数学人教版七年级下册数学全册单元期末试卷及答案-百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学人教版七年级下册数学全册单元期末试卷及答案-百度文库
一、选择题
1.若2200.3,3,(3)a b c -==-=-,那么a 、b 、c 三数的大小为( ).
A .a c b >>
B .c a b >>
C .a b c >>
D .c b a >>
2.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )
A .
B .
C .
D .
3.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( )
A .181016x y x y +=⎧⎨=⎩
B .1821016x y x y +=⎧⎨⨯=⎩
C .1810216x y x y +=⎧⎨=⨯⎩
D .181610x y x y +=⎧⎨=⎩ 4.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21
x y =⎧⎨=-⎩,则a ,b 的值是( ) A .12a b =⎧⎨=⎩ B .21a b =⎧⎨=⎩ C .12a b =-⎧⎨=-⎩ D .21a b =⎧⎨=-⎩
5.把多项式228x -分解因式,结果正确的是( )
A .22(8)x -
B .22(2)x -
C .
D .42()x x x
- 6.下列图形中,不能通过其中一个四边形平移得到的是( )
A .
B .
C .
D .
7.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .18
8.下列四个等式从左到右的变形是因式分解的是 ( )
A .22()()a b a b a b +-=-
B .2()ab a a b a -=-
C .25(1)5x x x x +-=+-
D .21()x x x x x
+=+ 9.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高 B .一条中线 C .一条角平分线
D .一边上的中垂线
10.计算a 10÷a 2(a≠0)的结果是( )
A .5a
B .5a -
C .8a
D .8a -
二、填空题
11.若把代数式245x x --化为()2
x m k -+的形式,其中m 、k 为常数,则m k +=______.
12.已知关于x 的不等式组521
{0x x a -≥-->无解,则a 的取值范围是________.
13.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.
14.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .
15.计算:312-⎛⎫ ⎪⎝⎭
= . 16.计算:5-2=(____________)
17.已知x 2+2kx +9是完全平方式,则常数k 的值是____________.
18.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.
19.若等式0
(2)1x -=成立,则x 的取值范围是_________. 20.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
三、解答题
21.如图 1,直线GH 分别交,AB CD 于点 ,
E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;
(2)如图2所示,点M N 、在
,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.
(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量
22.因式分解:
(1)x 4﹣16;
(2)2ax 2﹣4axy +2ay 2.
23.因式分解:
(1)12abc ﹣9a 2b ;
(2)a 2﹣25;
(3)x 3﹣2x 2y +xy 2;
(4)m 2(x ﹣y )﹣(x ﹣y ).
24.已和,如图,BE 平分∠ABC ,∠1=∠2,请说明∠AED =∠C .根据提示填空.
∵BE 平分∠ABC (已知)
∴∠1=∠3,( )
又∵∠1=∠2,(已知)
∴=∠2,()
∴∥,()
∴∠AED=.()
25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.
(1)画出△ABC向右平移4个单位后得到的△A1B1C1;
(2)图中AC与A1C1的关系是:_____.
(3)画出△ABC的AB边上的高CD;垂足是D;
(4)图中△ABC的面积是_____.
26.(知识回顾):
如图①,在△ABC中,根据三角形内角和定理,我们知道∠A+∠B+∠C=180°.
如图②,在△ABC中,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.请写出∠ACD与∠A、∠B的关系,直接填空:∠ACD=.
(初步运用):如图③,点D、E分别是△ABC的边AB、AC延长线上一点.
(1)若∠A=70°,∠DBC=150°,则∠ACB=°.(直接写出答案)
(2)若∠A=70°,则∠DBC+∠ECB=°.(直接写出答案)
(拓展延伸):如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=70°,∠P=150°,则∠DBP+∠ECP=°.(请说明理由)
(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=40°,求出∠A和∠P 之间的数量关系,并说明理由.
(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.
27.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1.
28.己知关于x、y的二元一次方程组
2
21
x y k
x y
+=


