颍东区第三中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

颍东区第三中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f ()=( )
A .
B .
C .0
D .﹣
2. 下列函数中,在其定义域内既是奇函数又是减函数的是( )
A .y=|x|(x ∈R )
B .y=(x ≠0)
C .y=x (x ∈R )
D .y=﹣x 3(x ∈R )
3. 数列{a n }满足a 1=, =﹣1(n ∈N *
),则a 10=( )
A .
B .
C .
D .
4. 已知条件p :x 2+x ﹣2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1
D .a ≤﹣3
5. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )
A .7
B .9
C .11
D .13
6. 数列1,﹣4,7,﹣10,13,…,的通项公式a n 为( ) A .2n ﹣1 B .﹣3n+2
C .(﹣1)n+1(3n ﹣2)
D .(﹣1)n+13n ﹣2
7. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有
( ) A .90种 B .180种
C .270种
D .540种
8. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则
实数a 的取值范围是( )
A .
B .
C .
D .
9. 已知数列,则5是这个数列的( ) A .第12项 B .第13项 C .第14项
D .第25项
10.设集合M={x|x 2﹣2x ﹣3<0},N={x|log 2x <0},则M ∩N 等于( )
A .(﹣1,0)
B .(﹣1,1)
C .(0,1)
D .(1,3)
11.已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )
A .20x y -+=
B .10x y +-=
C .10x y -+=
D .20x y ++= 12.数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .
B .20
C .21
D .31
二、填空题
13.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 . 14.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .
15.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .
16.阅读如图所示的程序框图,则输出结果S 的值为 .
【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.
17.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .
18.在极坐标系中,点(2,)到直线ρ(cos θ+
sin θ)=6的距离为 .
三、解答题
19.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5);
(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.
20.设函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在上的最大值与最小值.
21.已知x2﹣y2+2xyi=2i,求实数x、y的值.
22.在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。

(1
)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为
极轴)中,点的极坐标为(4,),判断点与直线的位置关系; (2
)设点是曲线上的一个动点,求它到直线的距离的最小值。

23.(本小题满分13分)
如图,已知椭圆C :22221(0)x y a b a b +=>>
C 的左顶点T 为圆心作圆T :
222(2)x y r ++=(0r >),设圆T 与椭圆C 交于点M 、N .[_]
(1)求椭圆C 的方程;
(2)求TM TN ⋅的最小值,并求此时圆T 的方程;
(3)设点P 是椭圆C 上异于M 、N 的任意一点,且直线MP ,NP 分别与x 轴交于点R S 、(O 为坐标 原点),求证:OR OS ⋅为定值.
【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力.
24.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;
(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.
颍东区第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+cosx,
当0≤x<π时,f(x)=1,
∴f()=f()=f()+cos=f()+cos+cos=f()+cos+cos=f
()+cos+cos=f()+cos+cos+cos=0+cos﹣cos+cos=﹣.
故选:D.
【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.
2.【答案】D
【解析】解:y=|x|(x∈R)是偶函数,不满足条件,
y=(x≠0)是奇函数,在定义域上不是单调函数,不满足条件,
y=x(x∈R)是奇函数,在定义域上是增函数,不满足条件,
y=﹣x3(x∈R)奇函数,在定义域上是减函数,满足条件,
故选:D
3.【答案】C
【解析】解:∵=﹣1(n∈N*),
∴﹣=﹣1,
∴数列是等差数列,首项为=﹣2,公差为﹣1.
∴=﹣2﹣(n﹣1)=﹣n﹣1,
∴a n=1﹣=.
∴a10=.
故选:C.
【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.
4.【答案】A
【解析】解:∵条件p:x2+x﹣2>0,
∴条件q:x<﹣2或x>1
∵q是p的充分不必要条件
∴a≥1
故选A.
5.【答案】A
【解析】解:∵x+x﹣1=3,
则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.
故选:A.
【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.
6.【答案】C
【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n ﹣2,故通项公式a n=(﹣1)n+1(3n﹣2).
故选:C.
7.【答案】D
【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.
故选D.
8.【答案】A
【解析】解:取a=﹣时,f(x)=﹣x|x|+x,
∵f(x+a)<f(x),
∴(x﹣)|x﹣|+1>x|x|,
(1)x<0时,解得﹣<x<0;
(2)0≤x≤时,解得0;
(3)x>时,解得,
综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;
取a=1时,f (x )=x|x|+x ,
∵f (x+a )<f (x ),∴(x+1)|x+1|+1<x|x|,
(1)x <﹣1时,解得x >0,矛盾; (2)﹣1≤x ≤0,解得x <0,矛盾; (3)x >0时,解得x <﹣1,矛盾; 综上,a=1,A=∅,不合题意,排除C ,
故选A .
【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.
9. 【答案】B
【解析】
由题知,通项公式为,令得,故选B
答案:B
10.【答案】C
【解析】解:∵集合M={x|x 2
﹣2x ﹣3<0}={x|﹣1<x <3}, N={x|log 2x <0}={x|0<x <1}, ∴M ∩N={x|0<x <1}=(0,1). 故选:C .
【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用.
11.【答案】A 【解析】
试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=
,由
,1d r k =∴=,所以切线方程为20x y -+=,故选A.
考点:直线与圆的位置关系. 12.【答案】C
【解析】解:由a n+1=a n +2n ,得a n+1﹣a n =2n ,又a 1=1, ∴a 5=(a 5﹣a 4)+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1
=2(4+3+2+1)+1=21. 故选:C .
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
二、填空题
13.【答案】【解析】
试题分析:因为ABC ∆中,2,60AB BC C ===︒2
sin A
=
,1sin 2A =,又
BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,1
2
ABC
S AB BC ∆=⨯⨯=. 考点:正弦定理,三角形的面积.
【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2
b 、2
a 时,往往用余弦定理,而题设中如果边和正
弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式1sin 2ab C ,12ah ,1()2a b c r ++,4abc R
等等.
14.【答案】 [﹣1,﹣) .
【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣
1,﹣).
故答案为:[﹣1,﹣).
【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.
15.【答案】 .
【解析】解:∵a 是甲抛掷一枚骰子得到的点数, ∴试验发生包含的事件数6,
∵方程x 2
+ax+a=0 有两个不等实根, ∴a 2
﹣4a >0,
解得a >4, ∵a 是正整数, ∴a=5,6,
即满足条件的事件有2种结果,
∴所求的概率是=,
故答案为:
【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.
16.【答案】
2017
2016
【解析】根据程序框图可知,其功能是求数列})
12)(12(2
{
+-n n 的前1008项的和,即 +⨯+⨯=532312S =-++-+-=⨯+)2017120151()5131()311(201720152 2017
2016
. 17.【答案】 2n ﹣1 .
【解析】解:∵a 1=1,a n+1=a n +2n
, ∴a 2﹣a 1=2, a 3﹣a 2=22, …
a n ﹣a n ﹣1=2n ﹣1,
相加得:a n ﹣a 1=2+22+23+2…+2n ﹣1

