乐元镇初中2018-2019学年七年级下学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乐元镇初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)在,π,,1.5(。
)1(。
),中无理数的个数有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】A
【考点】无理数的认识
【解析】【解答】解:∵无理数有:,
故答案为:A.
【分析】无理数:无限不循环小数,由此即可得出答案.
2.(2分)如果方程组的解与方程组的解相同,则a、b的值是()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:由题意得:是的解,
故可得:,解得:.
故答案为:A.
【分析】由题意把x=3和y=4分别代入两个方程组中的第二个方程中,可得关于a、b的二元一次方程组,解这个方程组即可求得a、b的值。
3.(2分)如果方程组与有相同的解,则a,b的值是()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:由已知得方程组,
解得,
代入,
得到,
解得.
【分析】先将只含x、y的的方程组成方程组,求出方程组的解,再将x、y的值代入另外的两个方程,建立关于a、b的方程组,解方程组,求出a、b的值。
4.(2分)在这些数中,无理数有()个.
A. 1
B. 2
C. 3
D. 4
【答案】B
【考点】无理数的认识
【解析】【解答】解:依题可得:
无理数有:-,,
∴无理数有2个.
故答案为:B.
【分析】无理数定义:无限不循环小数,由此即可得出答案.
5.(2分)若方程mx+ny=6有两个解,则m,n的值为()
A. 4,2
B. 2,4
C. -4,-2
D. -2,-4
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:把,代入mx+ny=6中,
得:,
解得:.
故答案为:C.
【分析】将x、y的两组值分别代入方程,建立关于m、n的方程组,再利用加减消元法求出m、n的值。
6.(2分)若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为()
A. 20°
B. 55°
C. 20°或55°
D. 75°
【答案】C
【考点】二元一次方程组的其他应用,平行线的性质
【解析】【解答】解:∵∠A的两边与∠B的两边分别平行
∴∠A=∠B,∠A+∠B=180°
∵∠A的度数比∠B的度数的3倍少40°
∴∠A=3∠B-40°
∴或
解之:或
故答案为:C
【分析】根据∠A的两边与∠B的两边分别平行,得出∠A=∠B,∠A+∠B=180°,再根据∠A的度数比∠B 的度数的3倍少40°,建立两个二元一次方程组,解方程组,即可求得结果。
7.(2分)下列结论中,错误的有()
①负数没有立方根;②1的立方根与平方根都是1;③的平方根是±;④=2+ =2 .
A. 1个
B. 2个
C. 3个
D. 4个
【答案】D
【考点】平方根,立方根及开立方
【解析】【解答】解:任何有理数都有立方根,因此①错误
∵1的立方根是1,1的平方根是±1,因此②错误;
∵=2,2的平方根是±,因此③错误;
∵=,因此④错误;
∴错误的有①②③④
故答案为:D
【分析】根据任何有理数都有立方根,可对①作出判断;根据正数的立方根有一个,正数的平方根有两个,它
们互为相反数,可对②作出判断;先将化简,再求其平方根,可对③作出判断;根据和的立方根不等于立方根的和,可对④作出判断,从而可得出错误的个数。
8.(2分)下列调查方式,你认为正确的是()
A. 了解我市居民日平均用水量采用抽查方式
B. 要保证“嫦娥一号”卫星发射成功,对零部件采用抽查方式检查质量
C. 了解北京市每天的流动人口数,采用普查方式
D. 了解一批冰箱的使用寿命采用普查方式
【答案】A
【考点】全面调查与抽样调查
【解析】【解答】解:A、了解我市居民日平均用水量,知道大概就可以,适合采用抽查方式;
B、要保证“嫦娥一号”卫星发射成功,对零部件要求很精密,不能有点差错,所以适合采用普查方式检查质量;
C、了解北京市每天的流动人口数,知道大概就可以,适合采用抽查方式;
D、了解一批冰箱的使用寿命,具有破坏性,所以适合采用抽查方式.
故答案为:A
【分析】根据抽样调查和全面调查的特征进行判断即可确定正确的结论.
9.(2分)计算=()
A. -8
B. 2
C. -4
D. -14
【答案】A
【考点】实数的运算
【解析】【解答】原式=-5-3=-8.故答案为:A
【分析】负数的绝对值是正数,再根据实数的运算性质计算即可。
10.(2分)下列各数是无理数的为()
A. B. C. 4.121121112 D.
【答案】B
【考点】无理数的认识
【解析】【解答】根据无理数的定义可知,只有是无理数,﹣9、4.121121112、都是有理数,
故答案为:B.
【分析】利用无理数是无限不循环的小数,可解答。
11.(2分)下列运算正确的是()
A. =±3
B. (﹣2)3=8
C. ﹣22=﹣4
D. ﹣|﹣3|=3
【答案】C
【考点】绝对值及有理数的绝对值,算术平方根,实数的运算,有理数的乘方
【解析】【解答】解:A、原式=2 ,不符合题意;
B、原式=﹣8,不符合题意;
C、原式=﹣4,符合题意;
D、原式=﹣3,不符合题意,
故答案为:C.
【分析】做这种类型的选择题,我们只能把每个选项一个一个排除选择。
A项:指的是求8的算术平方根(在这里,我们要区分平方根与算数平方根的区别,求平方根的符号是);B项:指的是3个-2相乘,即(-2)(-2)(-2)=-8;C项要特别注意负号在的位置(区分与),像是先算,再在结果前面填个负号,所以结果是-4;D项:先算绝对值,再算绝对值之外的,所以答案是-3
12.(2分)某公司有员工700人,元旦要举行活动,如图是分别参加活动的人数的百分比,规定每人只允许参加一项且每人均参加,则不下围棋的人共有()
A. 259人
B. 441人
C. 350人
D. 490人
【答案】B
【考点】扇形统计图
【解析】【解答】解:700×(1﹣37%)=700×63%=441(人),
故答案为:B.
