仁里乡初中2018-2019学年七年级下学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仁里乡初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)已知是二元一次方程组的解,则的值为()
A.
B.
C.
D.
【答案】B
【考点】二元一次方程的解,解二元一次方程组
【解析】【解答】解:∵是二元一次方程组的解,
∴,

∴a-b=
故答案为:B
【分析】将已知x、y的值分别代入方程组,建立关于a、b的方程组,解方程组求出a、b的值,然后将a、b的值代入代数式计算即可。

2.(2分)若为非负数,则x的取值范围是()
A.x≥1
B.x≥-
C.x>1
D.x>-
【答案】B
【考点】解一元一次不等式
【解析】【解答】解:由题意得
≥0,
2x+1≥0,
∴x≥- .
故答案为:B.
【分析】非负数即正数和0,由为非负数列出不等式,然后再解不等式即可求出x的取值范围。

3.(2分)如图,工人师傅在工程施工中需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()
A. AB∥BC
B. BC∥CD
C. AB∥DC
D. AB与CD相交
【答案】C
【考点】平行线的判定
【解析】【解答】解:∵∠ABC=150°,∠BCD=30°
∴∠ABC+∠BCD=180°
∴AB∥DC
故答案为:C
【分析】根据已知可得出∠ABC+∠BCD=180°,根据平行线的判定,可证得AB∥DC。

4.(2分)估计30的算术平方根在哪两个整数之间()
A. 2与3
B. 3与4
C. 4与5
D. 5与6
【答案】D
【考点】估算无理数的大小
【解析】【解答】解:∵25<30<36,
∴5<<6,
故答案为:D.
【分析】由25<30<36,根据算术平方根计算即可得出答案.
5.(2分)一个自然数的算术平方根是x,则它后面一个数的算术平方根是()
A.x+1
B.x2+1
C.+1
D.
【答案】D
【考点】算术平方根
【解析】【解答】解:由题意可知,这个自然数是x2,其后面一个数是x2+1,则其算术平方根是。

故答案为:D.
【分析】根据算术平方根的意义可知,这个自然数是x2,从而可得其后的数,据此即可解答。

6.(2分)解不等式的下列过程中错误的是()
A.去分母得
B.去括号得
C.移项,合并同类项得
D.系数化为1,得
【答案】D
【考点】解一元一次不等式
【解析】【解答】解:,去分母得;去括号得;移项,合并同类项得;系数化为1,得,故答案为:D
【分析】根据不等式的基本性质,先两边同时乘以15去分母,再去括号,再移项,合并同类项,最后系数化1.注意不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变.
7.(2分)不等式3x<18 的解集是()
A.x>6
B.x<6
C.x<-6
D.x<0
【答案】B
【考点】解一元一次不等式
【解析】【解答】解:(1)系数化为1得:x<6
【分析】不等式的两边同时除以3即可求出答案。

8.(2分)小明只带2元和5元两种面值的人民币,他买一件学习用品要支付23元,则付款的方式有()
A.1种
B.2种
C.3种
D.4种
【答案】B
【考点】二元一次方程的应用
【解析】【解答】解:设用了2元x张,5元y张,则
2x+5y=23,
2x=23-5y,
x= ,
∵x,y均为正整数,
∴或.
即付款方式有2种:(1)2元9张,5元1张;(2)2元4张,5元3张.
故答案为:B.
【分析】设用了2元x张,5元y张,根据学习用品的费用=23元,列方程,再求出方程的正整数解。

9.(2分)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()
吻仔鱼养生粥番茄蛋
炒饭
凤梨蛋
炒饭
酥炸排
骨饭
和风烧
肉饭
蔬菜海
鲜面
香脆炸
鸡饭
清蒸鳕
鱼饭
香烤鲷
鱼饭
红烧牛
腩饭
橙汁鸡
丁饭
白酒蛤
蜊面
海鲜墨
鱼面
嫩烤猪
脚饭
60元70

70

80

80

90

90

100

100

110

120

120

140

150

A.5
B.7
C.9
D.11
【答案】C
【考点】一元一次不等式的特殊解,一元一次不等式的应用
【解析】【解答】解:设第二份餐的单价为x元,
由题意得,(120+x)×0.9≤200,
解得:x≤102,
故前9种餐都可以选择.
故答案为:C.
【分析】设第二份餐的单价为x元,根据“ 两份餐点的总花费不超过200元”列不等式,求出解集,再根据表格可得答案.
10.(2分)如果关于x的不等式x>2a﹣1的最小整数解为x=3,则a的取值范围是()
A. 0<a<2
B. a<2
C. ≤a<2
D. a≤2
【答案】C
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】解:∵关于x的不等式x>2a﹣1的最小整数解为x=3,
∴2≤2a﹣1<3,
解得:≤a<2.
故答案为:C.
【分析】由题意可得不等式组2≤2a﹣1<3,解这个不等式组即可求解。

