彭坊乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
彭坊乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)代入法解方程组有以下步骤:(1)由①,得2y=7x-3③;(2)把③代入①,得7x-7x-3=3;(3)整理,得3=3;(4)∴x可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是()
A.第(1)步
B.第(2)步
C.第(3)步
D.第(4)步
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:错的是第步,应该将③代入②.
故答案为:B.
【分析】用代入法解二元一次方程组的时候,由原方程组中的①方程变形得出的③方程只能代入原方程组的②方程,由原方程组中的②方程变形得出的③方程只能代入原方程组的①方程,不然就会出现消去未知数得到恒等式。
2、(2分)某校对全体学生进行体育达标检测,七、八、九三个年级共有800名学生,达标情况如表所示.则下列三位学生的说法中正确的是()
甲:“七年级的达标率最低”;
乙:“八年级的达标人数最少”;
丙:“九年级的达标率最高”
A. 甲和乙
B. 乙和丙
C. 甲和丙
D. 甲乙丙【答案】C
【考点】扇形统计图,条形统计图
【解析】【解答】解:由扇形统计图可以看出:八年级共有学生800×33%=264人;
七年级的达标率为×100%=87.8%;
九年级的达标率为×100%=97.9%;
八年级的达标率为.
则九年级的达标率最高.则甲、丙的说法是正确的.
故答案为:C
【分析】先根据扇形统计图计算八年级的学生人数,然后计算三个年级的达标率即可确定结论.
3、(2分)一元一次不等式的最小整数解为()
A.
B.
C.1
D.2
【答案】C
【考点】解一元一次不等式,一元一次不等式的特殊解
【解析】【解答】解:
∴最小整数解为1.
故答案为:C.
【分析】先求出不等式的解集,再求其中的最小整数.解一元一次不等式基本步骤:移项、合并同类项、系数化为1.
4、(2分)的值是()
A. -3
B. 3
C. ±3
D. 不确定
【答案】A
【考点】立方根及开立方
【解析】【解答】解:根据=a这一性质解题.故答案为:A
【分析】根据立方根的意义,一个数的立方的立方根等于它本身,即可得出答案。
5、(2分)对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x的取值范围为()
A.0<x≤1
B.0≤x<1
C.1<x≤2
D.1≤x<2
【答案】A
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】解:由题意得
解之得
故答案为:A.
【分析】根据[x]的定义可知,-2<[x-2]≤-1,然后解出该不等式即可求出x的范围.
6、(2分)下列图中∠1和∠2不是同位角的是()
A. B. C. D.
【答案】C
【考点】同位角、内错角、同旁内角
【解析】【解答】解:A图中,∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,B图中,∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,
C图中,∠1与∠2的两条边都不在同一条直线上,不是同位角,
D图中,∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角.故答案为:C.
【分析】同位角是由两条直线被第三条直线所截形成的两个角,它们在前两条直线的同旁,在第三条直线的同
旁,C不是同位角.
7、(2分)如图所表示的是下面哪一个不等式组的解集()
A.
B.
C.
D.
【答案】D
【考点】在数轴上表示不等式(组)的解集
【解析】【解答】解:由图示可看出,从-2出发向右画出的线且-2处是空心圆,表示x>-2;
从1出发向左画出的线且1处是实心圆,表示x≤1,所以这个不等式组为
故答案为:D.
【分析】写出图中表示的两个不等式的解集,这两个式子就是不等式.这两个式子组成的不等式组就满足条件.不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
8、(2分)如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()
A.50°
B.60°
C.70°
D.80°
【答案】D
【考点】平行线的判定与性质,三角形内角和定理
【解析】【解答】解:∵∠B+∠DAB=180°,
∴AD∥BC,
∵∠C=50°,
∴∠C=∠DAC=50°,
又∵AC平分∠DAB,
∴∠DAC=∠BAC=∠DAB=50°,
∴∠DAB=100°,
∴∠B=180°-∠DAB=80°.
故答案为:D.
【分析】根据平行线的判定得AD∥BC,再由平行线性质得∠C=∠DAC=50°,由角平分线定义得∠DAB=100°,根据补角定义即可得出答案.
9、(2分)若a=-0.32,b=(-3)-2,c=,d=,则()
A.a<b<c<d
B.a<b<d<c
C.a<d<c<b
D.c<a<d<b
【答案】B
【考点】实数大小的比较
【解析】【解答】解:∵a=-0.32=-0.9,
b=(-3)-2=,
c=(-)-2=(-3)2=9,
d=(-)0=1,
∴9>1>>-0.9,
∴a<b<d<c.
故答案为:B.
【分析】根据幂的运算和零次幂分别计算出各值,比较大小,从而可得答案.
10、(2分)七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()
A. 14
B. 13
C. 12
D. 15
【答案】C
【考点】二元一次方程组的其他应用
【解析】【解答】解:设这间会议室的座位排数是x排,人数是y人.
根据题意,得
,
解得
.
故答案为:C.
【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y,列出二元一次方程组即可.
