2019 AMC10A试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019AMC (10A )
1.2
(0(19)
)
+Ä(20)1ä9的值是(

A.0
B.1
C.2
D.3
E.4
解析
C .
根据幂的运算法则,有
2
(0(19
)
)+Ä(20)1ä9=2(01
)+(11)9=20+19=2.
备注
What is the value of 2
(
0(19
)
)
+Ä(20)1ä9?
2.20!−15!的百位是()A.0 B.1
C.2
D.4
E.5
解析
A .
由于2·4·5·15|15!,于是20!和15!的百位均为0,因此所求百位为0.备注
What is the hundreds digit of (20!−15!)?
3.甲,⼄两⼈相差n 岁且同⼀天⽣⽇.去年甲的岁数是⼄的岁数的5倍,今年甲的岁数是⼄的岁数的平⽅,则n =()
A.3
B.5
C.9
D.12
E.15
解析
D .
设A,B 的今年的岁数分别是x 2和x ,则
x 2−1=5(x −1),
解得x =1(舍去)或x =4,因此n =x 2−x =12.备注
Ana and Bonita were born on the same date in different years ,n years apart .Last year Ana was
5times as old as Bonita .This year Ana’s age is the square of Bonita’s age .What is n ?
4.⼀个盒⼦中装有28个红球,20个绿球,19个黄球,13个蓝球,11个⽩球,9个⿊球.为了保证能从盒⼦中可以取出15个相同颜⾊的球,需要从盒⼦中取球的最⼩数⽬为()
A.75
B.76
C.79
D.84
E.91
解析
B .
根据抽屉原理,所求最⼩数⽬为
14+14+14+13+11+9+1=76.
备注A box contains 28red balls ,20green balls ,19yellow balls ,13blue balls ,11white balls ,and 9
black balls .What is the minimum number of balls that must be drawn from the box without replacement to guarantee that at least 15balls of a single color will be drawn ?5.若⼲个连续的整数之和为45,这些整数的最⼤个数为()
A.9
B.25
C.45
D.90
E.120
解析
D .
连续整数构成的等差数列的中位数必然为1
2
的整数倍,因此这些整数的个数不超过90,取−44,43,···,44,45,则为符合题意的连续90个整数,因此所求最⼤个数为90.备注
What is the greatest number of consecutive integers whose sum is 45?
6.已知下列四边形:x 正⽅形;
y 不是正⽅形的矩形;z 不是正⽅形的菱形;
{既不是菱形,也不是矩形的平⾏四边形;|等腰梯形.
在四边形所在平⾯中⼀定存在⼀点到四边形的四个顶点的距离都相等的个数为()
A.1
B.2
C.3
D.4
E.5
解析
C .
矩形的对⾓线交点即为符合要求的点,因此xy 符合要求.
对于⾮矩形的平⾏四边形ABCD ,它的对边AB 和CD 的垂直平分线平⾏,⽆法同时满⾜到A,B 距离相等和到C,D 距离相等,不符合要求,因此z{不符合要求.
对于等腰梯形ABCD ,设两腰分别为A,B,C,D ,则BC 与AD 的垂直平分线重合,该直线与边AB,CD 的垂直平分线相交于⼀点,该点即为符合要求的点,因此|符合要求.综上所述,所求个数为3.备注
For how many of the following types of quadrilaterals does there exist a point in the plane of the
quadrilateral that is equidistant from all four vertices of the quadrilateral ?x a square
y a rectangle that is not a square z a rhombus that is not a square
{a parallelogram that is not a rectangle or a rhombus |an isosceles trapezoid that is not a parallelogram 7.斜率分别为1
2
和2的两条直线相交于点(2,2),这两条直线与直线x +y =10围成的三⾓形的⾯积是()
A.4
B.4√2
C.6
D.8
E.6√2
解析
C .
三条直线分别为y =2x −2,y =
1
2
x +1和y =−x +10,因此题中三⾓形的三个顶点分别为(2,2),(4,6),(6,4),
进⽽所求⾯积为
(6−2)·(6−2)−(4−2)·(4−2)
2
=6.
也可利⽤该三⾓形是底边长为2√2,腰为√
20的三⾓形求解.
备注Two lines with slopes 1
2
and 2intersect at (2,2).What is the area of the triangle enclosed by these
two lines and the line x +y =10?
8.如图,直线l 上规则的重复出现⽆穷多个正⽅形和线段.下列四种平⾯上的图形变换:x 绕直线l 上的某点旋转;y 沿与直线l 平⾏的⽅向平移;z 关于直线l 对称;
{关于与直线l 垂直的某条直线轴对称.其中,变换前后能够重合的有(

