2017-2018学年四川师大实验外国语学校八年级(上)期中数学试卷(含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年四川师大实验外国语学校八年级(上)期中数学试卷
(考试时间:120分钟满分:150分)
A卷(共100分)
一、选择题(每小题3分,共30分)
1.在﹣5,0,﹣2,4这四个数中,最大的数是()
A.4 B.﹣5 C.0 D.﹣2
2.用激光测距仪测得两地之间的距离为14 000 000米,将14 000 000用科学记数法表示为()A.14×107B.14×106C.1.4×107D.0.14×108
3.如图所示的是()的平面展开图.
A.三棱锥B.三棱柱C.四棱柱D.四棱锥
4.下列各组式子,不是同类项的是()
A.22与33B.3c2b与﹣5b2c
C.xy与4xy D.4m2n与2nm2
5.下列说法正确的是()
A.0是最小的整数
B.若|a|=|b|,则a=b
C.互为相反数的两数之和为零
D.数轴上两个有理数,较大的数离原点较远
6.用代数式表示“a的3倍与b的差的平方”,正确的是()
A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2
7.单项式﹣2x2y系数与次数分别是()
A.2,2 B.2,3 C.﹣2,3 D.﹣2,2
8.某种品牌彩电原价a元,降价20%后,则该品牌彩电每台售价为()
A.元B.0.8a元C.0.2a元D.元
9.下列代数式中,值一定为正数的是()
A.(x+2)2B.(x+1)C.(﹣x)2+2 D.1﹣x2
10.观察下图中正方形四个顶点所标的数字规律,可知数2015应标在()
A.第502个正方形的左下角
B.第503个正方形的右上角
C.第504个正方形的左上角
D.第504个正方形的右上角
二、填空题(每小题4分,共16分)
11.的相反数是,的倒数是,
12.绝对值大于2且不大于5的整数为,平方等于64的数为,
13.在﹣、0、0.6、30、﹣3010、﹣|{﹣10}|、﹣(﹣17)、|﹣2|中,属于非正数的有,属于分数集合的有,
14.若|m﹣3|+(n+2)2=0,则n m﹣mn=.
三、解答题(共54分)
15.(16分)耐心算一算
(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19)(2)﹣(﹣3.2)+(﹣1)﹣|﹣1.8|
(3)﹣13×﹣0.34×+×(﹣13)﹣×0.34 (4)﹣23﹣(1﹣0.5)××[2﹣(﹣3)2]
16.(8分)化简
(1)6a2b+5ab2﹣4ab2﹣7a2b (2)4y2﹣[3y﹣(3﹣2y)+2y2]
17.先化简,再求值:
(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2.
18.下图是由几个小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.
19.化简并在数轴上分别画出表示下列各数的点,并把各数用“<”号连接起来.
(﹣1)2016,+(﹣3.5),﹣(﹣1.5),﹣|﹣2.5|,﹣22
解:化简:(﹣1)2016=;+(﹣3.5)=;﹣(﹣1.5)=;﹣|﹣2.5|=;﹣22=.
在数轴上表示如下:
用“<”号连接为:.
20.某办公用品销售商店推出两种优惠方法:①每购买2个书包,赠送一支水性笔;②购书包和水性笔一律九折优惠,书包每个定价40元,水性笔每支10元,小颖和同学需购买8个书包,水性笔若干支(不少于4支)
(1)用优惠方法①购买水性笔x支,总费用为y1,用含x的代数式表示y1;用优惠方案②购买水性笔x支,总费用为y2,用含x的代数式表示y2;
(2)小颖和同学需购买8个书包和水性笔16支,请分别计算y1,y2的值,请设计出费用最少的方案,求出最少费用.
B卷(50分)
一、填空题(每小题4分,共20分)
21.计算:1﹣(+2)+3﹣(+4)+5﹣(+6)…+2015﹣(+2016)=.
22.如果52x2y n+(m﹣3)x5是关于x,y的六次二项式,则m、n应满足条件.
23.如果a+b>0,a﹣b<0,ab<0,则a 0,b 0,|a| |b|.
24.用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要个立方块,最多要个立方块.
25.(3分)已知有理数a,b,c所对应的数在数轴上如图所示,化简:|a﹣b|﹣|a﹣c|+|﹣b|=.