a n =2n ﹣1,
故答案为:2n
﹣1,
18.【答案】 1 .
【解析】解:点P(2,)化为P.
直线ρ(cosθ+sinθ)=6化为.
∴点P到直线的距离d==1.
故答案为:1.
【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,
∴f(2)﹣f(1)=4=4×1.
f(3)﹣f(2)=8=4×2,
f(4)﹣f(3)=12=4×3,
f(5)﹣f(4)=16=4×4
∴f(5)=25+4×4=41.…
(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.…
∴f(2)﹣f(1)=4×1,
f(3)﹣f(2)=4×2,
f(4)﹣f(3)=4×3,

f(n﹣1)﹣f(n﹣2)=4•(n﹣2),
f(n)﹣f(n﹣1)=4•(n﹣1)…
∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)•n,
∴f(n)=2n2﹣2n+1.…
20.【答案】
【解析】【知识点】三角函数的图像与性质恒等变换综合
【试题解析】(Ⅰ)因为

所以函数的最小正周期为.
(Ⅱ)由(Ⅰ),得.
因为,
所以,
所以.
所以.
且当时,取到最大值;
当时,取到最小值.
21.【答案】
【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)
【点评】本题考查复数相等的条件,以及方程思想,属于基础题.
22.【答案】(1)点P在直线上
(2)
【解析】(1)把极坐标系下的点化为直角坐标,得P(0,4)。

因为点P的直角坐标(0,4)满足直线的方程,
所以点P在直线上,
(2)因为点Q在曲线C上,故可设点Q的坐标为,
从而点Q到直线的距离为

23.【答案】
【解析】(1)依题意,得2a =
,c e a =
=
1,322=-==∴c a b c ;
故椭圆C 的方程为2
214
x y += . (3分)
(3)设),(00y x P 由题意知:01x x ≠,01y y ≠±.
直线MP 的方程为),(01
01
00x x x x y y y y ---=
-
令0=y 得101001y y y x y x x R --=,同理:1
01
001y y y x y x x S ++=,
∴2
1
2
02
1
202021y y y x y x x x S R --=
⋅. (10分)
又点P M ,在椭圆上,故
)1(4),1(42
1212
020y x y x -=-=,
∴4)(4)1(4)1(42
1
2
02
12
02
1
2
02
1
2
02
02
1=--=
----=
y y y y y y y y y y x x S R ,
4R S R S OR OS x x x x ∴⋅=⋅==,
即OR OS ⋅为定值4. (13分)
24.【答案】
【解析】解:(1
)由题意,
=(2x+3)(2x ﹣3)+3y 2=3, 可化为4x 2+3y 2
=12
,即:
; ∴点P
的轨迹方程为

(2)①当直线l 的斜率不存在时,|AB|=4,不合要求,舍去;
②当直线l 的斜率存在时,设方程为y=kx+1,A (x 1,y 1),B (x 2,y 2),
代入椭圆方程可得:(4+3k 2)x 2
+6kx ﹣9=0,
∴x 1+x 2
=,x 1x 2
=,

|AB|=•|x 1﹣x 2
|=
=

∴k=
±

∴直线l 的方程y=
±x+1.
【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.。

相关文档
最新文档