新都区第二中学校2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新都区第二中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )
A.83 B .4 C.163
D .203
2. 已知全集为R ,集合{}
|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =
ð( )
A .{}2,0,2-
B .{}2,2,4-
C .{}2,0,3-
D .{}0,2,4 3. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )
A .
B .
C .
D .3
4. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )
A .
B .
C .
D . =0.08x+1.23
5. 下列式子表示正确的是( )
A 、{}00,2,3⊆
B 、{}{}22,3∈
C 、{}1,2φ∈
D 、{}0φ⊆
6. 已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )
A .(﹣5,﹣10)
B .(﹣4,﹣8)
C .(﹣3,﹣6)
D .(﹣2,﹣4)
7. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <0
8. 下面的结构图,总经理的直接下属是( )
A .总工程师和专家办公室
B .开发部
C .总工程师、专家办公室和开发部
D .总工程师、专家办公室和所有七个部
9. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E
点位于( )
A .点A 处
B .线段AD 的中点处
C .线段AB 的中点处
D .点D 处
10.已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )
A .﹣1
B .1
C .﹣
D .
11.棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )
A .=
B .0S =
C .0122S S S =+
D .20122S S S =
12.函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)
二、填空题
13.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .
14.某工厂的某种型号的机器的使用年限x 和所支出的维修费用y (万元)的统计资料如表:
根据上表数据可得y 与x 之间的线性回归方程=0.7x+
,据此模型估计,该机器使用年限为14年时的维修
费用约为 万元.
15.给出下列命题:
①把函数y=sin (x ﹣
)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣
);
②若α,β是第一象限角且α<β,则cos α>cos β;
③x=﹣
是函数y=cos (2x+π)的一条对称轴;
④函数y=4sin (2x+)与函数y=4cos (2x ﹣
)相同;
⑤y=2sin (2x ﹣
)在是增函数;
则正确命题的序号 .
16.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测1564
的线性回归方程为
附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.
17.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:
①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;
③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;
④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,
则四边形P 0P 1P 2P 3的面积为定值4k 2

其中,所有正确结论的序号是 .
18.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .
三、解答题
19.(本小题满分10分)选修41-:几何证明选讲
如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;
(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.
【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.
20.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.
(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.
21.已知f (x )=x 2﹣(a+b )x+3a .
(1)若不等式f (x )≤0的解集为[1,3],求实数a ,b 的值;
(2)若b=3,求不等式f(x)>0的解集.
22.已知椭圆Γ:(a>b>0)过点A(0,2),离心率为,过点A的直线l与椭圆交于另一点
M.
(I)求椭圆Γ的方程;
(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆Γ的右焦点F且与直线x﹣2y﹣2=0相切?若存在,求出直线l的方程;若不存在,请说明理由.
23.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为

(1)求f(x)的对称轴方程和单调递增区间;
(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.
24.已知函数f(x)=x3+ax+2.
(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.
新都区第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】
【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面
为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=20
3,故选D.
2. 【答案】A 【解析】
考点:1、集合的表示方法;2、集合的补集及交集. 3. 【答案】A
【解析】解:由
,得3x 2
﹣4x+8=0.
△=(﹣4)2
﹣4×3×8=﹣80<0.
所以直线4x+3y ﹣8=0与抛物线y=﹣x 2
无交点.
设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0
联立
,得3x 2
﹣4x ﹣m=0.
由△=(﹣4)2
﹣4×3(﹣m )=16+12m=0,
得m=﹣.
所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2
相切的直线方程为4x+3y ﹣=0.
所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是
=.
故选:A .
【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是
中档题.
4. 【答案】C
【解析】解:法一:
由回归直线的斜率的估计值为1.23,可排除D
由线性回归直线方程样本点的中心为(4,5),
将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B
法二:
因为回归直线方程一定过样本中心点,
将样本点的中心(4,5)分别代入各个选项,只有C满足,
故选C
【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.
5.【答案】D
【解析】
试题分析:空集是任意集合的子集。

