天长市三中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天长市三中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()
A.变量X与变量Y有关系的概率为1%
B.变量X与变量Y没有关系的概率为99%
C.变量X与变量Y有关系的概率为99%
D.变量X与变量Y没有关系的概率为99.9%
2.给出定义:若(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m 在此基础上给出下列关于函数f(x)=|x﹣{x}|的四个命题:
①;②f(3.4)=﹣0.4;
③;④y=f(x)的定义域为R,值域是;
则其中真命题的序号是()
A.①②B.①③C.②④D.③④
3.某班有50名学生,一次数学考试的成绩ξ服从正态分布N(105,102),已知P(95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为()
A.10 B.9 C.8 D.7
4.设函数f(x)=,f(﹣2)+f(log210)=()
A.11 B.8 C.5 D.2
5.一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为()
A.B.C.D.
6.定义运算,例如.若已知,则
=()
A .
B .
C .
D .
7. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )
A .24
B .80
C .64
D .240
8. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z
A .1
B .2
C .3
D .4
9. 在10
201511x x ⎛⎫++ ⎪⎝
⎭的展开式中,含2
x 项的系数为( )
(A )10 ( B ) 30 (C ) 45 (D ) 120
10.如图,在长方形ABCD 中,AB=
,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在
面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )
A .
B .
C .
D .
11.如图是一个多面体的三视图,则其全面积为( )
A .
B .
C .
D .
12.执行如图所以的程序框图,如果输入a=5,那么输出n=( )
A .2
B .3
C .4
D .5
二、填空题
13.设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为 .
14.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”
的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 15.某几何体的三视图如图所示,则该几何体的体积为
16.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .
17.曲线
在点(3,3)处的切线与轴x 的交点的坐标为 .
18.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .
三、解答题
19.(本小题满分14分)
设函数2()1cos f x ax bx x =++-,0,2
x π⎡⎤∈⎢⎥⎣⎦
(其中a ,b R ∈).
(1)若0a =,1
2
b =-
,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上零点的个数.
【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
20.(本小题满分12分)已知函数1
()ln (42)()f x m x m x m x
=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的
取值范围.
【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.
21.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,
,x2,x3的值,并写出函数f(x)的解析式;
1
(Ⅱ)将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上
的图象的最高点和最低点分别为M,N,求向量与夹角θ的大小.
22.设函数f(x)=ae x(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(Ⅰ)求函数f(x),g(x)的解析式;
(Ⅱ)求函数f(x)在[t,t+1](t>﹣3)上的最小值;
(Ⅲ)若对∀x≥﹣2,kf(x)≥g(x)恒成立,求实数k的取值范围.
23.已知函数f(x)=log2(x﹣3),
(1)求f(51)﹣f(6)的值;
(2)若f(x)≤0,求x的取值范围.
24.(本小题满分12分)已知过抛物线2
:2(0)C y px p =>的焦点,
斜率为11A x y (,) 和22B x y (,)(12x x <)两点,且9
2
AB =. (I )求该抛物线C 的方程;
(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.
天长市三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:∵概率P(K2≥6.635)≈0.01,
∴两个变量有关系的可信度是1﹣0.01=99%,
即两个变量有关系的概率是99%,
故选C.
【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.
2.【答案】B
【解析】解:①∵﹣1﹣<﹣≤﹣1+
∴{﹣}=﹣1
∴f(﹣)=|﹣﹣{﹣}|=|﹣+1|=
∴①正确;
②∵3﹣<3.4≤3+
∴{3.4}=3
∴f(3.4)=|3.4﹣{3.4}|=|3.4﹣3|=0.4
∴②错误;
③∵0﹣<﹣≤0+
∴{﹣}=0
∴f(﹣)=|﹣﹣0|=,
∵0﹣<≤0+
∴{}=0
∴f()=|﹣0|=,
∴f(﹣)=f()
∴③正确;
④y=f(x)的定义域为R,值域是[0,]
∴④错误.
故选:B.