11、(2分)如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()
A. 两点之间线段最短
B. 两点确定一条直线
C. 垂线段最短
D. 过一点可以作无数条直线
【答案】C
【考点】垂线段最短
【解析】【解答】解:∵从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,
∴AH最短(垂线段最短)
故答案为:C
【分析】根据垂线段最短,即可得出答案。
12、(2分)下列图形中,∠1和∠2不是同位角的是()
A. B.
C. D.
【答案】D
【考点】同位角、内错角、同旁内角
【解析】【解答】解:选项A、B、C中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;选项D中,∠1与∠2的两条边都不在同一条直线上,不是同位角.
故答案为:D.
【分析】同位角是指位于两条直线的同旁,位于第三条直线的同侧。
根据同位角的构成即可判断。
二、填空题
13、(1分)的最小值是,的最大值是,则________.
【答案】-4
【考点】代数式求值,一元一次不等式的应用
【解析】【解答】解:的最小值是a,x≤-6的最大值是b,∴a=2,b=-6,∴a+b=2+(-6)=-4.故
答案为:-4.
【分析】由题意先求出a,b;再把a,b的在代入代数式计算即可得出答案。
14、(1分)如果不等式ax+4<0的解集在数轴上表示如图,那么a的值为________.
【答案】-2
【考点】在数轴上表示不等式(组)的解集
【解析】【解答】解:解不等式ax+4<0得,由数轴上可得:不等式的解集为:,则解
得: .
故答案为
【分析】先用含a的式子表示出不等式的解集,再根据数轴上表示出的解集列出方程,解方程即可求出答案。
15、(1分)若x+y+z≠0且,则k=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵,
∴,
∴,即.
又∵,
∴.
【分析】将已知方程组转化为2y+z=kx;2x+y=kz;2z+x=ky,再将这三个方程相加,由x+y+z≠0,就可求出k 的值。
16、(1分)如图,∠1=________.
【答案】120°.
【考点】对顶角、邻补角,三角形的外角性质
【解析】【解答】解:∠1=(180°﹣140°)+80°=120°.
【分析】根据邻补角定义求出其中一个内角,再根据三角形一个外角等于和它不相邻的两个内角和求出∠1。
17、(4分)参加学校科普知识竞赛决赛的5名同学A,B,C,D,E在赛后知道了自己的成绩,想尽快得知比赛的名次,大家互相打听后得到了以下消息:(分别以相应字母来对应他们本人的成绩)
并根据上述信息猜一猜谁的得分最高:________.
【答案】C+D=2E;A+B=C+D;D>E;B
【考点】不等式及其性质,推理与论证
【解析】【解答】解:根据“C和D的得分之和是E得分的2倍”可得C+D=2E①,根据“A和B的得分之和等于C和D的总分”可得A+B=C+D②,根据“D的得分高于E”可得D>E③,再根据B>D④,可由①②可得A+B=2E⑤,由③④可得B>D>E,然后再由①得D=2E-C,代入③可得2E-C>E,即E>C,由⑤得B=2E-A,即可得到2E-A>2E-C,解得C>A,最终可得B>D>E>C>A.
【分析】(1)先表示C、D的和为C+D,再表示E的2倍,最后用等号连接即可。
(2)先表示A、B的和为A+B,C、D的和为C+D,再用等号连接即可。
(3)直接用“>”连接即可。
(4)由B>D ,D>E可得B>D>E;由C+D=2E和D>E 可得E>C;由C+D=2E和A+B=C+D可得B=2E-A,又C+D=2E 可得D=2E-C,利用B>D 可得C>A,最后可得出B>D>E>C>A.
18、(1分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:方程整理得:,
根据方程组解是,得到,
解得:,
故答案为:
【分析】将方程组转化为,再根据题意可得出,然后求出x、y的值。
三、解答题
19、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
20、(5分)一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
【答案】解:设原数的个位数字为x,十位数字为y,百位数字为z根据题意得:
解这个方程组得:
所以原来的三位数是729
【考点】三元一次方程组解法及应用
【解析】【分析】此题的等量关系为:个位数字+十位数字+百位数字=18;百位数字+个位数字-十位数字=14;新的三位数-原三位数=198,设未知数,列方程组,解方程组求解,就可得出原来的三位数。
21、(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55°,最后根据三角形内角和定理得出答案。
22、(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。
23、(5分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.
【答案】解:∵∠FOC=90°,∠1=40°,
∴∠3=∠AOB-∠FOC-∠1=180°-90°-40°=50°,
∴∠DOB=∠3=50°
∴∠AOD=180°-∠BOD=130°
∵OE平分∠AOD
∴∠2=∠AOD=×130°=65°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义,由角的和差得出∠3的度数,根据对顶角相等得出∠DOB=∠3=50°,再根据邻补角的定义得出∠AOD=180°-∠BOD=130°,再根据角平分线的定义即可得出答案。
24、(5分)试将100分成两个正整数之和,其中一个为11的倍数,另一个为17的倍数.
【答案】解:依题可设:
100=11x+17y,
原题转换成求这个方程的正整数解,
∴x==9-2y+,
∵x是整数,
∴11|1+5y,
∴y=2,x=6,
∴x=6,y=2是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
∴k=0,
∴原方程正整数解为:.
∴100=66+34.
【考点】二元一次方程的解
【解析】【分析】根据题意可得:100=11x+17y,从而将原题转换成求这个方程的正整数解;求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
25、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,
,
,
把代入,得,
,
∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。
26、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求
∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据求得∠BOD。