+=-

的解互为相反数,求k的值。

【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【详解】
解:a=0.32=0.09,b= -3-2=
1
9
-,c=(-3)0=1,
∴c>a>b,
故选B.
【点睛】
本题考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂.
2.A
解析:A
【分析】
根据平移的概念判断即可,注意区分图形的平移和旋转.
【详解】
根据平移的概念,平移后的图形与原来的图形完全重合.
A是通过平移得到;B通过旋转得到;C通过旋转加平移得到;D通过旋转得到.
故选A
【点睛】
本题主要考查图形的平移,特别要注意区分图形的旋转和平移.
3.B
解析:B
【分析】
根据题意可知,本题中的相等关系是:(1)盒身的个数2
⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18
=,再列出方程组即可.
【详解】
解:设用x 张制作盒身,y 张制作盒底,根据题意得:1821016x y x y +=⎧⎨⨯=⎩
. 故选:B .
【点睛】
此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.
4.A
解析:A
【分析】
把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩
得到关于a ,b 的二元一次方程组,解之即可. 【详解】
解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩
得: 2=06210a b a b -⎧⎨+=⎩
, 解得:=1=2a b ⎧⎨⎩
, 故选A.
【点睛】
本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.
5.C
解析:C
【解析】
试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x -4)=2(x+2)(x -2).
考点:因式分解.
6.D
解析:D
【详解】
解:A 、能通过其中一个四边形平移得到,不符合题意;
B 、能通过其中一个四边形平移得到,不符合题意;
C 、能通过其中一个四边形平移得到,不符合题意;
D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意. 故选D .
7.B
【解析】
试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.
解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6.
3+6>6,符合条件.成立.
∴C=3+6+6=15.
故选B .
考点:等腰三角形的性质.
8.B
解析:B
【分析】
根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.
【详解】
解:根据因式分解的概念,
A 选项属于整式的乘法,错误;
B 选项符合因式分解的概念,正确;
C 选项不符合因式分解的概念,错误;
D 选项因式分解错误,应为2(1)x x x x +=+,错误.
故选B .
【点睛】
本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.
9.B
解析:B
【分析】
根据三角形中线的性质作答即可.
【详解】
解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线. 故选:B .
【点睛】
本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.
10.C
解析:C
【解析】
根据同底数幂的除法法则即可得.
【详解】
1021028(0)a a a a a -÷==≠
故选:C.
【点睛】
本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.
二、填空题
11.-7
【解析】
【分析】
利用配方法把变形为(x-2)-9,则可得到m 和k 的值,然后计算m+k 的值.
【详解】
x−4x−5=x−4x+4−4−5
=(x−2) −9,
所以m=2,k=−9,
所以
解析:-7
【解析】
【分析】
利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值.
【详解】
x 2−4x−5=x 2−4x+4−4−5
=(x−2) 2−9,
所以m=2,k=−9,
所以m+k=2−9=−7.
故答案为:-7
【点睛】
此题考查配方法的应用,解题关键在于掌握运算法则.
12.a≥3
【详解】
解:解5-2x≥-1,得x≤3;
解x -a >0,得x >a ,
因为不等式组无解,所以a≥3.
故答案为:a≥3.
【点睛】
本题考查不等式组的解集.
解析:a≥3
【详解】
解:解5-2x≥-1,得x≤3;
解x-a>0,得x>a,
因为不等式组无解,所以a≥3.
故答案为:a≥3.
【点睛】
本题考查不等式组的解集.
13.【分析】
先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.
【详解】
解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,
∵不含x2项,
解析:3 2
【分析】
先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】
解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,
∵不含x2项,
∴4m-6=0,
解得m=3
2

故答案为3 2 .
【点睛】
此题考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.
14.22
【解析】
【分析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】
试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
②当底边是4cm
解析:22
【解析】
【分析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
【详解】
试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm . 故填22.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答. 15.8
【解析】
分析:根据幂的负整数指数运算法则进行计算即可.
解:原式==8.
故答案为8.
点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.
解析:8
【解析】
分析:根据幂的负整数指数运算法则进行计算即可.
解:原式=3
1
12⎛⎫ ⎪⎝⎭
=8. 故答案为8.
点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.
16.【分析】
直接根据负整数指数幂的运算法则求解即可.
【详解】

