富顺县实验中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
富顺县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________ 一、选择题
1.数列{a n}满足a1=,=﹣1(n∈N*),则a10=()
A.B.C.D.
2.若直线L:0
4
7
)1
(
)1
2(=
-
-
+
+
+m
y
m
x
m圆C:25
)2
(
)1
(2
2=
-
+
-y
x交于B
A,两点,则弦长|
|AB 的最小值为()
A.5
8B.5
4C.5
2D.5
3.与命题“若x∈A,则y∉A”等价的命题是()
A.若x∉A,则y∉A B.若y∉A,则x∈A C.若x∉A,则y∈A D.若y∈A,则x∉A
4.如图,函数f(x)=Asin(2x+φ)(A>0,|φ|<)的图象过点(0,),则f(x)的图象的一个对称中心是()
A.(﹣,0)B.(﹣,0)C.(,0)D.(,0)
5.已知集合23
111
{1,(),,}
122
i
A i i i
i
-
=-+-
+
(其中为虚数单位),2
{1}
B x x
=<,则A B=()A.{1}
-B.{1}C.{1,}
2
-D.{}
2 6.在等差数列{a n}中,a1=2,a3+a5=8,则a7=()
A.3 B.6 C.7 D.8
7.如图,长方形ABCD中,AB=2,BC=1,半圆的直径为AB.在长方形ABCD内随机取一点,则该点取自阴影部分的概率是()
A.B.1﹣C.D.1﹣
8. 已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )
A .
B .
C .﹣6
D .6
9. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )
A . =1.23x+4
B . =1.23x ﹣0.08
C . =1.23x+0.8
D . =1.23x+0.08 10.设集合3|01x A x x -⎧⎫
=<⎨⎬+⎩⎭
,集合(){}
2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )
A .1a ≥
B .12a ≤≤ C.a 2≥ D .12a ≤< 11.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )
A .
B .
C .
D .
12.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<<
二、填空题
13.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=(
)t ﹣a (a 为常数),
如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.
14.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .
14.已知集合,若3∈M,5∉M,则实数a的取值范围是.
15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()
1 e
e x
x
f x=-,其中e为自然对数的底数,则不等式()()
2
240
f x f x
-+-<的解集为________.
16.曲线y=x+e x在点A(0,1)处的切线方程是.
17.无论m为何值时,直线(2m+1)x+(m+1)y﹣7m﹣4=0恒过定点.
18.
如图,P是直线x+y-5=0上的动点,过P作圆C:x2+y2-2x+4y-4=0的两切线、切点分别为A、B,当四边形P ACB的周长最小时,△ABC的面积为________.
三、解答题
19.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.
(1)求证:BC1∥平面A1CD;
(2)若四边形BCC
1
B1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.
20.已知函数f(x)=alnx+x2+bx+1在点(1,f(1))处的切线方程为4x﹣y﹣12=0.
(1)求函数f(x)的解析式;
(2)求f(x)的单调区间和极值.
21.(1)化简:
(2)已知tanα=3,计算的值.
22.设函数,若对于任意x∈[﹣1,2]都有f(x)<m成立,求实数m的取值范围.
23.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos()
=1,M,N分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程.
24.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望。
富顺县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:∵ =﹣1(n ∈N *
),
∴﹣
=﹣1,
∴数列是等差数列,首项为
=﹣2,公差为﹣1.
∴=﹣2﹣(n ﹣1)=﹣n ﹣1,
∴a n =1﹣=
.
∴a 10=
. 故选:C .
【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.
2. 【答案】B 【解析】
试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+0
40
72y x y x ,解得定点()1,3,当点(3,1)
是弦中点时,此时弦长AB 最小,圆心与定点的距离()()512312
2=-+-=
d ,弦长
545252=-=AB ,故选B.
考点:1.直线与圆的位置关系;2.直线系方程.
【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 1111]
3. 【答案】D
【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可. 与命题“若x ∈A ,则y ∉A ”等价的命题是若y ∈A ,则x ∉A .
故选D.