故选D。

考点:1.元素与集合的关系;2.集合与集合的关系。

6.【答案】B
【解析】解:排除法:横坐标为2+(﹣6)=﹣4,
故选B.
7.【答案】B
【解析】解:∵函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,
∴根据图象的性质可得:a>1,a0﹣b﹣1<0,
即a>1,b>0,
故选:B
8.【答案】C
【解析】解:按照结构图的表示一目了然,
就是总工程师、专家办公室和开发部.
读结构图的顺序是按照从上到下,从左到右的顺序.
故选C.
【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.
9.【答案】A
【解析】解:如图,
E 为底面ABCD 上的动点,连接BE ,CE ,D 1E , 对三棱锥B ﹣D 1EC ,无论E 在底面ABCD 上的何位置, 面BCD 1 的面积为定值,
要使三棱锥B ﹣D 1EC 的表面积最大,则侧面BCE 、CAD 1、BAD 1 的面积和最大, 而当E 与A 重合时,三侧面的面积均最大,
∴E 点位于点A 处时,三棱锥B ﹣D 1EC 的表面积最大. 故选:A .
【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.
10.【答案】B
【解析】解:由A ,B 是以O 为圆心的单位圆上的动点,且
|
|=

即有
||2
+|
|2
=|
|2,
可得△OAB 为等腰直角三角形,

,的夹角为45°,
即有

=|
|•
|
|•cos45°=1
×
×
=1.
故选:B .
【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.
11.【答案】A 【解析】
试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:
220()2()a S a h
S a S a h
S '⎧=⎪+⎪⎨'⎪=+⎪⎩
,解得=A .
考点:棱台的结构特征.
12.【答案】B
【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,
∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),
故选:B.
二、填空题
13.【答案】(,+∞).
【解析】解:由题意,a>1.
故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.
构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,
由f′(x)=0,得x=log a(log a e),
x>log a(log a e)时,f′(x)>0,f(x)递增;
0<x<log a(log a e),f′(x)<0,f(x)递减.
则x=log a(log a e)时,函数f(x)取到最小值,
故有﹣log a(log a e)>0,解得a>.
故答案为:(,+∞).
【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.14.【答案】7.5
【解析】解:∵由表格可知=9,=4,
∴这组数据的样本中心点是(9,4),
根据样本中心点在线性回归直线=0.7x+上,
∴4=0.7×9+,
∴=﹣2.3,
∴这组数据对应的线性回归方程是=0.7x﹣2.3,
∵x=14,
∴=7.5,
故答案为:7.5
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.
15.【答案】
【解析】解:对于①,把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得
到函数y=sin(2x﹣),故①正确.
对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cosα=cosβ=,故②错误.
对于③,当x=﹣时,2x+π=π,函数y=cos(2x+π)=﹣1,为函数的最小值,故x=﹣是函
数y=cos(2x+π)的一条对称轴,故③正确.
对于④,函数y=4sin(2x+)=4cos[﹣(2x+)]=4cos(﹣2)=4cos(2x﹣),
故函数y=4sin(2x+)与函数y=4cos(2x﹣)相同,故④正确.
对于⑤,在上,2x﹣∈,函数y=2sin(2x﹣)在上没有单调性,故⑤错误,
故答案为:①③④.
16.【答案】y=﹣1.7t+68.7
【解析】解:=,==63.6.
=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.
=4+1+0+1+2=10.
∴=﹣=﹣1.7.=63.6+1.7×3=68.7.
∴y关于t的线性回归方程为y=﹣1.7t+68.7.
故答案为y=﹣1.7t+68.7.
【点评】本题考查了线性回归方程的解法,属于基础题.
17.【答案】②③④.
【解析】解:由题意设动点坐标为(x ,y ),则利用题意及点到直线间的距离公式的得:|x+1||y ﹣1|=k 2

对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;
对于②,把方程中的x 被﹣2﹣x 代换,y 被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;
对于③,由题意知点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|≥|x+1|,|PB|≥|y ﹣1| ∴|PA|+|PB|≥2
=2k ,③正确;
对于④,由题意知点P 在曲线C 上,根据对称性,
则四边形P 0P 1P 2P 3的面积=2|x+1|×2|y ﹣1|=4|x+1||y ﹣1|=4k 2
.所以④正确.
故答案为:②③④.
【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.
18.【答案】1
ln 2
【解析】
试题分析:()()111ln 2ln 2
f x k f x ''=
∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.
三、解答题
19.【答案】
【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.
(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,

ED
EP
EF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 2
9
=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .
∴4
15
=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2
∴)29427(4152+⨯=
PA ,解得4
315=PA .……………………10分
20.【答案】(1)(8π+;(2)20
3
π. 【解析】