【点评】本题主要考查对于新定义的理解与运用,是对学生能力的考查.
3.【答案】B
【解析】解:∵考试的成绩ξ服从正态分布N(105,102).
∴考试的成绩ξ关于ξ=105对称,
∵P(95≤ξ≤105)=0.32,
∴P(ξ≥115)=(1﹣0.64)=0.18,
∴该班数学成绩在115分以上的人数为0.18×50=9
故选:B.
【点评】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩ξ关于ξ=105对称,利用对称写出要用的一段分数的频数,题目得解.
4.【答案】B
【解析】解:∵f(x)=,
∴f(﹣2)=1+log24=1+2=3,
=5,
∴f(﹣2)+f(log210)=3+5=8.
故选:B.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
5.【答案】D
【解析】解:设F2为椭圆的右焦点
由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,
所以点P是切点,所以PF2=c并且PF1⊥PF2.
又因为F1F2=2c,所以∠PF1F2=30°,所以.
根据椭圆的定义可得|PF1|+|PF2|=2a,
所以|PF2|=2a﹣c.
所以2a ﹣c=,所以e=
.
故选D .
【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.
6. 【答案】D
【解析】解:由新定义可得,
=
=
=
=
.
故选:D .
【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.
7. 【答案】B 【解析】 试题分析:805863
1
=⨯⨯⨯=
V ,故选B. 考点:1.三视图;2.几何体的体积. 8. 【答案】A
【解析】解:因为每一纵列成等比数列,
所以第一列的第3,4,5个数分别是,,.
第三列的第3,4,5个数分别是,,.
又因为每一横行成等差数列,第四行的第1、3个数分别为,,
所以y=
,
第5行的第1、3个数分别为,.
所以z=
.
所以x+y+z=++
=1.
故选:A .
【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.
9. 【答案】C
【解析】因为10
10
101
9102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++
⎪ ⎪⎝⎭⎝⎭,所以2
x 项只能在
10(1)x +展开式中,即为2210
C x ,系数为2
1045.C =故选C . 10.【答案】 D
【解析】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,
则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,
如图当E 与C 重合时,AK=
=,
取O 为AD ′的中点,得到△OAK 是正三角形.
故∠K0A=
,∴∠K0D'=
,
其所对的弧长为=
,
故选:D .
11.【答案】C
【解析】解:由三视图可知几何体是一个正三棱柱, 底面是一个边长是的等边三角形,
侧棱长是
,
∴三棱柱的面积是3××2=6+
,
故选C .
【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.
12.【答案】B
【解析】解:a=5,进入循环后各参数对应值变化如下表:
p 15 20 结束 q 5 25 n 2 3
∴结束运行的时候n=3.
故选:B.
【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点.解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.
二、填空题
13.【答案】y2=4x或y2=16x.
【解析】解:因为抛物线C方程为y2=3px(p>0)所以焦点F坐标为(,0),可得|OF|=
因为以MF为直径的圆过点(0,2),所以设A(0,2),可得AF⊥AM
Rt△AOF中,|AF|=,
所以sin∠OAF==
因为根据抛物线的定义,得直线AO切以MF为直径的圆于A点,
所以∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,
因为|MF|=5,|AF|=,
所以=,整理得4+=,解之可得p=或p=
因此,抛物线C的方程为y2=4x或y2=16x.
故答案为:y2=4x或y2=16x.
【点评】本题给出抛物线一条长度为5的焦半径MF ,以MF 为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.
14.【答案】必要而不充分 【解析】
试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,
|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.
2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 15.【答案】 26
【解析】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:
三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.
∴几何体的体积V==26.
故答案为:26.
【点评】本题考查由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.
16.【答案】.
【解析】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),
∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.
当n=1时,上式也成立,
∴a n=.
∴=2.
∴数列{}的前n项的和S n=
=
=.
∴数列{}的前10项的和为.
故答案为:.
17.【答案】(,0).
