上海市2019届初三数学一模提升题汇编第24题(二次函数综合)(含2019上海中考试题答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22
213-3)(第24题图)题图)
∵抛物线
21:C y ax bx A B
=+经过点、,
∴可得:3
4203323
3a a b a b b ì
=-+=ìïïíí-=-ïî=ïî解得:………………………………………………(1分)分)
∴这条抛物线的表达式为
23233
3
y x x
=-+
…………………………………………(1
分)分)
(2)过M 作MG ⊥x 轴,垂足为G ,∵
2323
33y x x =-
+
∴顶点M 是31,3æöç÷
ç÷èø,得33MG = ……………………………………………………(1
分)分)
∵(1,3)A
--,M 31,3æö
ç÷ç÷
èø.
∴得:直线AM 为233
33y x =- …………………………………………………(1分)分) ∴直线AM 与x 轴的交点N 为1,02æö
ç÷
èø……………………………………………………(1
分)分)

1122AOM S
ON MG ON AH D =×+×113113
22322=´´+´´
3
3=
…………………………………………………………………………(1分)分)
(3)∵

3
3,
1(M 、)0,2(B ,

3
3MG Rt BGM MBG BG D Ð=在中,中,tan tan =
,∴MBG а=30.
∴MBF 150Ð=°.由抛物线的轴对称性得:MO=MB ,
∴MBO MOB=150Ð=а. ∵OB=120A а,∴OM=150A а ∴OM=MBF A ÐÐ.

BM BF
OA OM 或BF BM OA OM 相似时,有:AOM 与MBF 当=
=D D 即
33
2BF 233
2或BF 3322332==,∴32BF 或2BF =
=. ∴)
0,38
)或(0,4(F ………………………………………………(2分)分)
设向上平移后的抛物线
k
x x y ++-=33233:为C 22,
当)0,4(F 时,
338=
k ,∴抛物线33
833233:为C 22+
+-=x x y …(1
分)分)
当)0,38

F 时,27316=
k ,抛物线22323163:3327C y x x =-++…….(1分)】
【2019届一模浦东】届一模浦东】
24. (本题满分12分,其中每小题各4分)分)
已知:如图9,在平面直角坐标系xOy 中,直线1
2y x b
=-+与x 轴相交于点A ,与y 轴相交于点B. 抛物线(1)求抛物线的表达式; (2)求证: △BOD ∽△AOB; 
(3)如果点P 在线段AB 上,且∠BCP=∠DBO , 求点P 的坐标. 
x
B
O
A
y
【24、(1)2114
82y x x =-++;(2)证明略;(3)1612,55æöç÷èø】
【2019届一模杨浦】届一模杨浦】
24.(本题满分12分,每小题各4分)分)
在平面直角坐标系xOy 中,抛物线2
(0)
y ax bx c a =++?与y 轴交于点C (0,2),
它的顶点为D (1,m ),且
1
tan 3COD
?. 
(1)求m 的值及抛物线的表达式;的值及抛物线的表达式;
(2)将此抛物线向上平移后与x 轴正半轴交于点A ,与y 轴交于点B ,且OA=OB.若点A 是由原抛物线上的点E 平移所得,求点E 的坐标;的坐标;
(3)在(2)的条件下,的条件下,点点P 是抛物线对称轴上的一点是抛物线对称轴上的一点(位于(位于x 轴上方),且∠APB=45°.求P 点的坐标. 
O x
y
1 2 3 4 1 
2 3 4 5 
-1 -2 -3 
-1 -2 -3 (第24题图)
【24.解:(1)作DH ⊥y 轴,垂足为H ,∵D (1,m )(0m >),∴DH= m ,HO=1. 

