工业取用水监测奇异数据挖掘与重构方法
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
型。上述工业取用水监测数据奇异值挖掘重构策略为现阶段国家水资源监控能力建设的推进提供了重
要技术方法支持。
关键词: 工业取用水; 数据挖掘; 小波变换模极大值; 数据重构
DOI: 10. 19343 / j.cnki.11-1302 / c.2019. 09. 006
中图分类号: O212
文献标识码: A
征,但是同时容易导致监测数据的信息损失,利用傅里叶函数对小波变换进行残差修正则可进一步提升
取用水监测数据序列的特征提取效果; 以小波变换模极大值特征序列为基础,通过相对误差控制可实现
对监测数据奇异值的高效挖掘; 对于挖掘出的奇异值重构填补问题,可选取混沌粒子群优化的最小二乘
支持向量机模型,其重构精度要优于多项式曲线拟合等传统统计学方法和普通最小二乘支持向量机模
文章编号: 1002-4565( 2019) 09-0068-14
Singular Value Mining and Reconstruction Methods of Industrial Water Monitoring Data
Zhang Feng Song Xiaona Wan Yi
Abstract: Improving the quality of industrial water monitoring data is an important part of the national water resources monitoring capacity building,and the singular value problem has become a key shortcoming affecting the quality of monitoring data. Based on the analysis of the main types of singular values of industrial water use monitoring data, the industrial water use monitoring data from the national water resources management system database is selected as the study sample,and the time-frequency variation characteristic of industrial water monitoring data is extracted by wavelet transform modulus maxima model and its residual sequence is fixed by Fourier function. Thus the singular value of the monitoring data is mined using the relative error control method. Moreover,the least squares support vector machine model with chaotic particle swarm optimization is used to reconstruct the singular value data. Results show that the wavelet transform modulus
第 36 卷第 9 期 2019 年 9 月
统计研究 Statistical Research
Vol. 36,No. 9 Sep. 2019
工业取用水监测奇异数据挖掘与
*
重构方法
张 峰 宋晓娜 万 毅
内容提要: 提高工业取用水监测数据质量是目前国家水资源监控能力建设的重要内容,而奇异值问
题已成为影响监测数据质量的关键短板。本文在解析现阶段工业取用水监测数据奇异值主要类型基础
* 本文获国家自然科学基金重点项目“面向智慧城市的水资源多元数据融合与建模方法研究”( U1501253) 、广东省科技计划 项目“水资源大数据综合应用平台及产业化”( 2016B010127005) 、中央分成水资源费项目“水资源管理相关数据挖掘技术研究” ( 2016H22SK041) 的资助。
上,以国家水资源管理系统数据库中工业取用水监测数据为样本,利用小波变换模极大值模型提取工业
取用水监测数据时频变化特征,并利用傅里叶函数对其残差序列进行修正,进而运用相对误采用混沌粒子群优化的最小二乘支持向量机模型重构填补奇异值
数据。研究结果表明: 小波变换模极大值模型能够较好地提取工业取用水监测数据序列的时频变化特
第 36 卷第 9 期
张峰等: 工业取用水监测奇异数据挖掘与重构方法
·69·
maxima model can better extract the time - frequency variation characteristics of the industrial water use monitoring data sequence,but at the same time it is easy to cause the information loss of the monitoring data. However,the method of residual correction using wavelet transform by using the Fourier function can further improve the characteristic extraction effect of the water monitoring data sequence,and the relative error control can realize the efficient mining of the singular value of the monitoring data based on the wavelet transform modulus maximum characteristic sequence. For the singular value reconstruction and filling,the least squares support vector machine model of chaotic particle swarm optimization has better applicability, and its reconstruction accuracy is better than traditional statistical methods such as polynomial curve fitting and ordinary least squares support vector machine model. The singular value mining and reconstruction strategy of the above- mentioned industrial water use monitoring data provides important technical and methodological support for the advancement of national water resources monitoring capacity building.