC 的( D ) A .外心 B .内心 C .重心D .垂心[解析] 由P A →·PB →=PB →·PC →得PB →·(P A →-PC →)=0,即PB →·CA →=0,∴PB ⊥CA . 同理P A ⊥BC ,PC ⊥AB ,∴P 为△ABC 的垂心. 二、填空题7.(江苏高考)已知e 1、e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2,若a ·b=0,则实数k 的值为 54.[解析] 由a ·b =0得(e 1-2e 2)·(k e 1+e 2)=0.整理,得k -2+(1-2k )cos 2π3=0,解得k =54.8.已知向量a 、b 夹角为45°,且|a |=1,|2a -b |=10,则|b |= 32 . [解析] |2a -b |=10⇔(2a -b )2=10⇔4+|b |2-4|b |cos45°=10⇔|b |=32. 三、解答题9.已知|a |=10,|b |=12,a 与b 的夹角为120°,求:(1)a ·b ;(2)(3a )·⎝⎛⎭⎫15b ; (3)(3b -2a )·(4a +b ).[解析] (1)a ·b =|a ||b |cos θ=10×12×cos120°=-60. (2)(3a )·⎝⎛⎭⎫15b =35(a ·b )=35×(-60)=-36. (3)(3b -2a )·(4a +b )=12b ·a +3b 2-8a 2-2a ·b =10a ·b +3|b |2-8|a |2=10×(-60)+3×122-8×102=-968.10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求|a +b |;(2)求向量a 在向量a +b 方向上的投影. [解析] (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a ·b -3|b |2=61. ∵|a |=4,|b |=3,∴a ·b =-6, ∴|a +b |=|a |2+|b |2+2a ·b =42+32+2×(-6)=13. (2)∵a ·(a +b )=|a |2+a ·b =42-6=10, ∴向量a 在向量a +b 方向上的投影为 a ·(a +b )|a +b |=1013=101313.B 级 素养提升一、选择题1.(2018·四川绵阳期末)下列命题中错误的是( B ) A .对于任意向量a 、b ,有|a +b |≤|a |+|b | B .若a ·b =0,则a =0或b =0 C .对于任意向量a ·b ,有|a ·b |≤|a ||b | D .若a 、b 共线,则a ·b =±|a ||b |[解析] 当a ⊥b 时,a ·b =0也成立,故B 错误.2.定义:|a ×b |=|a |·|b |·sin θ,其中θ为向量a 与b 的夹角,若|a |=2,|b |=5,a ·b =-6,则|a ×b |等于( B )A .-8B .8C .-8或8D .6[解析] 由|a |=2,|b |=5,a ·b =-6,得cos θ=-35,sin θ=45,∴|a ×b |=|a |·|b |·sin θ=2×5×45=8.3.若非零向量a 、b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( A ) A .π4B .π2C .3π4D .π[解析] 由条件,得(a -b )·(3a +2b )=3a 2-2b 2-a ·b =0,即a ·b =3a 2-2b 2.又|a |=223|b |,所以a ·b =3·(223|b |)2-2b 2=23b 2,所以cos a ,b =a ·b |a |·|b|=23b 2223b 2=22,所以a ,b =π4,故选A .4.已知△ABC 中,若AB →2=AB →·AC →+BA →·BC →+CA →·CB →,则△ABC 是( C ) A .等边三角形 B .锐角三角形 C .直角三角形D .钝角三角形[解析] 由AB →2-AB →·AC →=BA →·BC →+CA →·CB →, 得AB →·(AB →-AC →)=BC →·(BA →-CA →),即AB →·CB →=BC →·BC →,∴AB →·BC →+BC →·BC →=0, ∴BC →·(AB →+BC →)=0,则BC →·AC →=0,即BC →⊥AC →, 所以△ABC 是直角三角形,故选C . 二、填空题5.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为 -13 .[解析] ∵|a |=3|b |=|a +2b |,∴|a |2=9|b |2=(a +2b )2=|a |2+4|b |2+4a ·b , ∴a ·b =-|b |2,∴cos 〈a ·b 〉=a ·b |a |·|b |=-|b |23|b |·|b |=-13.6.已知向量a 、b 满足:|a |=1,|b |=6,a ·(b -a )=2,则a 与b 的夹角为 12 ;|2a -b |= 27 .[解析] 由于a ·(b -a )=a ·b -a 2=a ·b -1=2, 则a ·b =3.设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=12,11 又θ∈[0,π],所以θ=π3. 因为|2a -b |2=4a 2-4a ·b +b 2=28,所以|2a -b |=27.三、解答题7.已知|a |=5,|b |=4,a 与b 的夹角为60°,试问:当k 为何值时,向量k a -b 与a +2b 垂直?[解析] ∵(k a -b )⊥(a +2b ),∴(k a -b )·(a +2b )=0,即k a 2+(2k -1)a ·b -2b 2=0,即k ×52+(2k -1)×5×4×cos60°-2×42=0,∴k =1415.∴当k =1415时,向量k a -b 与a +2b 垂直. 8.设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,求实数t 的取值范围.[解析] 由向量2t e 1+7e 2与e 1+t e 2的夹角θ为钝角,得cos θ=(2t e 1+7e 2)·(e 1+t e 2)|2t e 1+7e 2||e 1+t e 2|<0, ∴(2t e 1+7e 2)·(e 1+t e 2)<0,化简得2t 2+15t +7=0.解得-7<t <-12. 当夹角为π时,也有(2t e 1+7e 2)·(e 1+t e 2)<0,但此时夹角不是钝角.设2t e 1+7e 2=λ(e 1+t e 2),λ<0,则⎩⎪⎨⎪⎧ 2t =λ,7=λt ,λ<0,∴⎩⎪⎨⎪⎧ λ=-14t =-142.∴所求实数t 的取值范围是(-7,-142)∪(-142,-12). C 级 能力拔高若a ,b 是非零向量,且a ⊥b ,|a|≠|b|,则函数f (x )=(x a +b )·(x b -a )是( A )A .一次函数且是奇函数B .一次函数但不是奇函数C .二次函数且是偶函数D .二次函数但不是偶函数[解析] f (x )=(x a +b )·(x b -a )=(a·b )x 2+(|b 2|-|a|2)x -a·b ,由a ⊥b ,得a·b =0,所以f (x )=(|b |2-|a |2)x .由于|a |≠|b |,所以|b |2-|a |2≠0,即f (x )=(|b |2-|a |2)x 是一次函数,显然也是奇函。