1
tan 3COD
?,∴13OH DH =
,∴m=3. m=3. · ····················································· (1分)分)
∴抛物线2
y ax bx c =++的顶点为D (1,3). 
又∵抛物线2
y ax bx c =++与y 轴交于点C (0,2),
∴3,1,22.a b c b a c ì++=ïïïïï-=íïïïï=ïî(2分)∴1,2,2.a b c ì=-ïïï=íïï=
ïïî∴抛物线的表达式为222y x x =-++. ······ (1分)分) (2)∵将此抛物线向上平移,)∵将此抛物线向上平移,
∴设平移后的抛物线表达式为2
22(0)y x x k k =-+++>,. ···························· (1分)分) 则它与y 轴交点B (0,2+k ). 
∵平移后的抛物线与x 轴正半轴交于点A ,且OA=OB ,∴A 点的坐标为(2+k,0). .(1分)分)
∴2
0(2)2(2)2k k k =-+++++.∴122,1k k =-=. 
∵0k >,∴1k =. 
∴A (3,0),抛物线2
22y x x =-++向上平移了1个单位. . ······························ (1分)分)
∵点A 由点E 向上平移了1个单位所得,∴E (3,-1). . ··································· (1分)分) (3)由(2)得A (3,0),B (0, 3),∴32AB =. 
∵点P 是抛物线对称轴上的一点(位于x 轴上方),且∠APB=45°,原顶点D (1,3), ∴设P (1,y ),设对称轴与AB 的交点为M ,与x 轴的交点为H ,则H (1,0). ∵A (3,0),B (0, 3),∴∠OAB=45°, ∴∠AMH=45°. ∴M (1,2). ∴2BM =
. 
∵∠BMP=∠AMH, ∴∠BMP=45°. ∵∠APB=45°, ∴∠BMP=∠APB. 
∵∠B=∠B ,∴△BMP ∽△ A. ·BP A. ··································································· (2分)分)
B A P
y
O M H
∴BP BA BM
BP =
.∴2
322
6BP BA BM =??

2
2
1(3)6BP y =+-=.∴123535y y
,=+=-
(舍).. ···························· (1分)分)
∴(1,35)P
+. . ····················································································· (1分)】
【2019届一模普陀】届一模普陀】 24.(本题满分12分)分) 如图10,在平面直角坐标系
中,抛物线
2
3y ax bx =+-(0)a ¹与x
轴交于点A
()1,0-和点B ,且3OB OA =,与y 轴交于点C ,此抛物线顶点为点D .
(1)求抛物线的表达式及点D 的坐标;的坐标;
(2)如果点E 是y
轴上的一点(点E 与点C 不重合),当BE DE ^时,求点E 的坐标;的坐标;

3)如果点F 是抛物线上的一点,且,求点F 的坐标.的坐标.
135FBD Ð=
xOy
图10 
C B
A
O
y
x
【24.解:.解:
(1)∵抛物线与x 轴交于点A ()1,0-和点,且3OB OA =,
∴点的坐标是(
)
3,0. ··········································································· (1分)分)
解法一:由抛物线
2
3y ax bx =+-经过点()1,0-和()3,0.
得03,093 3.
a b a b =--ìí=+-î 解得1,2.a b =ìí
=-î ······························································ (1分)分)
∴抛物线的表达式是
2
23
y x x =--. ······················································ (1分)分)
点D 的坐标是()1,4-. ············································································· (1分)分) 解法二:由抛物线
2
3y ax bx =+-经过点()1,0-和()3,0.
可设抛物线的表达式为
(1)(3)
y a x x =+-, 由抛物线与y
轴的交点C 的坐标是(
)
0,3-,
得3(01)(03)a -=+-,解得1a =. ······························································ (1分)分) ∴抛物线的表达式是
2
23
y x x =--. ························································ (1分)分)
点D 的坐标是(
)1,4-. ············································································· (1分)分) (2)过点D 作DH OC ^,H 为垂足.为垂足. ∴90DHO Ð=.∴90DEH EDH Ð+Ð=. ∵BE DE ^,∴90DEH BEO Ð+Ð=. ∴BEO EDH Ð=Ð.
又∵
BOE EHD
Ð=Ð,∴△
BOE
∽△E H D . ········································· (1分)分)

