泊头市第一中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泊头市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )
A .点A 处
B .线段AD 的中点处
C .线段AB 的中点处
D .点D 处
2. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )
A.{}|12x x <≤
B.{}|21x x -≤<
C. {}|21x x -≤≤
D. {}|22x x -≤≤
【命题意图】本题主要考查集合的概念与运算,属容易题.
3. 已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( ) A
.(x ≠0) B
.(x ≠0) C .
(x ≠0)
D

(x ≠0)
4. 阅读如右图所示的程序框图,若输入0.45a =,则输出的k 值是( ) (A ) 3 ( B ) 4 (C ) 5 (D ) 6
5. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,
.

,f(x-1)≤f(x),则实数a 的取值范围为
A[] B[]
C[]
D[
] 6. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )
A .4
B .5
C .6
D .7
【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.
7. 若P 是以F 1,F 2
为焦点的椭圆=1(a >b >0
)上的一点,且
=0,
tan ∠PF 1F 2
=
,则此椭圆的离心率为( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .
C .
D .
8. 函数f (x )=有且只有一个零点时,a 的取值范围是( )
A .a ≤0
B .0<a <
C .<a <1
D .a ≤0或a >1
9. 如图所示,阴影部分表示的集合是( )
A .(∁U
B )∩A B .(∁U A )∩B
C .∁U (A ∩B )
D .∁U (A ∪B )
10.直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )
A .x ﹣y+1=0,2x ﹣y=0
B .x ﹣y ﹣1=0,x ﹣2y=0
C .x+y+1=0,2x+y=0
D .x ﹣y+1=0,x+2y=0
11.将函数f (x )=3sin (2x+θ)(﹣
<θ<
)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )
的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )
A .
B .π
C .
D .
12.若复数a 2﹣1+(a ﹣1)i (i 为虚数单位)是纯虚数,则实数a=( ) A .±1
B .﹣1
C .0
D .1
二、填空题
13.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.
14.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定
(),A B
k k A B AB
ϕ-=
(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:
①函数3
2
1y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ>
②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线2
1y x =+上不同的两点,则(),2A B ϕ≤;
④设曲线x
y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1
t A B ϕ⋅<
恒成立,则实数t 的取值范围是(),1-∞.
其中真命题的序号为________.(将所有真命题的序号都填上)
15.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+
|= .
16.命题p:∀x∈R,函数的否定为.
17.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)=.
18.已知函数f(x)=,g(x)=lnx,则函数y=f(x)﹣g(x)的零点个数为.
三、解答题
19.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.
(Ⅰ)求证AB•PC=PA•AC
(Ⅱ)求AD•AE的值.
20.已知直角梯形ABCD中,AB∥CD,,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:FG∥面BCD;
(2)设四棱锥D﹣ABCE的体积为V,其外接球体积为V′,求V:V′的值.
21.如图,在三棱柱ABC ﹣A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5.
(Ⅰ)求证:AA 1⊥平面ABC ;
(Ⅱ)求证二面角A 1﹣BC 1﹣B 1的余弦值;
(Ⅲ)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求
的值.
22.已知函数f (x )=
(Ⅰ)求函数f (x )单调递增区间;
(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a ﹣c )cosB=bcosC ,求f (A )的取值范围.
23.已知函数()2
1ln ,2
f x x ax x a R =-
+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;
(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.
24.已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于△APQ,求该椭圆的方程.
泊头市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】A
【解析】解:如图,
E 为底面ABCD 上的动点,连接BE ,CE ,D 1E , 对三棱锥B ﹣D 1EC ,无论E 在底面ABCD 上的何位置, 面BCD 1 的面积为定值,
要使三棱锥B ﹣D 1EC 的表面积最大,则侧面BCE 、CAD 1、BAD 1 的面积和最大, 而当E 与A 重合时,三侧面的面积均最大,
∴E 点位于点A 处时,三棱锥B ﹣D 1EC 的表面积最大. 故选:A .
【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.
2. 【答案】B
【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.
3. 【答案】B
【解析】解:∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),
∴BC=8,AB+AC=20﹣8=12,
∵12>8
∴点A 到两个定点的距离之和等于定值, ∴点A 的轨迹是椭圆, ∵a=6,c=4
∴b 2
=20,
∴椭圆的方程是
故选B .
【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.
4. 【答案】 D.
【解析】该程序框图计算的是数列前n 项和,其中数列通项为()()
1
2121n a n n =
-+
()()
111
1111335
2121221n S n n n ⎡⎤∴=
+++
=
-⎢⎥⨯⨯-++⎣⎦
9
0.452
n S n n >∴>∴最小值为5时满足
0.45n S >,由程序框图可得k 值是6. 故选D .
5. 【答案】B 【解析】当x ≥0时,
f (x )=,
由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2; 当a 2<x <2a 2时,f (x )=﹣a 2;
由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。