【解析】解:y′=﹣,
∴斜率k=y′|x=3=﹣2,
∴切线方程是:y ﹣3=﹣2(x ﹣3),
整理得:y=﹣2x+9,
令y=0,解得:x=,
故答案为:
.
【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.
18.【答案】 38 .
【解析】解:作出不等式组对应的平面区域如图:
由z=2x+4y 得y=﹣x+,
平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A 时,
直线y=﹣x+的截距最大,此时z 最大,
由
,解得
,
即A (3,8),
此时z=2×3+4×8=6+32=32, 故答案为:38
三、解答题
19.【答案】
【解析】(1)∵0a =,12
b =-
,
∴1()1cos 2f x x x =-
+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦
. (2分) 令()0f x '=,得6
x π
=.
当06x π<<时,()0f x '<,当62
x ππ
<<时,()0f x '>,
所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤
⎢⎥⎣⎦
. (5分)
若
112a -
<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭
,使0()0f θ'=,
所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫
⎪⎝⎭上单调减.
又(0)0f =,2
()124
f a ππ=
+. 故当2142a -<≤-π时,2()1024f a ππ=
+≤,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=
+>,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上只有一个零点.
20.【答案】
请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.
21.【答案】
【解析】解:(Ⅰ)由条件知,,,
∴,,
∴,.
(Ⅱ)∵函数f(x)的图象向右平移个单位得到函数g(x)的图象,
∴,
∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,
∴最高点为,最低点为,∴,,
∴,又0≤θ≤π,∴.
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.
22.【答案】
【解析】解:(Ⅰ)f'(x)=ae x(x+2),g'(x)=2x+b﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
由题意,两函数在x=0处有相同的切线.
∴f'(0)=2a,g'(0)=b,
∴2a=b,f(0)=a=g(0)=2,∴a=2,b=4,
∴f(x)=2e x(x+1),g(x)=x2+4x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(Ⅱ)f'(x)=2e x(x+2),由f'(x)>0得x>﹣2,由f'(x)<0得x<﹣2,
∴f(x)在(﹣2,+∞)单调递增,在(﹣∞,﹣2)单调递减.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
∵t>﹣3,∴t+1>﹣2
①当﹣3<t<﹣2时,f(x)在[t,﹣2]单调递减,[﹣2,t+1]单调递增,
∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
②当t≥﹣2时,f(x)在[t,t+1]单调递增,∴;
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
﹣
(Ⅲ)令F(x)=kf(x)﹣g(x)=2ke x(x+1)﹣x2﹣4x﹣2,
由题意当x≥﹣2,F(x)min≥0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
∵∀x≥﹣2,kf(x)≥g(x)恒成立,∴F(0)=2k﹣2≥0,∴k≥1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
F'(x)=2ke x(x+1)+2ke x﹣2x﹣4=2(x+2)(ke x﹣1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
∵x≥﹣2,由F'(x)>0得,∴;由F'(x)<0得
∴F(x)在单调递减,在单调递增﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
①当,即k>e2时,F(x)在[﹣2,+∞)单调递增,
,不满足F(x)min≥0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
②当,即k=e2时,由①知,,满足F(x)min≥0.﹣﹣﹣﹣﹣﹣﹣
③当,即1≤k<e2时,F(x)在单调递减,在单调递增
,满足F(x)min≥0.
综上所述,满足题意的k的取值范围为[1,e2].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
【点评】本题考查导数的几何意义,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
23.【答案】
【解析】解:(1)∵函数f (x )=log 2(x ﹣3),
∴f (51)﹣f (6)=log 248﹣log 23=log 216=4; (2)若f (x )≤0,则0<x ﹣3≤1,
解得:x ∈(3,4] 【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免
出错.
24.【答案】
【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.
因
为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+
⎪⎝⎭
,所以221222256323264y y y =++≥=, 当且仅当2
222
256y y =
即2
2y =16,24y =?时等号成立. 圆的直径OS
=
因为21y ≥64,所以当21y =64即1y =±8
时,min OS =S 的坐标为
168±(,).。