A.0
B.1
C.2
D.3
E.4
解析
C .
只有xy 符合要求.备注
The figure below shows line ℓwith a regular ,infinite ,recurring pattern of squares and line segments .
How many of the following four kinds of rigid motion transformations of the plane in which this figure is drawn ,other than the identity transformation ,will transform this figure into itself ?x some rotation around a point of line ℓ
y some translation in the direction parallel to line ℓz the reflection across line ℓ
{some reflection across a line perpendicular to line ℓ
9.使得前n 个正整数的和不能整除前n 个正整数的积的最⼤三位正整数n =()
A.995
B.996
C.997
D.998
E.999
解析
B .
根据题意,有n (n +1)
2
∤n !,因此n +1为素数,从⽽所求n 为996.备注
What is the greatest three-digit positive integer n for which the sum of the first n positive integers
is not a divisor of the product of the first n positive integers ?
10.⼀块宽为10,长为17的长⽅形地板铺了170块1×1的瓷砖.⼀只甲⾍沿对⾓线从⼀个⾓移动到另⼀个
⾓,那么这只甲⾍会经过的瓷砖(包含端点)数为()
A.17
B.25
C.26
D.27
E.28
解析
C .
如图,从A 到B 的移动过程中会与16条竖线和9条横线相交,因此线段AB 被这些交点分割为26条⼩线段,每条线段都对应⼀块瓷砖,因此所求瓷砖数为26.
备注A rectangular floor that is10feet wide and17feet long is tiled with170one-foot square tiles.A bug walks from one corner to the opposite corner in a straight line.Including the first and the last tile,how many tiles does the bug visit?
11.2019的正整数约数中是完全平⽅数或完全⽴⽅数的个数为()
A.32
B.36
C.37
D.39
E.41
解析C.
2019=39·679,因此完全平⽅数约数形如3i·67j,其中i,j∈{0,2,4,6,8},共有52=25个;完全⽴⽅数约数形如3i·67j,其中i,j∈{0,3,6,9},共有42=16个.其中同时是完全平⽅数和完全⽴⽅数的约数形如3j·67j,其中i,j∈{0,6},共有22=4个.因此所求约数个数为25+16−4=37.
备注How many positive integer divisors of2019are perfect squares or perfect cubes(or both)?
12.已知2019年的各个⽉的⽇期组成的365个数据(12个1,12个2,···,12个28,11个29,11个30,
7个31),关于它们的平均数µ,中位数M,以及众数的平均数d,下列命题正确的有()
A.µ<d<M
B.M<d<µ
C.d=M=µ
D.d<M<µ
E.d<µ<M
解析E.
根据题意,有
d=1+2+···+28
28
=1·12+2·12+···+28·12
28·12
<1·12+2·12+···+28·12+29·11+30·11+31·7
28·12+11+11+7

<1·12+2·12+···+28·12+29·12+30·12+31·12
31·12
=16
=M,
备注Melanie computes the meanµ,the median M,and the modes of the365values that are the dates in the months of2019.Thus her data consist of121s,122s,...,1228s,1129s,1130s,and731s.Let d be the median of the modes.Which of the following statements is true?
13.等腰△ABC中BC=AC且∠ACB=40◦,以BC为直径作圆,与AC,AB分别交于D,E两点.BD
和CE交于点F,则∠BF C的度数是()
A.90
B.100
C.105
D.110
E.120
解析
D .
根据题意,有
∠ABD =∠ECA =20◦,∠A =70◦,
进⽽有
∠BF C =∠DBA +∠ECA +∠A =110◦.
备注
Let △ABC be an isosceles triangle with BC =AC and ∠ACB =40◦.Contruct the circle with
diameter BC ,and let D and E be the other intersection points of the circle with the sides AC and AB ,respectively .Let F be the intersection of the diagonals of the quadrilateral BCDE .What is the degree measure of ∠BF C ?
14.平⾯上4条直线,它们所有可能的交点数之和为(

A.14
B.16
C.18
D.19
E.21
解析
D .
⼀⽅⾯,由于C 24=6,因此交点数不超过6.另⼀⽅⾯,若有三线共点P ,则第四条直线⾄少和这三条线中的两条相交,因此交点个数不可能为2;若不存在三线共点,设l 1∩l 2=A ,l 3∩l 4=B ,则l 1⾄少与l 3,l 4中的⼀条相交,l 2也⾄少与l 3,l 4中的⼀条相交,因此交点个数不可能为
2.下图给出了交点数为0
,1,3
,4,5
,6的情形,它们的和为19