平面向量的数量积1

平面向量的数量积1

aa
3. 数量积的运算律
实数 向量
√ (λa) ·b = a · (λb )=λ(a·b) √ (a · b) ·c = a · (b ·c) (a b ) c × a (b c ) a· ( b+c)=a · b+a · c a· ( b+c)=a · b+a√ · c a· b=b· c(b≠0) a=c a c b c , c× 0 a b
= 。 求: | a b | 和 | a b | . = , a · b= , 则 求: | a b | 和 | a b | . 求: | a b | 和 | a b | . 求:| a b | 和 b | .
1、课本P108 A组1,2,3,6,7
2、拓展作业:B组5

变式一:已知向量a与b的夹角为 60 ,

a 6, b 4, 求 (a 2b)
变式二:已知向量a与b的夹角为 60 , a 6, b 4, 求的值,使a b 与a b 互相垂直。
知识结构:
对功W=|F||s|cos结构分析
抽 象
主要应用:
问 题 探 究
(1)非零向量 a b 时a b 有何特点?
(2)当a // b 时 a b 有何特点? 特别地 a a

练一练:
已知向量a与b的夹角为, a 5, b 4 分别在下列条件下求a b 0 0 (1) 60 (2)a b (3) 120 (4)a // b (1)10 (2)0 (3)-10(4)20或-20
1.算长度
a· a =a =| a |2 2.求夹角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b 3e1 4e2 ,则等于(
A.1 B.2
C
) D.-2
C.-1
4.若 i (1,0), j (0,1), 则与 3i 4 j 垂直的单 位向量是
4 3 4 3 i j或 i j 5 5 5 5
5.若 a 2, b 2 , a 与b 的夹角为450 ,要使
平面向量的数量积
1.若向量 a、 的坐标满足| a |=1,| b |= 2 ,且 a ⊥ ( a - b ) ,则 b a 与 b的夹角为( B ) (A)300 (B)450 (C)750 (D)1350 2.若 a 、b 、 是非零的平面向量,其中任意两个向量都不共 c 线,则( C ) (A) a 2· 2=( a · ) 2 (B)| a + b |>| a - b | b b (C)( a · )· -( b· )· 与 b 垂直 (D)( a · )· -( b· )· = 0 a c b c c a b c 3.设 e1和 e2 是互相垂直的单位向量,且 a 3e1 2e2 ,
k b a 与 a 垂直,则 k
2
6.已知 a 、b 是两个非零向量,证明:当b 与a b
( R) 垂直时, 的二次函数关系,应用二次函数的最值条 件得证。
1 3 6.已知平面向量 a ( 3,1), b ( , ). 2 2 (1)证明: b. a
(2)若存在实数 k 和 t,使 c a (t 2 3)b,
d k a tb ,且 c d ,求函数关系式 k f (t ).
评:本例是向量、函数、导数应用的典例. 首先 由向量的数量积由垂直关系建立的函数关系,再 由导数讨论二次函数的单调性. 一般来说,凡 与垂直有关的问题可由向量的数量积解决,凡三 次函数单调性问题,可用导数解决。
(3)对(2)的结论,讨论函数k f (t ) 的单调性.
相关文档
最新文档