∴当x >0时,。

∵函数f (x )为奇函数, ∴当x <0时,。

∵对∀x ∈R ,都有f (x ﹣1)≤f (x ), ∴2a 2﹣(﹣4a 2)≤1,解得:。

故实数a 的取值范围是。

6. 【答案】B
7. 【答案】A
【解析】解:∵

,即△PF 1F 2是P 为直角顶点的直角三角形.
∵Rt △PF 1F 2中,

∴=,设PF2=t,则PF1=2t
∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t
∴此椭圆的离心率为e====
故选A
【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.
8.【答案】D
【解析】解:∵f(1)=lg1=0,
∴当x≤0时,函数f(x)没有零点,
故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,
即a>2x,或a<2x在(﹣∞,0]上恒成立,
故a>1或a≤0;
故选D.
【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.
9.【答案】A
【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,
∴对应的集合表示为A∩∁U B.
故选:A.
10.【答案】C
【解析】解:圆x2
+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l将圆
x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,
∴直线l的方程是:y+2=﹣(x﹣1),2x+y=0,即x+y+1=0,2x+y=0.
故选:C.
【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.
11.【答案】C
【解析】函数f(x)=sin(2x+θ)(﹣<θ<)向右平移φ个单位,得到g(x)=sin(2x+θ﹣2φ),
因为两个函数都经过P(0,),
所以sinθ=,
又因为﹣<θ
<,
所以θ
=

所以g (x )=sin (
2x+﹣2φ),
sin
(﹣2φ)
=,
所以﹣2φ=2k π
+,k ∈Z ,此时φ=k π,k ∈Z ,

﹣2φ=2k π
+
,k ∈Z ,此时φ=k π

,k ∈Z ,
故选:C .
【点评】本题考查的知识点是函数y=Asin (ωx+φ)的图象变换,三角函数求值,难度中档
12.【答案】B
【解析】解:因为复数a 2
﹣1+(a ﹣1)i (i 为虚数单位)是纯虚数,
所以a 2
﹣1=0且a ﹣1≠0,解得a=﹣1.
故选B .
【点评】本题考查复数的基本概念的应用,实部为0并且虚部不为0,是解题的关键.
二、填空题
13.【答案】120 【解析】

点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据
sin :sin :sin 3:5:7A B C =
,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,
熟记正弦、余弦定理的公式是解答的关键.
14.【答案】②③ 【解析】
试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -
=(,)A B ϕ∴=<
②对:如1y =
;③对;(,)2A B ϕ=
=
≤;
④错;1212(,)x x x x A B ϕ=
=

1211,(,)A B ϕ==>因为1(,)
t A B ϕ<
恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.
【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 15.【答案】 4 .
【解析】解:由题意可得点B 和点C 关于原点对称,∴
|
+
|=2||,
再根据A 为抛物线x 2
=﹣8y 的焦点,可得A (0,﹣2),