11.(2分)64的平方根是()
A.±8
B.±4
C.±2
D.
【答案】A
【考点】平方根
【解析】【解答】解:∵(±8)2=64,
∴±。

故答案为:A.
【分析】根据平方根的意义即可解答。

12.(2分)如图,数轴上A,B两点分别对应实数a、b,则下列结论中正确的是()
A. a+b>0
B. ab>0
C.
D. a+ab-b<0
【答案】C
【考点】实数在数轴上的表示
【解析】【解答】解:由数轴可知:b<-1<0<a<1,
A.∵b<-1<0<a<1,∴a+b<0,故错误,A符号题意;
B.∵b<0,a>0,∴ab<0,故错误,B不符号题意;
C.∵b<0,a>0,∴原式=1-1=0,故正确,C符号题意;
D.∵b<0,0<a<1,∴a-1<0,∴原式=b(a-1)+a>0,故错误,D不符号题意;
故答案为:C.
【分析】由数轴可知b<-1<0<a<1,再对各项一一分析即可得出答案.
二、填空题
13.(1分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数=________.
【答案】-2
【考点】解二元一次方程组
【解析】【解答】解:把x=5代入2x-y=12得2×5-y=12,解得y=-2.
∴★为-2.
故答案为-2.
【分析】将x=5代入两方程,就可求出结果。

14.(1分)若= =1,将原方程组化为的形式为________.
【答案】
【考点】二元一次方程组的其他应用
【解析】【解答】解:原式可化为:=1和=1,
整理得,.
【分析】由恒等式的特点可得方程组:=1,=1,去分母即可求解。

15.(2分)平方等于的数是________,-64的立方根是_______
【答案】;-4
【考点】平方根,立方根及开立方
【解析】【解答】解:∵(±)2=
∴平方等于的数是±;
-64的立方根是-4
故答案为:±;-4
【分析】根据平方根的定义及立方根的定义求解即可。

16.(1分)如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.
【答案】90°
【考点】平行线的性质
【解析】【解答】解:∵CE、AE分别平分∠ACD、∠CAB,
∴∠1=∠DCE=∠ACD,∠2=∠BAE=∠CAB,
∴∠ACD=2∠1,∠CAB=2∠2,
又∵AB∥CD,
∴∠CAB+∠ACD=180°,
∴2∠2+2∠1=180°,
∴∠2+∠1=90°.
故答案为:90°.
【分析】根据角平分线定义得∠ACD=2∠1,∠CAB=2∠2,再由平行线性质得∠CAB+∠ACD=180°,代入、计算即可得出答案.
17.(1分)已知一个数的平方根是和,则这个数的立方根是________.
【答案】4
【考点】平方根,立方根及开立方
【解析】【解答】解:依题可得:
(3a+1)+(a+11)=0,
解得:a=-3,
∴这个数为:(3a+1)2=(-9+1)2=64,
∴这个数的立方根为:=4.
故答案为:4.
【分析】一个数的平方根互为相反数,依此列出方程,解之求出a,将a值代入求出这个数,从而得出对这个数的立方根
18.(1分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看
错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:将代入②得,﹣12+b=﹣2,b=10;
将代入①,5a+20=15,a=﹣1.
故原方程组为,
解得.
故答案为:.
【分析】甲看错了方程①中的a 但没有看错b,所以可把x=-3和y=-1代入方程②得到关于b的方程,激发
出可求得b的值;乙看错了方程组②中的b 但没有看错a,所以把x=5和y=4代入①可得关于a的方程,解方程可求得a的值;再将求得的a、b的值代入原方程组中,解这个新的方程组即可求解。

三、解答题
19.(5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
【答案】解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90º-50º=40º
∴∠BOC=∠AOD=40º
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
【考点】角的平分线,角的运算,对顶角、邻补角,垂线
【解析】【分析】根据垂直的定义得出∠EOD=∠EOC=90°,根据角的和差得出∠AOD=90º-50º=40º,根据对顶角相等得出∠BOC=∠AOD=40º,根据角平分线的定义得出∠DOF=∠AOD=40°,根据角的和差即可算出∠BOF,∠BOE的度数。

20.(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
21.(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
22.(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
节水量/立方米1 1.52.53
户数/户5080a70
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
23.(5分)如图,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+ ∠2=90°.求证:BC ⊥ AB.
【答案】证明:∵DE平分∠ADC,CE平分∠BCD,
∴∠1=∠ADE,∠2=∠BCE,
∵∠1+∠2=90°,
即∠ADE+∠BCE=90°,
∴∠DEC=180°-(∠1+∠2)=90°,
∴∠BEC+∠AED=90°,
又∵DA ⊥AB,
∴∠A=90°,
∴∠AED+∠ADE=90°,
∴∠BEC=∠ADE,
∵∠ADE+∠BCE=90°,
∴∠BEC+∠BCE=90°,
∴∠B=90°,
即BC⊥AB.
【考点】垂线,三角形内角和定理
【解析】【分析】根据角平分线性质得∠1=∠ADE,∠2=∠BCE,结合已知条件等量代换可得∠1+∠2=∠ADE+∠BCE=90°,根据三角形内角和定理和邻补角定义可得∠BEC=∠ADE,代入前面式子即可得∠BEC+∠BCE=90°,由三角形内角和定理得∠B=90°,即BC⊥AB.
24.(5分)如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.
【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF= ∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据图形和已知求出∠EOD的度数,再由角平分线性质、对顶角相等和角的和差,求出∠EOF=∠EOD+∠DOF的度数.
25.(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:( …);
整数集合:( …);
负分数集合:( …);
无理数集合:( …).
【答案】解:正有理数集合:(3,, -(-2.28), 3.14 …);
整数集合:( 3,0,-∣-4∣ …);
负分数集合:(-2.4,- ,, …);
无理数集合:(, -2.1010010001…… …).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。

逐一填写即可。

26.(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC 于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.。

相关文档
最新文档