【分析】不下围棋的人数的百分比是1﹣37%,不下围棋的人共有700×(1﹣37%)人,即可得解.二、填空题
13.(3分)的绝对值是________,________的倒数是,的算术平方根是________.
【答案】;3;2
【考点】绝对值及有理数的绝对值,有理数的倒数,算术平方根
【解析】【解答】解:(1);(2)的倒数是3;(3),4的算术平方根是2;
【分析】一个负数的绝对值等于它的相反数;一个分数的倒数,只需要将这个分数的分子分母交换位置;将先化简为4,再根据算数平方根的意义算出4的算数平方根即可。
14.(1分)若方程组的解也是方程2x-ay=18的解,则a=________.
【答案】4
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:,
∵①×3﹣②得:8x=40,
解得:x=5,
把x=5代入①得:25+6y=13,
解得:y=﹣2,
∴方程组的解为:,
∵方程组的解是方程2x﹣ay=18的解,
∴代入得:10+2a=18,解得:a=4,
故答案为:4.
【分析】利用加减消元法求出方程组的解,再将方程组的解代入方程2x-ay=18,建立关于a的方程,求解即可。
15.(1分)如图,直线L1∥L2,且分别与△ABC的两边AB、AC相交,若∠A=40°,∠1=45°,则∠2的度数为________.
【答案】95°
【考点】对顶角、邻补角,平行线的性质,三角形内角和定理
【解析】【解答】解:如图,
∵直线l1∥l2,且∠1=45°,
∴∠3=∠1=45°,
∵在△AEF中,∠A=40°,
∴∠4=180°﹣∠3﹣∠A=95°,
∴∠2=∠4=95°,
故答案为:95°.
【分析】根据平行线的性质得出∠3=∠1=45°,利用三角形内角和定理求出∠4=180°﹣∠3﹣∠A=95°,根据对顶角相等求出∠2=∠4=95°。
16.(1分)二元一次方程的非负整数解为________
【答案】,,,,
【考点】二元一次方程的解
【解析】【解答】解:将方程变形为:y=8-2x
∴二元一次方程的非负整数解为:
当x=0时,y=8;
当x=1时,y=8-2=6;
当x=2时,y=8-4=4;
当x=3时,y=8-6=2;
当x=4时,y=8-8=0;
一共有5组
故答案为:,,,,
【分析】用含x的代数式表示出y,由题意可知x的取值范围为0≤x≤4的整数,即可求出对应的y的值,即可得出答案。
17.(1分)如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=________.
【答案】50°
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵AB∥CD,
∴∠1=∠AGF,
∵∠AGF与∠EGB是对顶角,
∴∠EGB=∠AGF,
∴∠1=∠EGB,
∵∠1=50°,
∴∠EGB=50°.
故答案为:50°.
【分析】根据平行线性质得∠1=∠AGF,由对顶角定义得∠EGB=∠AGF,等量代换即可得出答案. 18.(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程
∴
解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。
三、解答题
19.(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
20.(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
21.(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.
22.(5分)如图,直线AB和CD相交于点O,OD平分∠BOF,OE⊥CD于点O,∠AOC=40°,求∠EOF 的度数.
【答案】解:OE⊥CD,∴∠EOD=90°,∵∠AOC=40°,∴∠BOD=40°,∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∴∠BOF=2∠DOF=80°,∴∠EOF=90°+40°=130°
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据题意和对顶角相等,求出∠BOD的度数,由角平分线性质求出∠BOF=2∠DOF=2∠BOD 的度数,求出∠EOF的度数.
23.(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,
,
,
把代入,得,
,
∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。
24.(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜、南县农业部门对2009年的
油菜籽生产成本,市场价格,种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
每亩生产成本每亩产量油菜籽市场价格种植面积
110元130千克3元/千克500000亩
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)
【答案】(1)解:1﹣10%﹣35%﹣45%=10%,110×10%=11(元)
(2)解:130×3﹣110=280(元)
(3)解:280×500000=140000000=1.4×108(元).答:2009年南县全县农民冬种油菜的总获利1.4×108元.【考点】统计表,扇形统计图
【解析】【分析】(1)根据扇形统计图计算种子所占的百分比,然后乘以表格中的成本即可;
(2)根据每亩的产量乘以市场单价减去成本可得获取数据;
(3)根据(2)中每亩获利数据,然后乘以总面积可得总获利.
25.(5分)如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP =∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.
【答案】解:过点P作PE∥CD交AD于E,则∠DPE=∠α.
∵AB∥CD,∴PE∥AB.
∴∠CPE=∠B,即∠DPE+∠β=∠α+∠β=∠B.故不论点P在BC上怎样运动,总有∠α+∠β=∠B
【考点】平行公理及推论,平行线的性质
【解析】【分析】过点P作PE∥CD交AD于E,根据平行线性质得∠DPE=∠α,由平行的传递性得PE∥AB,根据平行线性质得∠CPE=∠B,从而即可得证.
26.(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
【答案】证明:过C作AB∥CF,
∴∠ABC+∠BCF=180°,
∵∠ABC+ ∠BCD+ ∠EDC=360°,
∴∠DCF+ ∠EDC=180°,
∴CF∥DE,
∴ABF∥DE.
【考点】平行公理及推论,平行线的判定与性质
【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.。