2009年中考呼和浩特数学试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年中考呼和浩特数学试题
一、选择题(本大题包括10个小题,每小题3分,共30分)
1.-2的倒数是( )
A .- 1 2
B . 1
2 C .2 D .-2
2.已知△ABC 的一个外角为50º,则△ABC 一定是( )
A .锐角三角形
B .钝角三角形
C .直角三角形
D .锐角三角形或钝角三角形
3.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上
一面的数字为偶数的概率是( )
A . 1 3
B . 1 6
C . 1 2
D . 1
4 4.如图,AB 是⊙O 的直径,点C 在⊙O 上,CD ⊥AB ,DE ∥BC ,则图中与△ABC 相似的
三角形的个数为( )
A .4个
B .3个
C .2个
D .1个 5.用配方法解方程3x 2-6x +1=0,则方程可变形为( )
A .(x -3)2= 1 3
B .3(x -1)2= 1
3
C .(3x -1)2=1
D .(x -1)2= 2
3 6.为了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分
析.下面四个判断正确的是( )
A .15000名学生是总体
B .1000名学生的视力是总体的一个样本
C .每名学生是总体的一个个体
D .以上调查是普查 7.半径为R 的圆内接正三角形的面积是( )
A .3
2R 2 B .πR 2 C .332R 2 D .334R 2 8.在等腰△ABC 中,AB =AC ,中线BD 将这个三角形的周长分为15和12两个部分,则这
个等腰三角形的底边长为( )
A .7
B .11
C .7或11
D .7或10 9.右图哪一个是左边正方体的展开图( )
10.下列命题中,正确命题的个数为( )
①若样本数据3、6、a 、4、2的平均数是4,则其方差为2 ②“相等的角是对顶角”的逆命题 ③对角线互相垂直的四边形是菱形
④若抛物线y =(3x -1)2+k 上有点(2,y 1)、(2,y 2)、(-5,y 3),则y 3>y 2>y 1 A .1个 B .2个 C .3个 D .4个
二、填空题(本大题包括6个小题,每小题3分,共18分)
11.某种生物孢子的直径为0.00063m ,用科学记数法表示为 m . 12.把45ab 2-20a 分解因式的结果是 .
13.初三(1)班有48名学生,春游前,班长把全班学生对春游地点的意向绘制成了扇形统
10987
6
5
432
1
A B
C D C
A
B 地面

α
计图,其中“想去野生动物园的学生数”的扇形圆心角为120º.请你计算想去其他地
点的学生有 人.
14.若|x -2y +1|+|2x -y -5|=0,则x +y = .
15.如图,四边形ABCD 中,∠ABC =120º,AB ⊥AD ,BC ⊥CD ,
AB =4,CD =53,则该四边形的面积是 . 16.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉与他相邻的两个人,然后
每个人将与他相邻的两个人告诉他的数的平均数报出来.若报出
来的数如图所示,则报3的人心里想的数是 .
三、解答题(本大题包括9个小题,共72分)
17.(1)(5分)计算:2009
1)1(45sin 68)12(−+−+−−o ;
(2)(5分)先化简再求值:⎝⎛⎠⎞a - a 2
-b 2
+1 a ÷ b -1 a × 1 a +b
,其中a =- 1 2,b =-2.
18.(5分)要想使人安全地攀上斜靠在墙上的梯子的顶端,梯子与地面所成的角α一般满足
50º≤α≤75º.如图,现有一个6m 长的梯子,梯子底端与墙角的距离围3m . (1)求梯子顶端B 距墙角C 的距离(精确到0.1m );
(2)计算此时梯子与地面所成的角α,并判断人能否安全使用这个梯子. (参考数据:2≈1.414,3≈1.732)
A
B C G
19.(7分)如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE 、DG .
(1)求证:BE =DG ;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不
存在,请说明理由.
20.(7分)试确定a 的取值范围,使以下不等式组只有一个整数解.

