澄城县第三中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
澄城县第三中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( )
A .5
B .7
C .9
D .11
2. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与
sin sin 0bx B y C -+=的位置关系是( )
A .平行
B . 重合
C . 垂直
D .相交但不垂直 3. 在ABC ∆中,2
2
tan sin tan sin A B B A =,那么ABC ∆一定是( )
A .锐角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
4. 若函数是R 上的单调减函数,则实数a 的取值范围是( )
A .(﹣∞,2)
B .
C .(0,2)
D .
5. 已知双曲线(a >0,b >0)的一条渐近线方程为
,则双曲线的离心率为( )
A .
B .
C .
D .
6. 已知x >1,则函数的最小值为( )
A .4
B .3
C .2
D .1
7. 已知a 为常数,则使得成立的一个充分而不必要条件是( )
A .a >0
B .a <0
C .a >e
D .a <e
8. 已知圆C 方程为2
2
2x y +=,过点(1,1)P -与圆C 相切的直线方程为( )
A .20x y -+=
B .10x y +-=
C .10x y -+=
D .20x y ++= 9. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1)
D .[﹣9,1)
10.在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .
725
B .725- C. 725± D .2425
11.在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( ) 则几何体的体积为( )
34
意在考查学生空间想象能力和计算能.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.
14.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.
①若AC=BD ,则四边形EFGH 是 ; ②若AC ⊥BD ,则四边形EFGH 是 .
15.S n =++…+= .
16.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .
17.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .
18.若6()mx y +展开式中33x y 的系数为160-,则m =__________.
【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.
三、解答题
19.(本小题满分12分)
已知圆M 与圆N :2
22)35()35(r y x =++-关于直线x y =对称,且点)3
5,31(-D 在圆M 上.
(1)判断圆M 与圆N 的位置关系;
(2)设P 为圆M 上任意一点,)35,1(-A ,)3
5,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交
AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.
20.(本小题满分12分)
在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1)cos 2cos a B b A c -=, (Ⅰ)求
tan tan A
B
的值;
(Ⅱ)若a =4
B π
=
,求ABC ∆的面积.
21.【海安县2018届高三上学期第一次学业质量测试】已知函数()()
2x
f x x ax a e =++,其中a R ∈,e 是
自然对数的底数.
(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;
(3)若()4f x ≤在[]
4,0-恒成立,求a 的取值范围.
22.已知函数2(x)1ax f x =
+是定义在(-1,1)上的函数, 12
()25
f =
(1)求a 的值并判断函数(x)f 的奇偶性
(2)用定义法证明函数(x)f 在(-1,1)上是增函数;
23.设集合{}
()(
){
}
2
2
2
|320,|2150A x x x B x x a x a =-+==+-+-=.
(1)若{}2A B =,求实数的值;
(2)A B A =,求实数的取值范围.1111]
24.已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
澄城县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:若果树前n 年的总产量S 与n 在图中对应P (S ,n )点 则前n 年的年平均产量即为直线OP 的斜率 由图易得当n=9时,直线OP 的斜率最大 即前9年的年平均产量最高, 故选C
2. 【答案】C 【解析】
试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,
则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 3. 【答案】D 【解析】
试题分析:在ABC ∆中,2
2
tan sin tan sin A B B A =,化简得
22sin sin sin sin cos cos A B
B A A B
=,解得 sin sin sin cos sin cos cos cos B A
A A
B B A B =⇒=,即s
i n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或
2
A B π
+=
,所以三角形为等腰三角形或直角三角形,故选D .
考点:三角形形状的判定.
【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2
A B π
+=是试
题的一个难点,属于中档试题. 4. 【答案】B
【解析】解:∵函数
是R 上的单调减函数,
∴
∴
故选B
【点评】本题主要考查分段函数的单调性问题,要注意不连续的情况.
5.【答案】A
【解析】解:∵双曲线的中心在原点,焦点在x轴上,
∴设双曲线的方程为,(a>0,b>0)
由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,
得=,设b=4t,a=3t,则c==5t(t>0)
∴该双曲线的离心率是e==.
故选A.
【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.