故答案为:.
【点睛】
本题考查了负整数指数幂的运算法则,比较简单. 解析:125
直接根据负整数指数幂的运算法则求解即可.
【详解】
22115525
-==, 故答案为:
125. 【点睛】
本题考查了负整数指数幂的运算法则,比较简单.
17. 3
【分析】
利用完全平方公式的结构特征判断即可求出k 的值.
【详解】
∵关于字母x 的二次三项式x2+2kx+9是完全平方式,
∴k=±3,
故答案为:3.
【点睛】
此题考查了完全平方式,熟练
解析:±3
【分析】
利用完全平方公式的结构特征判断即可求出k 的值.
【详解】
∵关于字母x 的二次三项式x 2+2kx+9是完全平方式,
∴k=±3,
故答案为:±3.
【点睛】
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
18.20cm .
【分析】
根据平移的性质可得DF =AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解.
【详解】
解:∵△ABE 向右平移2cm 得到△DCF,
∴D
解析:20cm .
【分析】
根据平移的性质可得DF =AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解.
解:∵△ABE 向右平移2cm 得到△DCF ,
∴DF =AE ,
∴四边形ABFD 的周长=AB+BE+DF+AD+EF ,
=AB+BE+AE+AD+EF ,
=16+AD+EF ,
∵平移距离为2cm ,
∴AD =EF =2cm ,
∴四边形ABFD 的周长=16+2+2=20cm .
故答案为20cm .
【点睛】
本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
19.【分析】
根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.
【详解】
解:成立,
,解得.
故答案为:.
【点睛】
本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠
【分析】
根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.
【详解】
解:0(2)1x -=成立,
20x ∴-≠,解得2x ≠.
故答案为:2x ≠.
【点睛】
本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.
20.5
【详解】
∵多边形的每个外角都等于72°,
∵多边形的外角和为360°,
∴360°÷72°=5,
∴这个多边形的边数为5.
故答案为5.
【详解】
∵多边形的每个外角都等于72°,∵多边形的外角和为360°,
∴360°÷72°=5,
∴这个多边形的边数为5.
故答案为5.
三、解答题
21.(1)证明过程见解析;(2)1
2
N AEM NFD
∠=∠-∠,理由见解析;(3)
1
3
∠N+∠PMH=180°.
【分析】
(1)根据同旁内角互补,两直线平行即可判定AB∥CD;
(2)设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y,过M作MP∥AB,过N作NQ∥AB 可得∠PMN=3α-x,∠QNM=2α-y,根据平行线性质得到3α-x=2α-y,化简即可得到
1 2
N AEM NFD ∠=∠-∠;
(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-
∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到
3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-
∠PMI=1
3
∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到
1 3∠FNP=180°-∠PMH,即
1
3
∠N+∠PMH=180°.
【详解】
(1)证明:∵∠1=∠BEF,12180︒
∠+∠=
∴∠BEF+∠2=180°
∴AB∥CD.
(2)解:1
2
N AEM NFD ∠=∠-∠
设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB
∵//
AB CD,MP∥AB,NQ∥AB ∴MP∥NQ∥AB∥CD
∴∠EMP=x,∠FNQ=y
∴∠PMN=3α-x,∠QNM=2α-y ∴3α-x=2α-y
即α=x-y
∴1
2
N AEM NFD ∠=∠-∠
故答案为1
2
N AEM NFD ∠=∠-∠
(3)解:1
3
∠N+∠PMH=180°
过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.
∵//
AB CD,MI∥AB,NQ∥CD
∴AB∥MI∥NQ∥CD
∴∠BPM=∠PMI
∵∠MPN=2∠MPB
∴∠MPN=2∠PMI
∴∠MON=∠MPN+∠PMI=3∠PMI
∵∠NFH=2∠HFD
∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD
∵∠RFN=∠HFD
∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM
∴∠MON+∠PRF+∠RFM=360°-∠OMF
即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF
∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH
∵3∠PMI+∠PNH=180°
∴3∠PMI+∠FNP+∠FNH=180°
∵3∠RFM+∠FNH=180°
∴3∠PMI-3∠RFM+∠FNP=0°
即∠RFM-∠PMI=13
∠FNP ∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH
∠FNP-2×13
∠FNP=180°-∠PMH 13
∠FNP=180°-∠PMH 即13
∠N+∠PMH=180° 故答案为
13
∠N+∠PMH=180° 【点睛】 本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.
22.(1)2(4)(2)(2)x x x ++- (2)2
2()a x y -
【分析】
(1)原式利用平方差公式分解即可;
(2)原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:(1)原式=(x 2+4)(x 2﹣4)
=(x 2+4)(x +2)(x ﹣2);
(2)原式=2a (x 2﹣2xy +y 2)
