宽城区高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宽城区高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+
=( )
A .
B .
C .
D .
2. 抛物线y=4x 2的焦点坐标是( )
A .(0,1)
B .(1,0)
C .
D .
3. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x <<
4. 已知椭圆C :
+
=1(a >b >0)的左、右焦点为F 1、F 2,离心率为
,过F 2的直线l 交C 于A 、B
两点,若△AF
1B 的周长为4,则C 的方程为( )
A .
+
=1
B .
+y 2=1
C .
+
=1
D .
+
=1
5. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15
B .30
C .31
D .64
6. 有下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.
②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.
其中正确命题的个数是( )
A .0
B .1
C .2
D .3
7. 某程序框图如图所示,则输出的S 的值为( )
A .11
B .19
C .26
D .57
8. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )
A .2017
B .﹣8
C .
D .
9. 已知函数⎩
⎨⎧≤>=)0(||)
0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有
1
()(2)2
g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零
点的个数为( )
A .7
B .6
C .5
D .4
【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.
10.下列命题中错误的是( )
A .圆柱的轴截面是过母线的截面中面积最大的一个
B .圆锥的轴截面是所在过顶点的截面中面积最大的一个
C .圆台的所有平行于底面的截面都是圆面
D .圆锥所有的轴截面是全等的等腰三角形
11.在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
12.5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )
A .35
B .
C .
D .53
二、填空题
13()23k x =-+有两个不等实根,则的取值范围是 .
14.若全集,集合,则
15.已知角α终边上一点为P (﹣1,2),则值等于 .
16.设函数f (x )=
则函数y=f (x )与y=的交点个数是 .
17
.向区域
内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .
18.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)
三、解答题
19.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的极坐标方程是2=
ρ,曲线2C 的参数方程是
θππθθ],2,6[,0(21
sin 2,
1∈>⎪⎩

⎨⎧+==t t y x 是参数). (Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程;
(Ⅱ)求t 的取值范围,使得1C ,2C 没有公共点.
20.已知函数f (x )
=,求不等式f (x )<4的解集.
21.(本小题满分12分)
已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=.
(1)求向量与的夹角;
a b .
(2)求|2|
22.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.
23.已知数列{a n}是各项均为正数的等比数列,满足a3=8,a3﹣a2﹣2a1=0.
(Ⅰ)求数列{a n}的通项公式
(Ⅱ)记b n=log2a n,求数列{a n•b n}的前n项和S n.
24.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.
求证:PC⊥BC;
(Ⅱ)求三棱锥C﹣DEG的体积;
(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.
宽城区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】D
【解析】解:∵S n =n 2+2n (n ∈N *),∴当n=1时,a 1=S 1=3;当n ≥2时,a n =S n ﹣S n ﹣1=(n 2+2n )﹣[(n ﹣1)2
+2
(n ﹣1)]=2n+1.
∴=
=

∴++…+=
+
+…+
=
=﹣
. 故选:D .
【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
2. 【答案】C
【解析】解:抛物线y=4x 2的标准方程为 x 2
=y ,p=,开口向上,焦点在y 轴的正半轴上,
故焦点坐标为(0,),
故选C .
【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x 2
的方程化为标准形式,是解题的
关键.
3. 【答案】B

点:函数的奇偶性与单调性.
【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 4. 【答案】A
【解析】解:∵△AF
B的周长为4,
1
∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,
∴4a=4,
∴a=,
∵离心率为,
∴,c=1,
∴b==,
∴椭圆C的方程为+=1.
故选:A.
【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.
5.【答案】A
【解析】解:∵等差数列{a n},
∴a6+a8=a4+a10,即16=1+a10,
∴a10=15,
故选:A.
6.【答案】C
【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.
②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.
故选:C.
【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.
7.【答案】C
【解析】解:模拟执行程序框图,可得
S=1,k=1
k=2,S=4
不满足条件k>3,k=3,S=11
不满足条件k>3,k=4,S=26
满足条件k>3,退出循环,输出S的值为26.
故选:C.
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查.
8.【答案】D
【解析】解:∵f(x+2)=﹣f(x),
∴f(x+4)=﹣f(x+2)=f(x),
即f(x+4)=f(x),
即函数的周期是4.
∴a2017=f(2017)=f(504×4+1)=f(1),
∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,
∴f(1)=f(﹣1)=,
∴a2017=f(1)=,
故选:D.
【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.
9.【答案】D

Ⅱ卷(共100分)[.Com]
10.【答案】B
【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.
∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.
对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为

∴截面三角形SAB的高为,∴截面面积
S==≤=.
故截面的最大面积为.故B错误.
对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.
对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.
故选:B.
【点评】本题考查了旋转体的结构特征,属于中档题.
11.【答案】D
【解析】解:∵sinC+sin(B﹣A)=sin2A,
∴sin(A+B)+sin(B﹣A)=sin2A,
∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,
∴2cosAsinB=sin2A=2sinAcosA,
∴2cosA(sinA﹣sinB)=0,
∴cosA=0,或sinA=sinB,
∴A=,或a=b,
∴△ABC为等腰三角形或直角三角形
故选:D.
【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.
12.【答案】D
【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53