6.【答案】B
【解析】解:∵x>1∴x﹣1>0
由基本不等式可得,
当且仅当即x﹣1=1时,x=2时取等号“=”
故选B
7.【答案】C
【解析】解:由积分运算法则,得
=lnx=lne﹣ln1=1
因此,不等式即即a>1,对应的集合是(1,+∞)
将此范围与各个选项加以比较,只有C项对应集合(e,+∞)是(1,+∞)的子集
∴原不等式成立的一个充分而不必要条件是a>e
故选:C 【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.
8. 【答案】A 【解析】
试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=
,由
,1d r k =∴=,所以切线方程为20x y -+=,故选A.
考点:直线与圆的位置关系.
9. 【答案】D
【解析】解:函数f (x )=lg (1﹣x )在(﹣∞,1)上递减, 由于函数的值域为(﹣∞,1], 则lg (1﹣x )≤1, 则有0<1﹣x ≤10, 解得,﹣9≤x <1. 则定义域为[﹣9,1), 故选D .
【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.
10.【答案】A
【解析】
考
点:正弦定理及二倍角公式.
【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222
sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定
理
R C
c
B b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化.
11.【答案】B
【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,
∴a2=3×2=6,
=384,
∴a
和a8的等比中项为=±48.
2
故选:B.
12.【答案】D
【解析】
二、填空题
13.【答案】4
【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,
故后排有三个,故此几何体共有4个木块组成.
故答案为:4.
14.【答案】
菱形;
矩形.
【解析】解:如图所示:①∵EF∥AC,GH∥AC且EF=AC,GH=AC
∴四边形EFGH是平行四边形
又∵AC=BD
∴EF=FG
∴四边形EFGH是菱形.
②由①知四边形EFGH是平行四边形
又∵AC⊥BD,
∴EF⊥FG
∴四边形EFGH是矩形.
故答案为:菱形,矩形
【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.
15.【答案】
【解析】解:∵==(﹣),
∴S n=++…+
=[(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣)
=,
故答案为:.
【点评】本题主要考查利用裂项法进行数列求和,属于中档题.
16.【答案】[0,2].
【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);
命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).
∵q是p的充分不必要条件,
∴q ⊊p ,
∴
,
解得0≤a ≤2, 则实数a 的取值范围是[0,2].
故答案为:[0,2].
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
17.【答案】63
【解析】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.
因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根, 所以a 1=1,a 3=4.
设等比数列{a n }的公比为q ,则,所以q=2.
则
.
故答案为63.
【点评】本题考查了等比数列的通项公式,考查了等比数列的前n 项和,是基础的计算题.
18.【答案】2-
【解析】由题意,得33
6160C m =-,即3
8m =-,所以2m =-.
三、解答题
19.【答案】(1)圆与圆相离;(2)定值为2. 【解析】
试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,
DM r =,然后根据圆心距MN 与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和BP 的距离相等,所以两个三角形的面积比值PA
PB S S APG PBG =
∆∆,根据点P 在圆M 上,代入两点间距离公式求PB 和PA ,最后得到其比值.
试题解析:(1) ∵圆N 的圆心)35,35
(-N 关于直线x y =的对称点为)3
5,35(-M , ∴9
16)3
4(||2
2
2
=
-==MD r ,
∴圆M 的方程为9
16
)35()35(22=
-++y x .
∵3
8
23210)310()310(||22=>=+=r MN ,∴圆M 与圆N 相离
.
考点:1.圆与圆的位置关系;2.点与圆的位置关系.1 20.【答案】
【解析】(本小题满分12分)
解:
(Ⅰ)由1)cos 2cos a B b A c -=及正弦定理得
1)sin cos 2sin cos sin sin cos +cos sin A B B A C A B A B -==, (3分)
cos 3sin cos A B B A =
,∴
tan tan A
B
=6分)
(Ⅱ)tan A B ==3A π=
,sin 42sin sin 3
a B
b A ππ==
=, (8分)
sin sin()C A B =+=
, (10分) ∴ABC ∆
的面积为111
sin 2(3222
ab C ==(12分) 21.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间
是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)2
44,4e ⎡⎤-⎣⎦
【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分
类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。
(2) 因为()()()()2
'222x
x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦,
当2a =时,()()2
'20x
f x x e =+≥,所以()f x 无单调减区间.