二、解答题(共30分)
26.(6分)代数式2x2+ax﹣y+6与2bx2﹣3x+5y﹣1的差与字母x的取值无关,求代数式a3﹣3b2﹣(a3﹣2b2)的值.
27.(6分)已知当x=2,y=﹣4时,代数式ax+by的值为2016.求当x=﹣1.y=﹣时,代数式3ax ﹣24by3+2015的值.
28.(8分)观察下列式子:、1×=1﹣;×=﹣;×=﹣;×=﹣…
(1)用含n(其中n为正整数)的代数式表达上式规律为:=;
(2)利用规律计算:+++…+;
(3)利用规律先化简再求值:+++…+,其中﹣=,且满足3x2+6045x﹣3=0.
(4)探究并计算:+++…+.
29.(10分)如图,在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、b、c 满足(c﹣5)2+|a+b|=0.
(1)a=,b=,c=.
(2)若将数轴折叠,使得A点与C点重合,则点B与表示数的点重合;
(3)点A、B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=(用含t的代数式表示)
(4)请问:3BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
参考答案与试题解析
1.【解答】解:根据有理数大小比较的法则,可得
﹣5<﹣2<0<4,
所以在﹣5、﹣2、0、4这四个数中,最大的数是4.
故选:A.
2.【解答】解:14 000 000=1.4×107.
故选:C.
3.【解答】解:由图可得,该图是三棱柱的平面展开图.
故选:B.
4.【解答】解:A、22与33是同类型;
B、3c2b与﹣5b2c相同字母的指数不相等,不是同类项;
C、xy与4xy是同类型;
D、4m2n与2nm2是同类型;
故选:B.
5.【解答】解:0不是最小的整数,故选项A错误,
若|a|=|b|,则a=±b,故选项B错误,
互为相反数的两个数的和为零,故选项C正确,
数轴上两个有理数,绝对值较大的数离原点较远,故选项D错误,
故选:C.
6.【解答】解:∵a的3倍与b的差为3a﹣b,
∴差的平方为(3a﹣b)2.
故选:B.
7.【解答】解:单项式﹣2x2y系数与次数分别是﹣2和3.
故选:C.
8.【解答】解:由题意,得(1﹣20%)a=0.8a.
故选:B.
9.【解答】解:
A.(x+2)2≥0,值不一定为正数,故该选项不符合题意;
B.(x+1)可以为正数也可以为负数还可以为0,不确定故该选项不符合题意;
C.∵(﹣x)2≥0,∴(﹣x)2+2>0,即(﹣x)2+2为正数,故该选项符合题意;
D.1﹣x2可以为正数也可以为负数还可以为0,不确定故该选项不符合题意;
故选:C.
10.【解答】解:∵2015=4×503+3,
∴数2015应标在第504个正方形的右上角.
故选:D.
11.【解答】解:|﹣|=,
的相反数是﹣,
的倒数是﹣,
故答案为:﹣;﹣.
12.【解答】解:根据题意,满足条件的数有:﹣5,5,﹣4,4,﹣3,3,
∵(±8)2=64,∴平方等于64的数是±8.
故答案为:﹣5,5,﹣4,4,﹣3,3;8或﹣8.
13.【解答】解:在﹣、0、0.6、30、﹣3010、﹣|{﹣10}|、﹣(﹣17)、|﹣2|中,属于非正数的有﹣、0、﹣3010、﹣|{﹣10}|;
属于分数集合的有﹣、0.6、|﹣2|.
故答案为:﹣、0、﹣3010、﹣|{﹣10}|;﹣、0.6、|﹣2|.
14.【解答】解:由题意得,m﹣3=0,n+2=0,
解得m=3,n=﹣2,
所以,n m﹣mn=(﹣2)3﹣3×(﹣2)=﹣8+6=﹣2.
故答案为:﹣2.
15.【解答】解:(1)原式=﹣3﹣4﹣11+19=1;
(2)原式=3.2﹣1﹣1.8=﹣0.2;
(3)原式=﹣13×(+)﹣0.34×(+)=﹣13﹣0.34=﹣13.34;
(4)原式=﹣8﹣××(﹣7)=﹣8+=﹣.