4.【答案】B
【解析】解:由函数图象可知:A=2,由于图象过点(0,),
可得:2sinφ=,即sinφ=,由于|φ|<,
解得:φ=,
即有:f(x)=2sin(2x+).
由2x+=kπ,k∈Z可解得:x=,k∈Z,
故f(x)的图象的对称中心是:(,0),k∈Z
当k=0时,f(x)的图象的对称中心是:(,0),
故选:B.
【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.
5.【答案】D
【解析】
考点:1.复数的相关概念;2.集合的运算
6.【答案】B
【解析】解:∵在等差数列{a n}中a1=2,a3+a5=8,
∴2a4=a3+a5=8,解得a4=4,
∴公差d==,
∴a7=a1+6d=2+4=6
故选:B.
7.【答案】B
【解析】解:由题意,长方形的面积为2×1=2,半圆面积为,所以阴影部分的面积为2﹣,由几何概型
公式可得该点取自阴影部分的概率是;
故选:B.
【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之.
8.【答案】B
【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,
由,解得y=0,x=,
(,0)代入2x+y+k=0,∴k=﹣,
故选B.
【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.
9.【答案】D
【解析】解:设回归直线方程为=1.23x+a
∵样本点的中心为(4,5),
∴5=1.23×4+a
∴a=0.08
∴回归直线方程为=1.23x+0.08
故选D.
【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.
10.【答案】A 【解析】
考
点:集合的包含关系的判断与应用.
【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 11.【答案】C
【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:
所以m 可以取:0,1,2. 故答案为:C
12.【答案】D
【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,
(11)(3)(14)(1)(1)f f f f f ==-+=--=,
又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D.
二、填空题
13.【答案】0.6
【解析】解:当t >0.1时,可得1=()0.1﹣a
∴0.1﹣a=0
a=0.1
由题意可得y ≤0.25=, 即(
)t ﹣0.1≤,
即t ﹣0.1≥ 解得t ≥0.6,
由题意至少需要经过0.6小时后,学生才能回到教室. 故答案为:0.6
【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.
14.【答案】 6 .
【解析】解:f (x )=x 3﹣2cx 2+c 2x ,f ′(x )=3x 2﹣4cx+c 2
, f ′(2)=0⇒c=2或c=6.若c=2,f ′(x )=3x 2﹣8x+4,
令f ′(x )>0⇒x <或x >2,f ′(x )<0⇒<x <2,
故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,
∴x=2是极小值点.故c=2不合题意,c=6.
故答案为6
【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.
15.【答案】()32-, 【解析】∵()1e ,e x x
f x x R =-
∈,∴()()11x
x x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝
⎭,即函数()f x 为奇函数,又∵()0x x
f x e e -=+>'恒成立,故函数()f x 在R 上单调递增,不等式()(
)
2240f x f x -+-<可转化为
()()
224f x f x -<-,即2
24x x -<-,解得:32x -<<,即不等式()()2
240f x f x
-+-<的解集为
()32-,
,故答案为()32-,. 16.【答案】 2x ﹣y+1=0 .
【解析】解:由题意得,y ′=(x+e x )′=1+e x
,
∴点A (0,1)处的切线斜率k=1+e 0
=2,
则点A (0,1)处的切线方程是y ﹣1=2x ,即2x ﹣y+1=0,
故答案为:2x ﹣y+1=0.
【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.
17.【答案】 (3,1) .
【解析】解:由(2m+1)x+(m+1)y ﹣7m ﹣4=0,得 即(2x+y ﹣7)m+(x+y ﹣4)=0, ∴2x+y ﹣7=0,① 且x+y ﹣4=0,②
∴一次函数(2m+1)x+(m+1)y ﹣7m ﹣4=0的图象就和m 无关,恒过一定点. 由①②,解得解之得:x=3 y=1 所以过定点(3,1); 故答案为:(3,1)
18.【答案】
【解析】解析:圆x 2+y 2-2x +4y -4=0的标准方程为(x -1)2+(y +2)2=9. 圆心C (1,-2),半径为3,连接PC ,
∴四边形P ACB 的周长为2(P A +AC ) =2
PC 2-AC 2+2AC =2
PC 2-9+6.