BO OE
EH HD =. ∵点D 的坐标是()1,4-,∴1DH =,4OH =.
B B
∵点的坐标是(
)
3,0,∴3OB =.
∴341OE
OE
=-. ·············································································· (1分)分) ∴1OE =或3OE =. ················································································ (1分)分) ∵点E 与点C 不重合,∴1OE =.
∴点E 的坐标是
()
0,1-. ··········································································· (1分)分)
(3)过点F 作FG x ^轴,G 为垂足.为垂足.
作45DBM Ð=,由第(2)题可得,点M 与点E 重合.重合. ∵1OE =,1DH =,∴OE DH =. 可得△BOE ≌△E H D . ∴BE ED =. ∵90BED Ð=,∴45DBE Ð=. ∵135FBD Ð=,
∴90FBE Ð=. ················································································ (1分)分) ∴OBE GFB Ð=Ð.
∴在Rt △BOE 中,90BOE Ð=,∴cot 3OBE Ð=∴cot 3GFB Ð=. ·········· (1分)分) ∴3FG BG =.
设点F 点的坐标为
()
2
,23m m m --.
∴2
23FG m m =--,3BG m =-. ∴
2
233(3)m m m --=-. ··································································· (1分)分)
解得3m =,4m =-. ∵3m =不合题意舍去,∴4m =-. 点F 的坐标是(
)
4,21-. ·········································································· (1分)】
【2019届一模奉贤】届一模奉贤】
24.(本题满分12分,每小题满分6分)分)
B
如图10,在平面直角坐标系中,直线AB 与抛物线
2
y ax bx
=+交于点A(6,0)和
点B(1,-5).
(1)求这条抛物线的表达式和直线AB 的表达式;的表达式;
(2)如果点C 在直线AB 上,且∠BOC 的正切值是32,
求点C 的坐标.的坐标.
【24.解:(1)由题意得,抛物线
2
y ax bx
=+经过点A(6,0)和点B(1,-5),
代入得3660,5.a b a b ì+=ïïíï+=-ïî 解得解得 1,6.a b ì=ïïíï=-ïî ∴抛物线的表达式是26y x x =-. ······ (4分)分)
由题意得,设直线AB 的表达式为
y kx b
=+,它经过点A(6,0)和点B(1,-5),
代入得60,5.k b k b ì+=ïïíï+=-ïî 解得解得 1,6.k b ì=ïïíï=-ïî ∴直线AB 的表达式是6y x =-. ········ (2分)分)
(2)过点O 作OH AB ^,垂足为点H . 设直线AB 与y 轴交点为点D ,则点D 坐标为()
0,6-. 
∴45ODA OAD
??,cos4532DH OH OD ==·°=. 
∵2BD =
,∴22BH =. 
在Rt △OBH 中,90OHB
?,
3
tan 2OH OBH
BH ?=
. ······························· (2分)分)
∵∠BOC 的正切值是3
2,∴BOC
CBO ?. ··············································· (1分)分)
①当点C 在点B 上方时,BOC
CBO ?.∴CO CB =.
设点C
(,6)x x -, 2
2
22
(6)(1)(65)
x x x x +-=-+-+
xOy
图10 
A
B
x
y
o
解得解得 17
4x =,1776644x -=-=-.--------------------------------------------------------------------(2分)分)
所以点D
坐标为177,4
4æö

÷èø. ②当点C 在点B 下方,BOC CBO ?时,OC//AB. 点C 不在直线AB 上. ········ (1分)分)
综上所述,如果∠BOC 的正切值是32,点C 的坐标是177,44æö-ç÷èø.】
【2019届一模松江】届一模松江】
24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)分)
如图,抛物线c
bx x y ++-=221
经过点A (﹣2,0),点B (0,4). 
(1)求这条抛物线的表达式;)求这条抛物线的表达式;
(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;的坐标; (3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE
∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值. 
【24.解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)
∴îíì==+--40
22c c b …………(1分), 解得14b c =ìí=
î………………………(1分)分) ∴抛物线解析式为21
4
2y x x =-++ …………………………………………(1分)分)
(第24题图) 
y x
O
B
A
(2)
()
2
9
1
2
1
4
2
12
2
+
-
-
=
+
+
-
=x
x
x
y
…………………………………(1分)
分)
∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G ∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
∴PG BO
BG AO
=
……………………………………………(1分)
分)