16.【解答】解:(1)6a2b+5ab2﹣4ab2﹣7a2b=﹣a2b+ab2;
(2)4y2﹣[3y﹣(3﹣2y)+2y2]
=4y2﹣[3y﹣3+2y+2y2]
=4y2﹣3y+3﹣2y﹣2y2
=2y2﹣5y+3.
17.【解答】解:原式=2a2b+2ab2﹣(2a2b﹣2+3ab2+2)
=2a2b+2ab2﹣2a2b﹣3ab2
=﹣ab2.
当a=2,b=﹣2时,
原式=﹣2×(﹣2)2=﹣8.
18.【解答】解:主视图和左视图依次如下图.
(3分)(3分)
19.【解答】解:(﹣1)2016=1;+(﹣3.5)=﹣3.5;﹣(﹣1.5)=1.5;﹣|﹣2.5|=﹣2.5;﹣22=﹣4.
﹣22<+(﹣3.5)<﹣|﹣2.5|<(﹣1)2016<﹣(﹣1.5).
故答案为:1;﹣3.5;1.5;﹣2.5;﹣4;﹣22<+(﹣3.5)<﹣|﹣2.5|<(﹣1)2016<﹣(﹣1.5).20.【解答】解:(1)由题意可得,
y1=40×8+(x﹣4)×10=10x+280,
y2=(40×8+10x)×0.9=9x+288,
即y1=10x+280;y2=9x+288;
(2)当x=16时,y1=10×16+280=440,
当x=16时,y2=9×16+288=432,
即小颖和同学需购买8个书包和水性笔16支,y1的值是440,y2的值是432,
费用最少方案是:先通过①的优惠方法买8个书包,4支水性笔,再通过②的优惠方法买12支水性笔,费用最少,最少费用为40×8+(16﹣4)×10×0.9=428元.
21.【解答】解:原式=(1﹣2)+(3﹣4)+…+(2015﹣2016)
=﹣1+(﹣1)+…(﹣1)
=﹣1008
故答案为:﹣1008
22.【解答】解:由52x2y n+(m﹣3)x5是关于x,y的六次二项式,得
2+n=6,m﹣3≠0.
解得n=4,m≠3,
故答案为:n=4,m≠3.
23.【解答】解:∵a﹣b<0,
∴a<b,
∵ab<0,
∴a<0,b>0,
又∵a+b>0,
∴|a|<|b|.
故答案为:<,>,<.
24.【解答】解:观察图象可知:这样的几何体最少需要(2+1+1)+(3+1)+1=9(个)小立方块;最多需要3×2+2×3+1=13(个)小立方块.
故答案为:9,13.
25.【解答】解:由图可得,b<a<0<c,
则a﹣b>0,a﹣c<0,﹣b>0,
所以|a﹣b|﹣|a﹣c|+|﹣b|=a﹣b+a﹣c﹣b=2a﹣2b﹣c.
故答案为:2a﹣2b﹣c.
26.【解答】解:根据题意得:2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,
由结果与x取值无关,得到2﹣2b=0,a+3=0,
解得:a=﹣3,b=1,
则原式=a3﹣3b2﹣a3+2b2=a3﹣b2=﹣﹣1=﹣.
27.【解答】解:由题意得:,
∴a﹣b=1008,
当x=﹣1,y=﹣时,
.答:当x=﹣1.y=﹣时,代数式3ax﹣24by3+2015的值为﹣1009.
28.【解答】解:(1)=,
故答案为:;
(2)
=﹣+﹣+﹣+…+﹣
=﹣
=;
(3)原式=﹣+﹣+﹣+……+﹣
=﹣
=,
∵3x2+6045x﹣3=0,
∴x2+2015x=1,
则原式=2015;
(4)
=
29.【解答】解:(1)∵(c﹣5)2+|a+b|=0,
∴a+b=0,c﹣5=0,
解得a=﹣b,c=5,
∵b是最小的正整数,
∴b=1;a=﹣1
故答案为:﹣1,1,5;
(2)点A与点C的中点对应的数为:=2,
点B到2的距离为1,所以与点B重合的数是:2+1=3.故答案为:1;
(3)AB=t+2t+2=3t+2,AC=t+3t+6=4t+6,BC=t+4;故答案为:3t+2,4t+6,t+4.
(4)∵3BC﹣AB=3(t+4)﹣(3t+2)=10,
∴3BC﹣AB的值不随着时间t的变化而改变,其值为10。