兰山区三中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兰山区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长
为(
)
A .
B . C.
D
.2. 点A 是椭圆
上一点,F 1
、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为(
)
A .
B .
C .
D .
3. 若f (x
)=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是(
)
A .(﹣∞,1]
B .[0,1]
C .(﹣2,﹣1)∪(﹣1,1]
D .(﹣∞,﹣2)∪(﹣1,1]
4. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()
2121
0f x f x x x -<-,则
(
)
A .()()()213f f f -<<
B .()()()123f f f <-<
C .()()()312f f f <<
D .()()()
321f f f <-<5. 已知
,则方程的根的个数是( )
22(0)()|log |(0)
x x f x x x ⎧≤=⎨
>⎩[()]2f f x = A .3个B .4个
C .5个
D .6个
6. 下列各组表示同一函数的是(
)
A .y=
与y=(
)2
B .y=lgx 2与y=2lgx
C .y=1+与y=1+
D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )
7.如图,△ABC所在平面上的点P n(n∈N*)均满足△P n AB与△P n AC的面积比为3;1,=﹣(2x n+1)(其中,{x n}是首项为1的正项数列),则x5等于
()
A.65B.63C.33D.31
8.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()
A.20种B.22种C.24种D.36种
9.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为()
248064240
A.B.C.D.
10.圆心在直线2x+y=0上,且经过点(-1,-1)与(2,2)的圆,与x轴交于M,N两点,则|MN|=()
A.4B.4
25
C.2D.2
25
11.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则P﹣DCE三棱锥的外接球的体积为()
A.B.C.D.
12.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为
( )
A .(﹣1,0)∪(1,+∞)
B .(﹣∞,﹣1)∪(0,1)
C .(﹣∞,﹣1)∪(1,+∞)
D .(﹣1,0)∪(0,
1)
二、填空题
13.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示. x ﹣1045f (x )
1
2
2
1
下列关于f (x )的命题:
①函数f (x )的极大值点为0,4;②函数f (x )在[0,2]上是减函数;
③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4;④当1<a <2时,函数y=f (x )﹣a 有4个零点;
⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个.其中正确命题的序号是 .
14.已知函数的一条对称轴方程为,则函数的最大值为2
1()sin cos sin 2f x a x x x =-+6
x π
=()f x (
)
A .1
B .±1
C
D .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
15.命题“若1x ≥,则2421x x -+≥-”的否命题为
.
16.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= .
17.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取
19.0
100人,则应在高三年级中抽取的人数等于 .
18.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .
三、解答题
19.(本小题满分12分)
如图,在四棱锥中,底面为菱形,分别是棱的中点,且ABCD S -ABCD Q P E 、、AB SC AD 、、⊥SE 平面.
ABCD
(1)求证:平面;//PQ SAD (2)求证:平面平面.
⊥SAC SEQ 20.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:生二胎
不生二胎
合计70后3015
4580后451055合计
75
25
100
(Ⅰ)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;
(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.参考数据:P (K 2>k )
0.150.100.050.0250.0100.005k
2.072
2.706
3.841
5.024
6.635
7.879
(参考公式:,其中n=a+b+c+d )
21.一艘客轮在航海中遇险,发出求救信号.在遇险地点南偏西方向10海里的处有一艘海A 45
B 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东,正以每小时9海里的速度向
75
一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.
(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;(2)若最短时间内两船在处相遇,如图,在中,求角的正弦值.
C ABC B
22.已知抛物线C :x 2=2y 的焦点为F .
(Ⅰ)设抛物线上任一点P (m ,n ).求证:以P 为切点与抛物线相切的方程是mx=y+n ;
(Ⅱ)若过动点M (x 0,0)(x 0≠0)的直线l 与抛物线C 相切,试判断直线MF 与直线l 的位置关系,并予以证明.
23.在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为:(t为参数).
(1)求圆C和直线l的极坐标方程;
(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值.
24.已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.
兰山区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】C
【解析】
考点:平面图形的直观图.
2.【答案】B
【解析】解:设△AF1F2的内切圆半径为r,则
S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,
∵,
∴|AF1|r=2×|F1F2|r﹣|AF2|r,
整理,得|AF1|+|AF2|=2|F1F2|.∴a=2,
∴椭圆的离心率e===.