备注For a set of four distinct lines in a plane ,there are exactly N distinct points that lie on two or
more of the lines .What is the sum of all possible values of N ?15.数列{a n }中a 1=1,a 2=
3
7
,且a n =
a n −2·a n −1
2a n −2−a n −1
,
其中n ⩾3.将a 2019写成p
q 的形式,其中p,q 是互质的正整数,则p +q =()
A.2020
B.4039
C.6057
D.6061
E.8078
解析
E .
根据题意,有
1a n +1a n −2=2a n −1
,
因此{a n }的倒数数列成等差数列
33,73,11
3,···,有1
a 2019
=
8075
3
=⇒p +q =8075+3=8078.备注
A sequence of numbers is defined recursively by a 1=1,a 2=
3
7
,and a n =
a n −2·a n −12a n −2−a n −1
for all n ⩾3Then a 2019can be written as p
q
,where p and q are relatively prime positive inegers .What is p +q ?
16.下图由⼀个⼤圆中放置13个半径为1的圆(相邻的均相切)组成,⼤圆内部,13个⼩圆外部的部分为阴
影部分,则阴影部分的⾯积是(

A.4π√3
B.7π
C.π(3√
3+2) D.10π(√
3−1) E.π(√
3+6)
解析
A .
如图,可得⼤圆的半径为2√
3+1,因此所求⾯积为
π·Ä2√3+1ä2−13π=4π√3.
备注The figure below shows 13circles of radius 1within a larger circle .All the intersections occur at
points of tangency.What is the area of the region,shaded in the figure,inside the larger circle but outside all the circles of radius1?
17.某⼈⽤相同形状不同颜⾊的⽴⽅体⽅块拼成更⼤的⽴⽅体,⽤2个红⽅块,3个蓝⽅块,4个绿⽅块中选
出8个拼成的不同⽴⽅体的种类有()
A.24
B.288
C.312
D.1260
E.40320
解析D.
根据题意,所求种类为
9!
2!·3!·4!
=1260.
备注A child builds towers using identically shaped cubes of different color.How many different towers with a height8cubes can the child build with2red cubes,3blue cubes,and4green cubes?(One cube will be left out.)
18.已知⼗进制分数7
51
⽤k进制表⽰为0.23(k),则k=()
A.13
B.14
C.15
D.16
E.17解析D.
根据题意,有
k2·0.23(k)=23.23(k)⇐⇒k2·7
51
=(2k+3)+
7
51
,
解得k=−10
7
(舍去)或k=16.
备注For some positive integer k,the repeating base-k representation of the(base-ten)fraction 7 51
is
0.23k=0.232323...k.What is k?
19.已知x是实数,代数式(x+1)(x+2)(x+3)(x+4)+2019的最⼩值是()
A.2017
B.2018
C.2019
D.2020
E.2021
解析B.
设题中代数式为m,则
m=(x2+5x+4)(x2+5x+6)+2019=(x2+5x+5)2+2018⩾2018,等号当x2+5x+5=0时取得,因此所求最⼩值为2018.
备注What is the least possible value of
(x+1)(x+2)(x+3)(x+4)+2019
where x is a real number?
20.数字1,2,···,9随机的安置在3×3的⽹格中,每个格⼦中放⼀个数,则每⼀⾏和每⼀列的格⼦中的数之
和均为奇数的概率为()
A.1
21
B.
1
14
C.
5
63
D.
1
2
21 E.
1
7
解析B.
考虑偶数2,4,6,8的放置,必然在某两⾏和某两列的4个交叉位置,因此所求概率为
3··5!·4!9!=1
14
.备注
The numbers 1,2,...,9are randomly placed into the 9squares of a 3×3grid .Each square gets
one number ,and each of the numbers is used once .What is the probability that the sum of the numbers in each row and each column is odd ?
21.已知球O 的半径为6,⼀个边长分别为15,15,24的△ABC 每条边都与球O 相切,则O 到平⾯ABC
的距离为(