12
1
BG
=
,∴
1
2
BG=
…………………………………(1分)
分)

7
2
OG=
,∴P(1,2
7
)………………………………(1分)
分)
(3)设新抛物线的表达式为
2
1
4
2
y x x m
=-++-
…(1分)
分)

()
0,4
D m
-
,
()
2,4
E m
-
,DE=2……………………(1分)
分)
过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF 

2
=
1
DE EO DO
FH OF OH
==
,∴FH=1……………………………………………(1分)
分)
点D在y轴的正半轴上,则
5
1,
2
F m
æö
--
ç÷
èø,∴
5
2
OH m
=-

42
51
2
DO m
OH m
-
==
-
,∴m=3……………………………………………………(1分)
分)
点D在y轴的负半轴上,则
9
1,
2
F m
æö
-
ç÷
èø,∴
9
2
OH m
=-

42
91
2
DO m
OH m
-
==
-
,∴m=5……………………………………………………(1分)
分)
∴综上所述m的值为3或5.】
(第24题图) 
y
x O
B
A
E
D
F H
的面积;的面积; D ,点E 的坐标.的坐标. 2)
O 1 
1 x y
--
∴点C 的坐标为)0,2(, ……………………1分 过点M 作y MH ^轴,垂足为点H

AOC MHC
AOHM
AMC
S
S
S
S
D D D -
-
=
(1)


4221
1412149)41(2
1´´-´´-´
+´=
D AMC S

23
=D AMC S …………1分 (3)联结OB
过点B 作x BG ^轴,垂足为点G
∵点B 的坐标为
)
2,2(,点A 的坐标为
)
0,4(∴2=BG ,2=GA
∴△BGA 是等腰直角三角形∴°=Ð45BAO 同理:°=Ð45BOA
∵点C 的坐标为)0,2(∴2=BC ,2=OC 由题意得,△OCB 是等腰直角三角形是等腰直角三角形 ∴°=Ð45DBO ,22=BO ∴DBO BAO Ð=Ð
∵°=Ð45DOE ∴°=Ð+Ð45BOE DOB ∵°=Ð+Ð45EOA BOE ∴DOB EOA Ð=Ð ∴△AOE ∽△BOD

BO AO BD AE = …………1分 ∵抛物线2
2141
2
++-=x x y 的对称轴是直线1=x ,
∴点D 的坐标为)2,1(
∴1=BD …………1分
∴224
1
=
AE
∴2=AE …………1分
过点E 作x EF ^轴,垂足为点F 易得,△AFE 是等腰直角三角形是等腰直角三角形 ∴1==AF EF
∴点E 的坐标为)1,3( …………1分】分】 【2019届一模青浦】届一模青浦】
24.(本题满分12分,分, 其中第(1)小题3分,第(2)小题5分,第(3)小题4分)分)
在平面直角坐标系xOy 中,将抛物线2
y x =-平移后经过点A (-1,0)、B (4,0),且平移后的抛物线与y 轴交于点C (如图). (1)求平移后的抛物线的表达式;)求平移后的抛物线的表达式;
(2)如果点D 在线段CB 上,且CD=2,求∠CAD 的正弦值;的正弦值;
(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.的坐标.
【24.解:(1)设平移后的抛物线的解析式为2
+=-+y x bx c
. ······················· (1分)分)
将A (-1,0)、B (4,0),代入得,代入得
C B A x
y O C
B A x
y
O (第24题图)题图) (备用图)(备用图)
101640.,--+=ìí
-++=îb c b c ··············································································· (1分)分) 解得:34.

