新课标下数学课程改革与高效教学----圆锥曲线性质的探索

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标下数学课程改革与高效教学----圆锥曲线性质的探索
新的课程计划已在全国大部分省市推广,实施高效教学势在必行。

高中数学的高效教学,首
先要立足于课堂和教材,同时要努力创设更好的环境和条件,让学生体验生活,动手实验勇于
探索合作参与,使他们成为研究者和实践者,以达到学以至用的目的。

面对高中数学改革,过去,一支粉笔一张嘴,从头讲到尾的“填鸭式”的教学模式,已不适用了。

然而,一堂好课让
师生如沐春风,像春雨无声地滋润着学生的心田,在教师的引领下,学生获得知识,体验方法,发展能力,启迪思想,领略数学的魅力,陶治情操。

全州高中成进金老师的一节公开课《圆锥曲线性质的探索》把新课标下的数学改革与高效教学有效地结合在一起。

1.巧妙利用图形美,引人入胜
近几年来全国各地的高考试题中,圆锥曲线与向量的综合问题时有出现,而平面向量是新课
程关注的内容。

由于这类问题综合性强,许多考生不能抓住问题的本质,知识和方法盲目运用,卷面上常留下“进退两难”的思维痕迹。

成老师,巧妙地利用多媒体将圆锥曲线的美,展现在大家的面前,当时,在场的所有同学几乎都感到非常的惊讶,几乎异口同心发出“哇”的一声,
圆锥曲线能构成这么漂亮的图像,并且在现实生活中,以前我们却没感觉呢?尤其在“鸟巢”
上的利用,让大家真正感到数学的价值所在;然而激起了学生的学习兴趣,真是引人入胜啊!
这也是他本节课的一个闪光点。

再讲例题,可见效果要好得多。

如图,直线y=x-2与抛物线=2x相交于A、B两点
求证:OA⊥OB
(先由学生自己动手,后教师展示过程)
本题使用向量解题既可简化计算,又可节约时间,同时又为后面的例题起到很好的过渡作用。

2.精心设计问题情景教学,创建高效课堂
高中数学教学改革正步入一个新时期,新编高中数学教学大纲中明确提出:为了加强创新意
识的培养,在必修课的内容中安排“研究性课题”(12课时),所谓数学研究性学习是指主要以
培养学生的数学创新精神和创造能力为目的的的活动课程。

然而,恰当的设计问题,提出问题;是教师创造性劳动最出彩的地方。

既给学生创设了主动思考问题的情境,又调动了学生
思考问题的积极性,激发学生学习数学的兴趣。

在学生学会的基础上,引导学生会学、好学,这也正是创建高效课堂的鲜明体现;而年轻的成老师就做到了。

他在讲完例题1后提出
变式1:是否存在这样的直线AB使得OA⊥OB?分组验证
(1)y=x-3 (2) y=2x-2 (3) y=-x+2 (4) y=2x-4
老师问:这4条直线中有使得OA⊥OB的吗?
请同学A回答:有,(3)(4)两条。

老师问:这两条直线有公共点吗?
请同学B回答:有,都过点(2,0)。

通过对特殊的直线验证,有的同学提出猜想:若 OA⊥OB,是不是直线AB恒过一个定点?
这样为下面主要问题做好了铺垫,于是,老师抓紧时机提出
变式2:设OA、OB是抛物线=2x的弦,O为坐标原点,若OA⊥OB,试证:直线AB恒过定点。

(先由学生证明,然后老师讲解全过程)
本题是例1的结论与部分条件交换得到的,既有利于培养学生的逆向思维能力,又有利于为
下面例题条件的一般化做好准备。

3.一题多变,凸现本质内涵
面对升学的压力和急功近利思想的驱使,不少教师在高考复习中片面追求满负载、高难度、
快节奏,学生在那样的教学环境中忙于应付铺天盖地的课业,对许多问题一知半解,致使许
多经历高三的学生的印象只有苦和累,如何在高考复习中让学生不但学会,更要会学、乐学,成老师经验告诉我们,站在系统的高度教学知识,学一点带一片造成学生思潮如涌的则弦AB 恒过定点;精心设计步步深入,层层渐进题型。

由证明到探索再推广。

从证明到总结规律,
是对圆锥曲线性质理解的一次质的飞跃,而教师引导学生认识方法内涵的时机把握得适时,
有归纳的基础,同时又有拓展的空间,激发学生探究的热情。

逐步引导学生建构对方法的认识,对方法的体验渐如佳境,循序渐进地理解方法的本质。

数学变式教学是培养学生良好的思想品质,提高教学效果的有效途径,在数学教学过程中对
问题从不同角度、不同层面、不同情境出有效的变化,使其条件或结论的形式内容发生变化,而这些变化是围绕本质特征进行设计,这样可以提高教学的有效性、深刻性、灵活性、敏捷
性和逻辑性,充分理解数学本质的作用。

4.课堂气氛活跃,促进学生高效学习
教学效率不是取决于教师打算教给学生知识的多寡,而是取决于课堂教学中学生学习效率的
高低,让学生积极参与课堂教学,课堂气氛活跃,充满情趣和谐愉悦,是高效课堂的特征。

本节课讲的是圆锥曲线性质的内容,而学习解析几何首先要培养学生的实际应用能力和分析
能力。

有了这些做铺垫,不论是老师的教学还是学生学习都会达到事半功倍的效果。

在这个
过程中,笔者体会颇深的是教师能充分利用自己的对多媒体的熟练特点,既最大限度地吸引
了学生的注意力,又简单明了易懂。

并从头至尾教师始终保持着亲和的教态,和学生充分的
互动,对回答问题的学生给予表扬和鼓励。

除了与学生智慧交流之外,在情感上也做到了很
好的沟通,使学生发自内心地喜欢老师,喜欢这这个学科,排除了因不喜欢老师而厌学的心理,这方面一位年轻教师能做到,是相当不错的。

除了传授知识以外,也了解学生的内心、
因材施教,使学生在学习的过程中愿意动脑、动手、动口,充分体验、感悟数学带给自己的
不仅仅是知识,而是一种思考方式,一种数学理性思维方式;所以让学生在一种愉悦的气氛
中高效学习是教师努力的方向。

总之,面对高中数学改革,迫使教师们向“四十五”分钟要效益,努力培养他们具备一定的创
新精神、创造能力和实践能力。

成老师这节课以“圆锥曲线性质的探索”为主导,以思维为主线,以学生为主体的理念下的成功范例。

以上几点本着锦上添花的思想,不妥之处,愿与成
老师进一步探讨。

相关文档
最新文档