故选:D .
【点评】本题主要考查分步计数原理的应用,属于基础题.
二、填空题
13.【答案】53,124⎛⎤
⎥⎝⎦
【解析】
试题分析:
作出函数y =
()23y k x =-+的图象,
如图所示,
函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303
224
k -=
=+,当直线()23y k x =-+
2=,解得512k =,所以实数的取值范围是53,124⎛⎤
⎥⎝⎦
.111]
考点:直线与圆的位置关系的应用.
【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键. 14.【答案】{|0<<1} 【解析】
∵,∴
{|0<<1}。

15.【答案】

【解析】
解:角α
终边上一点为P
(﹣1,
2), 所以tan α=﹣2.
=
=
=﹣.
故答案为:﹣.
【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.
16.【答案】4.
【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,
由图知两函数y=f(x)与y=的交点个数是4.
故答案为:4.
17.【答案】.
【解析】解:不等式组的可行域为:
由题意,A(1,1),∴区域的面积为
=(x3)=,
由,可得可行域的面积为:1=,
∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与
与坐标原点连线的斜率大于1
的概率为:
=
故答案为:.
【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.
18.【答案】 24
【解析】解:由题意,B 与C
必须相邻,利用捆绑法,可得=48种方法,
因为A 必须在D 的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,
故答案为:24.
【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.
三、解答题
19.【答案】
【解析】 【解析】(Ⅰ)曲线1C 的直角坐标方程是22
2
=+y x ,
曲线2C 的普通方程是)2
1
221(1+≤≤+
=t y t x …………5分 (Ⅱ)对于曲线1:C 22
2=+y x ,令1x =,则有1y =±.
故当且仅当0011
12-122t t t t >>⎧⎧⎪⎪
⎨⎨+>+<⎪⎪⎩⎩或时,1C ,2C 没有公共点, 解得1
2
t >.……10分
20.【答案】
【解析】解:函数f (x )=
,不等式f (x )<4,
当x ≥﹣1时,2x+4<4,解得﹣1≤x <0; 当x <﹣1时,﹣x+1<4解得﹣3<x <﹣1. 综上x ∈(﹣3,0).
不等式的解集为:(﹣3,0).
21.【答案】(1)3
π
;(2) 【解析】
试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式2
2
a a =,把
考点:向量的数量积,向量的夹角与模.
【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b
⋅<>=求得这两个
向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角. 22.【答案】
【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+,
∴|MF|+|NF|=x 1+x 2+p=8;
(2)p=2时,y 2
=4x ,
若直线MN 斜率不存在,则B (3,0);
若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则
代入利用点差法,可得y12﹣y22=4(x1﹣x2)
∴k MN=,
∴直线MN的方程为y﹣t=(x﹣3),
∴B的横坐标为x=3﹣,
直线MN代入y2=4x,可得y2﹣2ty+2t2﹣12=0
△>0可得0<t2<12,
∴x=3﹣∈(﹣3,3),
∴点B横坐标的取值范围是(﹣3,3).
【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.
23.【答案】
【解析】解:(Ⅰ)设数列{a n}的公比为q,
由a n>0可得q>0,且a3﹣a2﹣2a1=0,
化简得q2﹣q﹣2=0,
解得q=2或q=﹣1(舍),
∵a3=a1•q2=4a1=8,∴a1=2,
∴数列{a n}是以首项和公比均为2的等比数列,
∴a n=2n;
(Ⅱ)由(I)知b n=log2a n==n,
∴a n b n=n•2n,
∴S n=1×21+2×22+3×23+…+(n﹣1)×2n﹣1+n×2n,
2S n=1×22+2×23+…+(n﹣2)×2n﹣1+(n﹣1)×2n+n×2n+1,
两式相减,得﹣S n=21+22+23+…+2n﹣1+2n﹣n×2n+1,
∴﹣S n=﹣n×2n+1,
∴S n=2+(n﹣1)2n+1.
【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题.
24.【答案】
【解析】解:(I)证明:∵PD⊥平面ABCD,∴PD⊥BC,
又∵ABCD是正方形,∴BC⊥CD,∵PDICE=D,
∴BC⊥平面PCD,又∵PC⊂面PBC,∴PC⊥BC.
(II)解:∵BC⊥平面PCD,
∴GC是三棱锥G﹣DEC的高.
∵E是PC的中点,∴.
∴.
(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA∥平面MEG.
下面证明之:
∵E为PC的中点,O是AC的中点,∴EO∥平面PA,
又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG,
在正方形ABCD中,∵O是AC中点,∴△OCG≌△OAM,
∴,∴所求AM的长为.
【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.。

相关文档
最新文档