⎨⎧x + x +1
4>1,
1.5a - 1 2(x +1)> 1
2(a -x )+0.5(2x -1).
21.(7分)在直角坐标系中直接画出函数y =|x |的图象.若一次函数y =kx +b 的图象分别
过点A (-1,1)、B (2,2),请你依据这两个函数的图象写出方程组⎩⎨⎧y =|x |
y =kx +b 的解.
22.(9分)某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售
目标,根据目标完成的情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,并整理得到如下统计图(单位:万元).请分析统计数据完成下列问题.
(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均月销售额是多少? (
23.(8分)如图,反比例函数y = m
x (x >0)的图象与一次函数y =- 1 2x + 5
2的图象交于A 、
B 两点,点
C 的坐标为(1, 1
2),连接AC ,AC ∥y 轴.
(1)求反比例函数的解析式及点B 的坐标;
(2)现有一个直角三角板,让它的直角顶点P 在反比例函数图象上A 、B 之间的部分滑
动(不与A 、B 重合),两直角边始终分别平行于x 轴、y 轴,且与线段AB 交于M 、N 两点,试判断P 点在滑动过程中△PMN 是否与△CBA 总相似?简要说明判断理由.
12
13
14
15
16
18
20
22
2628
3032
3435
24.(8分)如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,AB =12cm ,AD =8cm ,
BC =22cm ,AB 为⊙O 的直径,动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以2cm/s 的速度运动,P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一个动点也随之停止运动.设运动时间为t (s ). (1)当t 为何值时,四边形PQCD 为平行四边形?(2)当t 为何值时,PQ 与⊙O 相切?
25.(10分)某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50
元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x 元(x ≥50),一周的销售量为y 件.
(1)写出y 与x 的函数关系式(标明x 的取值范围);
(2)设一周的销售利润为S ,写出S 与x 的函数关系式,并确定当单价在什么范围内变
化时,利润随着单价的增大而增大?
(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售例如达到8000元,
销售单价应定为多少?
2009年呼和浩特市中考试卷
数学参考答案及评分标准
一、选择题(本大题共10个小题,每小题3分,共30分)
1 2 3 4 5 6 7 8 9 10
A B C A D
B D
C
D B
二、填空题(本大题共6个小题,每小题3分,共18分)
11.4
6.3
10−× 12.5(32)(32)a b b +−
13.
32 14.6 15.2
16.2− 三、解答题(本大题9个小题,共
72分)
17
.解:(1)
)
1
20091
6sin 45(1)−−+−°+−
1−−·······················································································3分 11++−−
=0·······························································································································5分
(2)22111a b b a a a a b ⎛⎞−+−−÷×⎜⎟
+⎝⎠
=2221a a b a −+−1
1a b a b
××
−+ =
(1)(1)1
1b b a a b a b +−×
−+·
=1b a b
++····································································································································3分
将122a b =−=−代入得:上式=12
552−=−·····································································5分
18.解:(1)在Rt ACB △中,
5.2m BC ===
········································································································2分 (2)在Rt ACB △中,31
cos 62
AC AB α=
== 60α∴=°
············································································5分 506075<°<°Q °
∴可以安全使用.··································································6分 19.(1)证明:∵正方形ABCD 和正方形ECGF
90BC CD CE CG BCE DCG ∴==∠=∠=,,°
B
C
A
α
·······················································3分
在BCE △和DCG △中,
BC CD BCE DCG CE CG =⎧⎪
∠=∠⎨⎪=⎩
(SAS)BCE DCG ∴△≌△
BE DG ∴=·····················································································································5分 (2)存在.BCE △绕点C 顺时针旋转90°得到DCG △(或将DCG △逆时针旋转90°得
到BCE △)····································································································································7分 20.解:解不等式①:414x x ++> 3
5
x ∴>
····································································································································2分 解不等式②:1111
1.50.52222
a x a x x −−>−+−
即a x <····································································································································5分
由数轴上解集表示可得:
当12a <≤,只有一个整数解······························································································8分
21.解:画出图象得4分
由图象可知,方程y x
y kx b
⎧=⎪⎨
=+⎪⎩的解为
21
21x x y y ==−⎧⎧⎨⎨==⎩⎩
或·······································6分 (画出函数y x =的图象得3分,画出y kx b =+
22.①销售额为18万元的人数最多,中间的月销售额为20万元,平均月销售额为22万元
··························································································································································7分 ②目标应定为20万元,因为样本数据的中位数为20··································································9分 23.(1)由112C ⎛⎞
⎜⎟⎝⎠
,得(12)A ,,代入反比例函数m
y x
=中,得2m = ∴反比例函数解析式为:2
(0)y x x
=
>························································································2分 解方程组15222
y x y x ⎧=−+⎪⎪⎨
⎪=⎪⎩
由15222x x −+=化简得:2
540x x −+= (4)(1)0x x −−= 1241x x ==,
所以142B ⎛
⎞⎜⎟⎝⎠
,··································································································································5分 (2)无论P 点在AB 之间怎样滑动,PMN △与CAB △总能相似.因为B C 、两点纵坐标相等,所以BC x ∥轴.
又因为AC y ∥轴,所以CAB △为直角三角形.
同时PMN △也是直角三角形,AC PM BC PN ∥,∥.
∴PMN CAB △∽△.·······································································································8分 (在理由中只要能说出BC x ∥轴,90ACB ∠=°即可得分.) 24.(1)解:∵直角梯形ABCD ,AD BC ∥
PD QC ∴∥
∴当PD QC =时,四边形PQCD
为平行四边形.
由题意可知:2AP t CQ t ==,
82t t ∴−=
38t = 83
t =
∴当8
3
t s =时,四边形PQCD 为平行四边形.········································································3分
(2)解:设PQ 与O ⊙相切于点H , 过点P 作PE BC ⊥,
垂足为E Q 直角梯形ABCD AD BC ,∥
PE AB ∴=
由题意可知:2AP BE t CQ t ===,
222BQ BC CQ t ∴=−=−
222223EQ BQ BE t t t =−=−−=− Q AB 为O ⊙的直径,90ABC DAB ∠=∠=° AD BC ∴、为O ⊙的切线
AP PH HQ BQ ∴==,
22222PQ PH HQ AP BQ t t t ∴=+=+=+−=−···························································5分
在Rt PEQ △中,2
2
2
PE EQ PQ +=
22212(223)(22)t t ∴+−=−
B
Q
B
Q
E
即:2
8881440t t −+=
211180t t −+= (2)(9)0t t −−=
1229t t ∴==,························································································································7分
因为P 在AD 边运动的时间为8
811
AD ==秒 而98t =>
9t ∴=(舍去)
∴当2t =秒时,PQ 与O ⊙相切.························································································8分
25.解:(1)50010(50)y x =−−
=100010(50100)x x −≤≤·······································································3分
(2)(40)(100010)S x x =−−
210140040000x x =−+− 210(70)9000x =−−+
当5070x ≤≤时,利润随着单价的增大而增大.····································································6分 (3)2
101400400008000x x −+−=
2101400480000x x −+= 214048000x x −+= (60)(80)0x x −−=
126080x x ==,····························································································································8分
当60x =时,成本=[]4050010(6050)1600010000×−−=>不符合要求,舍去. 当80x =时,成本=[]4050010(8050)800010000×−−=<符合要求.
∴销售单价应定为80元,才能使得一周销售利润达到8000元的同时,投入不超过10000
元.·······································································································································10分。

相关文档
最新文档