A.2√3
B.4
C.3√2
D.2√5
E.5
解析
D .
边长分别为15,15,24的三⾓形的内切圆半径
r =24·√
152−12215+15+24
=4,
进⽽O 到平⾯ABC 的距离为√62−42=2√5.
备注
A sphere with center O has radius 6.A triangle with sides of length 15,15,and 24is situated in
space so that each of its sides is tangent to the sphere .What is the distance between O and the plane determined by the triangle ?
22.按照如下流程产⽣⼀个0到1的随机数:先投掷⼀枚硬币,如果是正⾯朝上,则再次投掷,投掷为正⾯则
得到0,投掷为反⾯则得到1;如果是反⾯朝上,则得到⼀个[0,1]上的随机数.设x,y 是按此流程得到
的两个随机数,则|x −y |>1
2
的概率是()
A.13
B.716
C.12
D.916
E.23解析B .
按照得到x,y 的⽅式分3类讨论,根据全概率公式,所求概率为
14·12+14·14+12·12=716
.其中x,y 均为[0,1]是的随机数是可以依据⼏何概率计算(有两种常见构造⽅式).
备注Real numbers between 0and 1,inclusive ,are chosen in the following manner .A fair coin is flipped .
If it lands heads ,then it is flipped again and the chosen number is 0if the second flip is heads and 1if the second flip is tails .On the other hand ,if the first coin flip is tails ,then the number is chosen uniformly at random from the closed interval [0,1].Two random numbers x and y are chosen independently in this
manner .What is the probability that |x −y |>1
2
23.有⼀个三⼈报数游戏:⾸先甲报数字1,然后⼄报下两个数字2,3,接下来丙报下三个数字4,5,6,然后轮
到甲报下四个数字7,8,9,10,依次循环,直到报出10000,则甲报出的第2019个数字是()
A.5743
B.5885
C.5979
D.6001
E.6011
解析C.
甲在第k轮报数中报出3k−2个数字,且报出的第⼀个数字为
x k=1+6+15+···+(9k−12)=1+(k−1)(9k−6)
2
,
考虑到
1+4+···+(3k−2)=(3k−1)k
2
=k
Å
k−
1
3
ã
·3
2
,
笔算开平⽅…
2019·
2
3
=

1345≈36.6···,于是可得甲在第37轮时报出第2019个数字,这个数字为x37−1+
Å
2019−
(3k−1)k
2
k=36
ã
=5886+(2019−1926)=5979.
备注Travis has to babysit the terrible Thompson triplets.Knowing that they love big numbers,Travis devises a counting game for them.First Tadd will say the number1,then Todd must say the next two numbers(2and3),then Tucker must say the next three numbers(4,5,6),then Tadd must say the next four numbers(7,8,9,10),and the process continues to rotate through the three children in order,each saying one more number than the previous child did,until the number10,000is reached.What is the2019th number said by Tadd?
24.设p,q,r是多项式x3−22x2+80x−67的根,实数A,B,C满⾜
1
s3−22s2+80s−67=
A
s−p
+
B
s−q
+
C
s−r
,
则1
A
+
1
B
+
1
C
=()
A.243
B.244
C.245
D.246
E.247解析B.
根据题意,有
1=A(s−q)(s−r)+B(s−p)(s−r)+C(s−p)(s−q),
分别令s=p,q,r,可得
1
A
=(p−q)(p−r),
1
B
=(q−p)(q−r),
1
C
=(r−p)(r−q),
=⇒
1
A
+
1
B
+
1
C
=

cyc
(p−q)(q−r)=
(

cyc
p
)2
−3

cyc
pq,
⽽根据韦达定理,有

cyc p=22,

cyc
pq=80,从⽽所求代数式的值为244.
备注Let p,q,and r be the distinct roots of the polynomial x3−22x2+80x−67.It is given that there exist real numbers A,B,and C such that
1
s3−22s2+80s−67=
A
s−p
+
B
s−q
+
C
s−r
for all s∈{p,q,r}.What is 1
A
+
1
B
+
1
C
25.已知n是1到50之间的整数,且使得(n2−1)!
(n!)n
是整数,则n的个数为()
A.31
B.32
C.33
D.34
E.35解析D.
考虑到
(n2)!=1·2···n
·(n+1)·(n+2)···2n
···(n2−n+1)·(n2−n+2)···n2
=n!·1·2···n
·(n+1)·(n+2)···n
···(n2−n+1)·(n2−n+2)···n ,
⽽每⼀段均为模n的完全剩余系,因此
(n2)!
(n!)n+1
是整数,⽽
(n2−1)!
(n!)n
=
(n2)!
(n!)n+1
·n!
n2
,
于是n2|n!,也即n|(n−1)!,当且仅当n=4和n为素数时该式不成⽴,因此所求n的个数为50−15−1=34.
备注For how many integers n between1and50,inclusive,is
(n2−1)!
(n!)n
an integer?(Recall that0!=1.)。

相关文档
最新文档