当2a ->-即2a <时,列表如下:
所以()f x 的单调减区间是()2,a --.
当2a -<-即2a >时,()()()'2x
f x x x a e =++,列表如下:
所以()f x 的单调减区间是(),2a --.
综上,当2a =时,()f x 无单调减区间;
当2a <时,()f x 的单调减区间是()2,a --; 当2a >时,()f x 的单调减区间是(),2a --.
(3)()()()()2'222x x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦
. 当2a =时,由(2)可得,()f x 为R 上单调增函数,
所以()f x 在区间[]
4,0-上的最大值()024f =≤,符合题意. 当2a <时,由(2)可得,要使()4f x ≤在区间[]
4,0-上恒成立,
只需()04f a =≤,()()2
244f a e
--=-≤,解得2442e a -≤<.
当24a <≤时,可得()4a a
f a e
-=
≤,()04f a =≤. 设()a a g a e =,则()1'a a
g a e
-=,列表如下:
所以()()max
114g a g e ⎡⎤==
<⎣⎦
,可得4a a
e
≤恒成立,所以24a <≤. 当4a >时,可得()04f a =≤,无解.
综上,a 的取值范围是2
44,4e ⎡⎤-⎣⎦.
22.【答案】(1)1a =,()f x 为奇函数;(2)详见解析。
【解析】
试题分析:(1)11222
125514a f a ⎛⎫=== ⎪⎝⎭+,所以1a =,则函数()2
1x f x x =+,函数()f x 的定义域为()1,1-,关于原点对称,又()()
()22
11x x
f x f x x x --==-=-++-,所以函数()f x 为奇函数;(2)设12,x x 是区间()1,1-上两个不等是实数,且12x x <,则210x x x ∆=->,()()21
2122
2111x x y f x f x x x ∆=-=
-=++
()()
()()
()()()()
()()()()
22211221121221122222222
1
2
12
1
111111111x x x x x x x x x x x x x x x x x x x x +-+-+---=
=++++++,因为
()11,1x ∈-,()21,1x ∈-,
且12x x <,所以1211x x -<<,则1210x x ->,所以()()()()
2112222
1
10
11x x x x x x -->++,即0y ∆>,所以函数()f x 在
区间()1,1-上为增函数。
试题解析:(1)12225
5
f a ⎛⎫== ⎪
⎝⎭
所以=1a , 定义域为()1,1-,关于原点对称,且()()
()2
2
11x x
f x f x x
x --=
=-
=-++-,所以()f x 为奇函数; (2)设12,x x 是区间()1,1-上两个不等是实数,且12x x <,则210x x x ∆=->
()()21
21222111x x y f x f x x x ∆=-=-=++()()()()()()()()
22211221122222
21211111111x x x x x x x x x x x x +-+--=++++
因为()11,1x ∈-,()21,1x ∈-,且12x x <, 所以1211x x -<<,则1210x x ->,所以()()()()
2112222
1
10
11x x x x x x -->++,
即0y ∆>,
所以函数()f x 在区间()1,1-上为增函数。
考点:1.函数的奇偶性;2.函数的单调性。
23.【答案】(1)1a =或5a =-;(2)3a >. 【解析】
(2){}{}1,2,1,2A A B == .
①()()
22
,2150B x a x a =∅+-+-=无实根,0∆<, 解得3a >; ② B 中只含有一个元素,()()
22
2150x a x a +-+-=仅有一个实根,
{}{}0,3,2,2,1,2a B A B ∆===-=-故舍去;
③B 中只含有两个元素,使 ()()
22
2150x a x a +-+-= 两个实根为和,
需要满足()2
212121=a 5
a ⎧+=--⎪⎨⨯-⎪⎩方程组无根,故舍去, 综上所述3a >]
考点:集合的运算及其应用.
24.【答案】
【解析】解:(Ⅰ)当a=0时,由f (x )≥g (x )得|2x+1|≥x ,两边平方整理得3x 2
+4x+1≥0,
解得x≤﹣1 或x≥﹣∴原不等式的解集为(﹣∞,﹣1]∪[﹣,+∞)
(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,即h(x)=,
故h(x)min=h(﹣)=﹣,故可得到所求实数a的范围为[﹣,+∞).
【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题.。