=ìí
=îb c
所以,
2
+34
=-+y x x . ·········································································· (1分)分)
(2)∵2
+34=-+y x x ,∴点C 的坐标为(0,4) ····································· (1分). 设直线BC 的解析式为y= kx+4,将B (4,0),代入得kx+4=0,解得k=-1,
∴y= -x+4. ········································································································ 设点D 的坐标为(m ,4- m ).
∵CD=2,∴2
2=2m ,解得=1m 或=1-m (舍去),
∴点D 的坐标为(1,3). ········································································· (1分)分) 过点D 作DM ⊥AC ,过点B 作BN ⊥AC ,垂足分别为点M 、N .
∵1122×=×AC BN AB OC
,∴1754×=´BN ,∴202017
=1717=BN . ········ (1分)分) ∵DM ∥BN ,∴=
DM CD BN CB ,∴242=DM BN ,∴517
17=DM . ···················· (1分)分) ∴
51715221sin =1722113Ð=
´=DM CAD AD . ············································· (1分)分)
(3)设点Q 的坐标为(n ,2
+34-+n n ).
如果四边形ECPQ 是菱形,则0>n ,PQ ∥y 轴,PQ=PC ,点P 的坐标为(n ,4-+n ).

2
2
+3444=-++-=-PQ n n n n n
,2=PC n , ····································· (2分)分)

2
4=2-n n n
,解得
=42
-n 或
=0
n (舍). ·········································· (1分)分)
∴点Q 的坐标为(42-,522-). ···················································· (1分)】
【2019届一模静安】届一模静安】
24.(本题满分12分,其中第(1)小题4分,第(2)小题3分,第(3)小题5分)分)
在平面直角坐标系xOy 中(如图10)
,已知抛物线2
(0)y ax bx c a =++¹的图像经过点(40)B ,、(53)D ,,设它与x 轴的另一个交点为A (点A 在点B 的左侧),且ABD D 的
面积是3.
(1)求该抛物线的表达式;)求该抛物线的表达式; (2)求A D B Ð的正切值;的正切值;
(3)若抛物线与y 轴交于点C ,直线CD 交
x 轴于点E ,点P 在射线AD 上,当APE D 与
ABD D 相似时,求点P 的坐标.的坐标.
【24.解:.解:
(1)过点D 作DH ⊥x 轴,交x 轴于点H .

132ABD
S
AB DH
D =
×=,又∵(5,3)D
∴2AB =.····························································································· (1分)分) ∵(4,0)B ,点A 在点B 的左侧,的左侧,
∴(2,0)A . ····························································································· (1分)分)
把(2,0)A ,(4,0)B ,(5,3)D 分别代入2
y ax bx c =++,
得04201643255a b c a b c a b c =++ìï=++íï=++î 解得1
68a b c =ìï=-íï=î . ···························································· (1分)分)
∴抛物线解析式是2
68y x x =-+. ······························································ (1分)分) (2)过点B 作BG AD ^,交AD 于点G . ··················································· (1分)分)
B 
D O 
图10 
x 
y ﹒ ﹒
由(2,0)A ,(5,0)H ,(5,3)D
,得A D H D 是等腰直角三角形,且45HAD Ð=
∵3AH DH ==,∴32AD =. ································································ (1分)分) ∴在等腰直角AGB D 中,由2AB =,得2AG BG ==, ∴22DG AD AG =-=,
∴在Rt DGB D 中,
1
tan 2BG ADB DG
Ð=
=
. ·
················································· (1分)分) (3)∵抛物线2
68y x x =-+与y
轴交于点(0,8)C ,又(5,3)D ,
∴直线CD 的解析式为8y x
=-+,
∴(8,0)E
. ···························································································· (1分)分)
当点P 在线段AD 上时,APE D ∽ABD D ,点,,A P E 分别与点,,A B D 对应,则对应,则
AP AE AB AD =,即262232AB AE AP AD ´´===.………………………………………(1分)
··························································································································· 过点P 作PQ ^

2
AQ PQ ==,即
(4,2)
P . ····································································· (1分)分)
②当点P 在线段AD 延长线上时,APE A D B Ð=Ð, ·················································· ∴EP //D B
过点P 作PR x ^轴于点R ,
·················································································· 13AH AD AB AR AP AE ===,
∴9AR PR ==, ······················································································ (1分)分)
即(11,9)P
. ···························································································· (1分)分)
∴APE D 与ABD D 相似时,点P 的坐标为的坐标为 (4,2)或 (11,9).】 【2019届一模宝山】届一模宝山】
24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)分)
如图9,已知:二次函数
的图像交x 轴正半轴于点A ,顶点为P
,一次函数2
y x bx
=+。

相关文档
最新文档