2||=4,
故答案为:4.
【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用
|
+
|=2||是解题的关键.
16.
【答案】 ∃x 0∈R ,函数f (x 0)=2cos 2x 0
+sin2x 0>3 .
【解析】解:全称命题的否定是特称命题,即为∃x 0∈R ,函数f (
x 0)=2cos 2
x 0+sin2x 0>3,
故答案为:∃x 0∈R ,函数f (x 0)=2cos 2
x 0+sin2x 0>3,
17.【答案】 0.3 .
【解析】离散型随机变量的期望与方差.
【专题】计算题;概率与统计.
【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P (550<ξ<600).
【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,
∴正态分布曲线的对称轴为x=500, ∵P (400<ξ<450)=0.3, ∴根据对称性,可得P (550<ξ<600)=0.3.
故答案为:0.3.
【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键. 18.【答案】 3
【解析】解:令g (x )=f (x )﹣log 4x=0得f (x )=log 4x
∴函数g (x )=f (x )﹣log 4x 的零点个数即为函数f (x )与函数y=log 4x 的图象的交点个数, 在同一坐标系中画出函数f (x )与函数y=log 4x 的图象,如图所示,
有图象知函数y=f(x)﹣log4 x上有3个零点.
故答案为:3个.
【点评】此题是中档题.考查函数零点与函数图象交点之间的关系,体现了转化的思想和数形结合的思想,体现学生灵活应用图象解决问题的能力.
三、解答题
19.【答案】
【解析】(1)证明:∵PA为圆O的切线,
∴∠PAB=∠ACP,又∠P为公共角,
∴△PAB∽△PCA,
∴,
∴AB•PC=PA•AC.…
(2)解:∵PA为圆O的切线,BC是过点O的割线,
∴PA2=PB•PC,
∴PC=40,BC=30,
又∵∠CAB=90°,∴AC2+AB2=BC2=900,
又由(1)知,
∴AC=12,AB=6,
连接EC,则∠CAE=∠EAB,
∴△ACE∽△ADB,∴,
∴.
【点评】本题考查三角形相似的证明和应用,考查线段乘积的求法,是中档题,解题时要注意切割线定理的合理运用.
20.【答案】
【解析】解:
(1)证明:取AB中点H,连接GH,FH,
∴GH∥BD,FH∥BC,
∴GH∥面BCD,FH∥面BCD
∴面FHG∥面BCD,
∴GF∥面BCD
(2)V=
又外接球半径R=
∴V′=π
∴V:V′=
【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E点三条棱互相垂直,故棱锥的外接球半径与以AE,CD,DE为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点.
21.【答案】
【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
∴,,.
设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).
则,令y1=4,解得x1=0,z1=3,∴.
,令x2=3,解得y2=4,z2=0,∴.
===.
∴二面角A1﹣BC1﹣B1的余弦值为.
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,
∴=,=(0,3,﹣4),
∵,∴,
∴,解得t=.
∴.
【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
22.【答案】
【解析】解:(Ⅰ)∵f(x)=sin cos+cos2
=sin(+),
∴由2k≤+≤2kπ,k∈Z可解得:4kπ﹣≤x≤4kπ,k∈Z,
∴函数f(x)单调递增区间是:[4kπ﹣,4kπ],k∈Z.
(Ⅱ)∵f(A)=sin(+),
∵由条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB,
∴则sinBcosC+sinCcosB=2sinAcosB,
∴sin(B+C)=2sinAcosB,又sin(B+C)=sinA≠0,
∴cosB=,又0<B<π,
∴B=.
∴可得0<A<,
∴<+<,

sin (+
)<1,
故函数f (A )的取值范围是(1,).
【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题.
23.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,
a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭
;(2)证明见解析. 【解析】

题解析:
(2)当2a =-时,()2
ln ,0f x x x x x =++>,
由()()12120f x f x x x ++=可得22
121122ln 0x x x x x x ++++=,
即()()2
12121212ln x x x x x x x x +++=-,
令()12,ln t x x t t t ϕ==-,则()11
1t t t t
ϕ-'=-=

则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,
所以()()11t ϕϕ≥=,所以()()2
12121x x x x +++≥,
又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1
考点:函数导数与不等式.
【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含
参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.
请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.
24.【答案】
【解析】解:(Ⅰ)设F(c,0),M(c,y1),N(c,y2),
则,得y1=﹣,y2=,
MN=|y1﹣y2|==b,得a=2b,
椭圆的离心率为:==.
(Ⅱ)由条件,直线AP、AQ斜率必然存在,
设过点A且与圆x2+y2=4相切的直线方程为y=kx+b,转化为一般方程kx﹣y+b=0,
由于圆x2+y2=4内切于△APQ,所以r=2=,得k=±(b>2),
即切线AP、AQ关于y轴对称,则直线PQ平行于x轴,
∴y Q=y P=﹣2,
不妨设点Q在y轴左侧,可得x Q=﹣x P=﹣2,
则=,解得b=3,则a=6,
∴椭圆方程为:.
【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质.。

相关文档
最新文档