=2a (x ﹣y )2.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
23.(1)3ab (4c ﹣3a );(2)(a +5)(a ﹣5);(3)x (x ﹣y )2;(4)(x ﹣y )(m +1)(m ﹣1)
【分析】
(1)由题意原式直接提取公因式即可;
(2)根据题意原式利用平方差公式分解即可;
(3)由题意原式提取公因式,再利用完全平方公式分解即可;
(4)根据题意原式提取公因式,再利用平方差公式分解即可.
【详解】
解:(1)12abc﹣9a2b=3ab(4c﹣3a);
(2)a2﹣25=(a+5)(a﹣5);
(3)x3﹣2x2y+xy2
=x(x2﹣2xy+y2)
=x(x﹣y)2;
(4)m2(x﹣y)﹣(x﹣y)
=(x﹣y)(m2﹣1)
=(x﹣y)(m+1)(m﹣1).
【点睛】
本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.24.角平分线的定义,∠3,等量代换,DE,BC,内错角相等,两直线平行,∠C,两直线平行,同位角相等
【分析】
先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论.
【详解】
证明:∵BE平分∠ABC(已知)
∴∠1=∠3 (角平分线的定义)
又∵∠1=∠2(已知)
∴∠3=∠2 (等量代换)
∴DE∥BC(内错角相等,两直线平行)
∴∠AED=∠C(两直线平行,同位角相等)
【点睛】
本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.
25.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8
【分析】
(1)根据网格结构找出点A、B、C向右平移4个单位后的对应点A1、B1、C1的位置,然后顺次连接即可;
(2)根据平移的性质解答;
(3)延长AB,作出AB的高CD即可;
(4)利用△ABC所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】
解:(1)如图所示,
(2)根据平移的性质得出,AC与A1C1的关系是:平行且相等;(3)如图所示,
(4)△ABC的面积=5×7-1
2
×7×5-
1
2
×7×2-
1
2
×5×1=8.
26.知识回顾:∠A+∠B;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由见解析;(3)见解析.
【分析】
知识回顾:根据三角形内角和即可求解.
初步运用:
(1)根据知识与回顾可求出∠DBC度数,进而求得∠ACB度数;
(2)已知∠A度数,即可求得∠ABC+∠ACB度数,进而求得∠DBC+∠ECB度数.
拓展延伸:
(1)连接AP,根据三角形外角性质,∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,
得到∠DBP+∠ECP=∠BAC+∠BPC,已知∠BAC=70°,∠BPC=150°,即可求得
∠DBP+∠ECP度数;
(2)如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,
由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,即可求出∠A和∠P之间的数量关系;(3)如图,延长BP交CN于点Q,根据角平分线定义,∠DBP=2∠MBP,∠ECP=
2∠NCP,且∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,得到∠BPC=∠MBP+∠NCP,因为∠BPC=∠PQC+∠NCP,证得∠MBP=∠PQC,进而得到BM∥CN.
【详解】
知识回顾:
∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,
∴∠ACD=∠A+∠B;
故答案为:∠A+∠B;
初步运用:
(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,
∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;
故答案为:80;
(2)∵∠A=70°,
∴∠ABC+∠ACB=110°,
∴∠DBC+∠ECB=360°﹣110°=250°,
故答案为:250;
拓展延伸:
(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,
∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,
∵∠BAC=70°,∠BPC=150°,
∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,
故答案为:220;
(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,
理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,
2∠A+2∠O=∠A+∠P,
∵∠O=40°,
∴∠P=∠A+80°;
(3)证明:如图,延长BP交CN于点Q,
∵BM平分∠DBP,CN平分∠ECP,
∴∠DBP=2∠MBP,∠ECP=2∠NCP,
∵∠DBP+∠ECP=∠A+∠BPC,
∠A=∠BPC,
∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,
∴∠BPC=∠MBP+∠NCP,
∵∠BPC=∠PQC+∠NCP,
∴∠MBP=∠PQC,
∴BM∥CN.
【点睛】
本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.
27.2x2-8x-3;-9.
【解析】
【分析】
根据整式的乘法运算法则即可化简求值.
【详解】
解:原式=x2-4x+4+2(x2-2x-8)-(x2-9)
=x2-4x+4+2x2-4x-16-x2+9
=2x2-8x-3
当x=1时,原式=2-8-3=-9
【点睛】
此题主要考查整式的化简求值,解题的关键是熟知整式的运算法则.
28.k=1
【分析】
方程组两方程相加得出x+y=
1
3
k-
,根据x与y互为相反数得到x+y=0,求出k的值即可.
【详解】
解:
2
21
x y k
x y
+=


+=-




①+②得:3(x+y)=k-1,即x+y=
1 3
k-

由题意得:x+y=0,即
1
3
k-
=0,
解得:k=1.
【点睛】
本题考查了二元一次方程组的解的概念及相反数的性质,两个方程相加得到3(x+y)=k-1是解题的关键.。

相关文档
最新文档