当PC 最小时,四边形P ACB 的周长最小. 此时PC ⊥l .
∴直线PC 的斜率为1,即x -y -3=0,
由⎩
⎪⎨⎪⎧x +y -5=0x -y -3=0,解得点P 的坐标为(4,1), 由于圆C 的圆心为(1,-2),半径为3,所以两切线P A ,PB 分别与x 轴平行和y 轴平行, 即∠ACB =90°,
∴S △ABC =12AC ·BC =12×3×3=9
2
.
即△ABC 的面积为9
2
.
答案:92
三、解答题
19.【答案】
【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,
∵D为AB的中点,
∴DO∥BC1,
∵BC1⊄平面A1CD,DO⊂平面A1CD,
∴BC1∥平面A1CD.
解:∵底面△ABC是边长为2等边三角形,D为AB的中点,
四边形BCC
B1是正方形,且A1D=,
1
∴CD⊥AB,CD==,AD=1,
∴AD2+AA12=A1D2,∴AA1⊥AB,
∵,∴,
∴CD⊥DA1,又DA1∩AB=D,
∴CD⊥平面ABB1A1,∵BB1⊂平面ABB1A1,∴BB1⊥CD,
∵矩形BCC1B1,∴BB1⊥BC,
∵BC∩CD=C∴BB1⊥平面ABC,
∵底面△ABC是等边三角形,
∴三棱柱ABC﹣A1B1C1是正三棱柱.
以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,
B(2,0,0),A(1,0,),D(,0,),A1(1,2,),
=(,﹣2,﹣),平面CBB1C1的法向量=(0,0,1),
设直线A1D与平面CBB1C1所成角为θ,
则sinθ===.
∴直线A1D与平面CBB1C1所成角的正弦值为.
20.【答案】
【解析】解:(1)求导f′(x)=+2x+b,由题意得:
f′(1)=4,f(1)=﹣8,
则,解得,
所以f(x)=12lnx+x2﹣10x+1;
(2)f(x)定义域为(0,+∞),
f′(x)=,
令f′(x)>0,解得:x<2或x>3,
所以f(x)在(0,2)递增,在(2,3)递减,在(3,+∞)递增,
故f(x)极大值=f(2)=12ln2﹣15,
f(x)极小值=f(3)=12ln3﹣20.
21.【答案】
【解析】解:(1)
=
=cosαtanα=sinα.
(2)已知tanα=3,∴===.
【点评】本题主要考查诱导公式、同角三角函数的基本关系,属于基础题.
22.【答案】
【解析】解:∵,
∴f′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),
∴当x∈[﹣1,﹣),(1,2]时,f′(x)>0;
当x∈(﹣,1)时,f′(x)<0;
∴f(x)在[﹣1,﹣),(1,2]上单调递增,在(﹣,1)上单调递减;
且f(﹣)=﹣﹣×+2×+5=5+,f(2)=8﹣×4﹣2×2+5=7;
故f max(x)=f(2)=7;
故对于任意x∈[﹣1,2]都有f(x)<m成立可化为7<m;
故实数m的取值范围为(7,+∞).
【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题.
23.【答案】
【解析】解:(Ⅰ)由
从而C的直角坐标方程为
即
θ=0时,ρ=2,所以M(2,0)
(Ⅱ)M点的直角坐标为(2,0)
N点的直角坐标为
所以P点的直角坐标为,则P点的极坐标为,
所以直线OP的极坐标方程为,ρ∈(﹣∞,+∞)
【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
24.【答案】
【解析】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B i表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率可得
P(A1)=0。
1+0。
2+0。
3=0。
6,P(A2)=0。
1+0。
4=0。
5,
P(A1)>P(A2), 甲应选择L i
P(B1)=0。
1+0。
2+0。
3+0。
2=0。
8,P(B2)=0。
1+0。
4+0。
4=0。
9,
P(B2)>P(B1), 乙应选择L2。
(2)A,B分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(Ⅰ)知
,又由题意知,A,B独立,。