点:旋转体的概念;旋转体的表面积、体积. 21.【答案】
【解析】解:(1)∵函数f (x )=x 2﹣(a+b )x+3a , 当不等式f (x )≤0的解集为[1,3]时, 方程x 2﹣(a+b )x+3a=0的两根为1和3, 由根与系数的关系得

解得a=1,b=3;
(2)当b=3时,不等式f (x )>0可化为 x 2﹣(a+3)x+3a >0, 即(x ﹣a )(x ﹣3)>0;
∴当a >3时,原不等式的解集为:{x|x <3或x >a}; 当a <3时,原不等式的解集为:{x|x <a 或x >3}; 当a=3时,原不等式的解集为:{x|x ≠3,x ∈R}.
【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目.
22.【答案】
【解析】解:(Ⅰ)依题意得,解得,
所以所求的椭圆方程为;
(Ⅱ)假设存在直线l,使得以AM为直径的圆C,经过椭圆后的右焦点F且与直线x﹣2y﹣2=0相切,
因为以AM为直径的圆C过点F,所以∠AFM=90°,即AF⊥AM,
又=﹣1,所以直线MF的方程为y=x﹣2,
由消去y,得3x2﹣8x=0,解得x=0或x=,
所以M(0,﹣2)或M(,),
(1)当M为(0,﹣2)时,以AM为直径的圆C为:x2+y2=4,
则圆心C到直线x﹣2y﹣2=0的距离为d==≠,
所以圆C与直线x﹣2y﹣2=0不相切;
(2)当M为(,)时,以AM为直径的圆心C为(),半径为r===,
所以圆心C到直线x﹣2y﹣2=0的距离为d==r,
所以圆心C与直线x﹣2y﹣2=0相切,此时k AF=,所以直线l的方程为y=﹣+2,即x+2y﹣4=0,
综上所述,存在满足条件的直线l,其方程为x+2y﹣4=0.
【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在.
23.【答案】
【解析】解:(1)函数f (x )=cos (ωx+)的图象的两对称轴之间的距离为
=

∴ω=2,f (x )=cos (2x+).
令2x+
=k π,求得x=

,可得对称轴方程为 x=

,k ∈Z .
令2k π﹣π≤2x+≤2k π,求得 k π﹣
≤x ≤k π﹣

可得函数的增区间为,k ∈Z .
(2)当2x+=2k π,即x=k π﹣,k ∈Z 时,f (x )取得最大值为1.
当2x+
=2k π+π,即x=k π+
,k ∈Z 时,f (x )取得最小值为﹣1.
∴f (x )取最大值时相应的x 集合为{x|x=k π﹣,k ∈Z};
f (x )取最小值时相应的x 集合为{x|x=k π+,k ∈Z}.
24.【答案】
【解析】(Ⅰ)证明:f (x )的导数f ′(x )=x 2
+a ,
即有f (1)=a+,f ′(1)=1+a ,
则切线方程为y ﹣(a+)=(1+a )(x ﹣1),
令x=0,得y=为定值;
(Ⅱ)解:由xe x +m[f ′(x )﹣a]≥m 2
x 对x ≥0时恒成立, 得xe x +mx 2﹣m 2
x ≥0对x ≥0时恒成立, 即e x +mx ﹣m 2
≥0对x ≥0时恒成立, 则(e x +mx ﹣m 2
)min ≥0, 记g (x )=e x +mx ﹣m 2

g ′(x )=e x +m ,由x ≥0,e x ≥1,
若m ≥﹣1,g ′(x )≥0,g (x )在[0,+∞)上为增函数,


则有﹣1≤m ≤1,
若m <﹣1,则当x ∈(0,ln (﹣m ))时,g ′(x )<0,g (x )为减函数, 则当x ∈(ln (﹣m ),+∞)时,g ′(x )>0,g (x )为增函数,


∴1﹣ln (﹣m )+m ≥0,
令﹣m=t,则t+lnt﹣1≤0(t>1),
φ(t)=t+lnt﹣1,显然是增函数,
由t>1,φ(t)>φ(1)=0,则t>1即m<﹣1,不合题意.
综上,实数m的取值范围是﹣1≤m≤1.
【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.。

相关文档
最新文档