故选:B.
3.【答案】D
【解析】解:∵函数f(x)=﹣x2+2ax的对称轴为x=a,开口向下,
∴单调间区间为[a,+∞)
又∵f(x)在区间[1,2]上是减函数,
∴a≤1
∵函数g(x)=在区间(﹣∞,﹣a)和(﹣a,+∞)上均为减函数,
∵g(x)=在区间[1,2]上是减函数,
∴﹣a>2,或﹣a<1,
即a<﹣2,或a>﹣1,
综上得a∈(﹣∞,﹣2)∪(﹣1,1],
故选:D
【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.
4. 【答案】D 5. 【答案】C
【解析】由,设f (A )=2,则f (x )=A,则,则A=4或A=,作出f (x )的图像,由[()]2f f x =2log 2x =1
4
数型结合,当A=时3个根,A=4时有两个交点,所以的根的个数是5个。
1
4
[()]2f f x =6. 【答案】C 【解析】解:A .y =|x|,定义域为R ,y=(
)2=x ,定义域为{x|x ≥0},定义域不同,不能表示同一函数
.
B .y=lgx 2,的定义域为{x|x ≠0},y=2lgx 的定义域为{x|x >0},所以两个函数的定义域不同,所以不能表示同一函数.
C .两个函数的定义域都为{x|x ≠0},对应法则相同,能表示同一函数.
D .两个函数的定义域不同,不能表示同一函数.故选:C .
【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.
7. 【答案】 D 【解析】解:由=﹣(2x n +1),
得+(2x n +1)
=,
设
,
以线段P n A 、P n D 作出图形如图,
则,
∴,∴,
∵,∴,
则,
即x n+1=2x n +1,∴x n+1+1=2(x n +1),
则{x n +1}构成以2为首项,以2为公比的等比数列,∴x 5+1=2•24=32,则x 5=31.故选:D .
【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.
8. 【答案】C
【解析】解:根据题意,分2种情况讨论:
①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有
=12种推荐方法;
故共有12+12=24种推荐方法;故选:C .
9. 【答案】B 【解析】试题分析:,故选B.805863
1
=⨯⨯⨯=
V 考点:1.三视图;2.几何体的体积.10.【答案】
【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0).
由题意得,
{
2a +b =0
(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r 2
)
解之得a =-1,b =2,r =3,
∴圆的方程为(x+1)2+(y-2)2=9,
令y=0得,x=-1±,
5
555
∴|MN|=|(-1+)-(-1-)|=2,选D.
11.【答案】C
【解析】解:易证所得三棱锥为正四面体,它的棱长为1,
故外接球半径为,外接球的体积为,
故选C.
【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.
12.【答案】D
【解析】解:由奇函数f(x)可知,即x与f(x)异号,
而f(1)=0,则f(﹣1)=﹣f(1)=0,
又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,
当0<x<1时,f(x)<f(1)=0,得<0,满足;
当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;
当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;
当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;
所以x的取值范围是﹣1<x<0或0<x<1.
故选D.
二、填空题
13.【答案】 ①②⑤ .
【解析】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x<5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;
因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;
由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,
根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,
综上正确的命题序号为①②⑤.
故答案为:①②⑤.
【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.
14.【答案】A
【解析】
x x
-+<-
x<,则2421
15.【答案】若1
【解析】
x<,则2421
试题分析:若1
-+<-,否命题要求条件和结论都否定.
x x
考点:否命题.
16.【答案】 2 .
【解析】解:f(x)=ae x+bsinx的导数为f′(x)=ae x+bcosx,
可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,
由x=0处与直线y=﹣1相切,可得a+b=0,且ae0+bsin0=a=﹣1,
解得a=﹣1,b=1,
则b﹣a=2.
故答案为:2.
17.【答案】25
【解析】
考
点:分层抽样方法.
18.【答案】 {x|﹣1<x <1} .
【解析】解:∵A={x|﹣1<x <3},B={x|x <1},
∴A ∩B={x|﹣1<x <1},
故答案为:{x|﹣1<x <1}
【点评】本题主要考查集合的基本运算,比较基础.
三、解答题
19.【答案】(1)详见解析;(2)详见解析.
【解析】
试题分析:(1)根据线面平行的判定定理,可先证明PQ 与平面内的直线平行,则线面平行,所以取中SD 点,连结,可证明,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先F PF AF ,AF PQ //证明线面垂直,根据所给的条件证明平面,即平面平面.
⊥AC SEQ ⊥SAC SEQ 试题解析:证明:(1)取中点,连结.
SD F PF AF ,∵分别是棱的中点,∴,且.F P 、SD SC 、CD FP //CD FP 2
1=
∵在菱形中,是的中点,ABCD Q AB ∴,且,即且.CD AQ //CD AQ 2
1=
AQ FP //AQ FP =∴为平行四边形,则.AQPF AF PQ //∵平面,平面,∴平面.
⊄PQ SAD ⊂AF SAD //PQ SAD
考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.
【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直,需熟练掌握判定定理以及性质定理. 20.【答案】
【解析】解:(Ⅰ)由已知得该市70后“生二胎”的概率为=,且X~B(3,),
P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==,
其分布列如下:
X0123
P
(每算对一个结果给1分)
∴E (X )=3×=2.
(Ⅱ)假设生二胎与年龄无关,
K 2
==≈3.030>2.706,
所以有90%以上的把握认为“生二胎与年龄有关”.
21.【答案】(1)
小时;(2
23
【解析】试
题解析:(1)设搜救艇追上客轮所需时间为小时,两船在处相遇.
C 在中,,,,.ABC ∆4575120BAC ∠=+=
10AB =9AC t =21BC t =由余弦定理得:,2222cos BC AB AC AB AC BAC =+-∠A A
所以,2221
(21)10(9)2109()2
t t t =+-⨯⨯⨯-化简得,解得或(舍去).2
369100t t --=23t =512
t =-所以,海难搜救艇追上客轮所需时间为小时.23
(2)由,.2963AC =⨯=221143
BC =⨯=在中,由正弦定理得
.ABC ∆sin 6sin120sin 14AC BAC B BC
∠=
=== A A 所以角B 考点:三角形的实际应用.
【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,再根据正弦定理和余弦定理,即
,AC BC
可求解此类问题,其中正确画出图形是解答的关键.
22.【答案】
【解析】证明:(Ⅰ)由抛物线C:x2=2y得,y=x2,则y′=x,
∴在点P(m,n)切线的斜率k=m,
∴切线方程是y﹣n=m(x﹣m),即y﹣n=mx﹣m2,
又点P(m,n)是抛物线上一点,
∴m2=2n,
∴切线方程是mx﹣2n=y﹣n,即mx=y+n …
(Ⅱ)直线MF与直线l位置关系是垂直.
由(Ⅰ)得,设切点为P(m,n),则切线l方程为mx=y+n,
∴切线l的斜率k=m,点M(,0),
又点F(0,),
此时,k MF====…
∴k•k MF=m×()=﹣1,
∴直线MF⊥直线l …
【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题.
23.【答案】
【解析】解:(1)圆C的直角坐标方程为(x﹣2)2+y2=2,
代入圆C得:(ρcosθ﹣2)2+ρ2sin2θ=2
化简得圆C的极坐标方程:ρ2﹣4ρcosθ+2=0…
由得x+y=1,∴l的极坐标方程为ρcosθ+ρsinθ=1…
(2)由得点P的直角坐标为P(0,1),
∴直线l的参数的标准方程可写成…
代入圆C得:
化简得:,
∴,∴t1<0,t2<0…
∴…
24.【答案】已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.
【考点】数列的求和;等比数列的通项公式.
【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列.
【分析】(Ⅰ)设数列{a n}的公比为q,从而可得3(1++)=9,从而解得;
(Ⅱ)讨论可知a2n+3=3•(﹣)2n=3•()2n,从而可得b n=log2=2n,利用裂项求和法求和.【解析】解:(Ⅰ)设数列{a n}的公比为q,
则3(1++)=9,
解得,q=1或q=﹣;
故a n=3,或a n=3•(﹣)n﹣3;
(Ⅱ)证明:若a n=3,则b n=0,与题意不符;
故a2n+3=3•(﹣)2n=3•()2n,
故b n=log2=2n,
故c n==﹣,
故c1+c2+c3+…+c n=1﹣+﹣+…+﹣
=1﹣<1.
【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用. 。