2016年江西省中等学校招生考试数学模拟试卷和解析PDF版(三)

合集下载

2016年江西省中考数学试题(含答案)

2016年江西省中考数学试题(含答案)

江西省2016年中等学校招生考试数学试卷(江西 毛庆云)说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ). A .-12B .0C .-2D .2【答案】 C.【考点】 有理数大小比较.【分析】 根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.【解答】 解:在-12 ,0,-2,2这四个数中,大小顺序为:﹣2<-12<0<2,所以最小的数是-12.故选C .【点评】 本题主要考查了有理数的大小的比较,解题的关键是熟练掌握有理数大小比较的 法则,属于基础题.2.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是( ). A .25,25 B .28,28C .25,28D .28,31【答案】 B .【考点】 众数和中位数.【分析】 根据中位数的定义“将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数”;众数是指一组数据中出现次数最多的那个数。

【解答】 这组数据中28出现4次,最多,所以众数为28。

由小到大排列为:23,25,25,28,28,28,31,所以中位数为28,选B 。

【点评】 本题考查的是统计初步中的基本概念——中位数和众数,要知道什么是中位数、众数.3.下列运算正确的是是( ). A .a 2+a 3=a 5B .(-2a 2)3=-6a 5C .(2a+1)(2a-1)=2a 2-1D .(2a 3-a 2)÷2a=2a-1【答案】 D.【考点】 代数式的运算。

【分析】 本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.根据法则直接计算.【解答】 A 选项中3a 与2a 不是同类项,不能相加(合并),3a 与2a 相乘才得5a ;B 是幂的乘方,幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方(底数不变,指数相乘),结果应该-86a ;C 是平方差公式的应用,结果应该是24a 1-;D.是多项式除以单项式,除以2a 变成乘以它的倒数,约分后得2a-1。

江西省2016届中考数学模拟试卷(1)含答案解析

江西省2016届中考数学模拟试卷(1)含答案解析

2016年江西省中考数学模拟试卷(1)一、选择题:每小题3分,共18分江西省2015年中等学校招生考试数学模拟试卷试题卷(三)1.下列运算正确的是()A.a•a2=a2B.a6÷a2=a4C.(a3)4=a7D.(a2b)3=a2b32.下列各数中是有理数的是()A. B.4πC.sin45°D.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>04.如图,一个正方体和一个圆柱体紧靠在一起,其左视图是()A.B.C.D.5.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差 B.众数 C.中位数D.平均数6.在直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点C(4,﹣3)关于原点对称D.点A与点F(﹣4,3)关于第二象限的平分线对称二、填空题7.在平面直角坐标系中,点P(﹣2,1)在第象限.8.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是m.9.已知点A(m,﹣2),B(3,m﹣1),且直线AB∥x轴,则m的值是.10.如图,在直角坐标系中,点B在x轴上,∠ABO=90°,A﹙1,2﹚,把△AOB绕点O逆时针旋转90°,得到△A1OB1,写出点A1的坐标:.11.如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是.12.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C的C处测得∠BCA=50°,BC=10m,则桥长AB=m(用计算器计算,结果精确到0.1米)13.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,其中B点坐标为(4,0),直线DE是抛物线的对称轴,且与x轴交于点E,CD⊥DE于D,则下列结论正确的序号为(多填或错填得0分,少填酌情给分)①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4.14.如图在直角坐标系中,△ABC的面积为2,三个顶点的坐标分别为A(﹣3,﹣2),B(﹣1,﹣1),C(a,b),且a、b均为负整数,则点C的坐标为.三、(本大题共4小题,每小题6分,共24分)15.关于x的不等式组.(1)当a=3时,解这个不等式组;(2)若不等式组的解集是x<1,求a的值.16.已知点A、点B.在网格中用无刻度直尺画两个不全等的菱形,使菱形的顶点A、B、C、D恰好为格点,并计算所画菱形面积.17.如图,已知正五边形ABCDE,过点A作直线AF∥CD,交DB的延长线于点F(1)求∠AFD的度数;(2)求证:AF=BD.18.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2的卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是.(1)求木箱中装有标1的卡片张数;(2)求从箱子中随机摸出一张标有数字3的卡片的概率.四、(本大题4小题,每小题8分,共32分)19.如图,等腰三角形ABC中,BA=BC,以AB为直径作圆,交BC于点E,圆心为O.在EB上截取ED=EC,连接AD并延长,交⊙O于点F,连接OE、EF.(1)试判断△ACD的形状,并说明理由;(2)求证:∠ADE=∠OEF.20.某中学准备从体育用品商店一次性购买若干个足球和篮球(2015•江西校级模拟)如图,直线y=x与反比例函数y=(k>0,x>0)的图象交于点A.将直线y=x向上平移4个单位长度后,与y轴交于点C,与反比例函数y=(k>0,x>0)的图象交于点B,分别过点A,B作AD⊥x轴于点D,BE⊥x轴于点E,且OD=3OE.(1)直线BC对应的函数解析式是;(2)求k的值.22.2014年某校有若干名学生参加了中考,学校随机抽取了考生总数的8%的学生数学成绩,现将他们的成绩分成:A(96分~120分)、B(84分~95分)、C(72分~83分)、D(72分以下)四个等级进行分析,并根据成绩得到如下两个统计图:(1)在所抽取的考生中,若D级只有4人:①请估算该校所有考生中,约有多少人数学成绩是D级?②考生数学成绩的中位数落在等级中;(2)天天同学在计算所抽取的考生数学成绩的平均数时,其方法是:=(105+90+80+30)÷4=76.25,问天天同学的计算正确吗?若不正确,请你帮他计算正确的平均数.23.甲、乙两玩具厂从已有订单来看,两厂都预计自2011年起本厂的月利润y(十万元)与月份x之间满足一定的函数关系.甲厂预测的关系:y=x2﹣x+2;乙厂则预测该厂的月利润与月份也满足二次函数关系,且图象形状与甲厂的相同.又知乙厂预测的该厂前几个月份的月利润如图所示,试根据上述信息解决下列问题:(1)求乙厂预测的月利润y(十万元)与月份x之间的函数关系式;(2)x为何值时,两厂的月利润差距为5万元?(3)当两厂的月利润差距超过50万元时,月利润低的玩具厂被月利润高的玩具厂收购.如果不考虑其他因素,按上述趋势,是否会出现收购的情况?如果会,谁被谁收购?何时被收购?如果不会,请说明理由.六、(本大题共12分)24.已知如图1、2,D是△ABC的BC边上的中点,DE⊥AB于E、DF⊥AC于F,且BE=CF,点M、N分别是AE、DE上的点,AN⊥FM于G(1)如图1,当∠BAC=90°时;①求证:四边形AEDF是正方形;②试问AN与FM之间的数量关系与四边形AEDF的两对角线的数量关系相同吗?请证明你的结论;(2)如图2,当∠BAC≠90°,且AF:DF=2:1时,求AN:FM的值;(3)根据(1)中②和(2)的结论或求解过程,在一般情况下(即除去条件:“∠BAC﹣90°,AF:DF=2:1”,其他条件不变),问AN与FM之间的数量关系有何规律?直接用文字说明或用等式表示(不证明).2016年江西省中考数学模拟试卷(1)参考答案与试题解析一、选择题:每小题3分,共18分江西省2015年中等学校招生考试数学模拟试卷试题卷(三)1.下列运算正确的是()A.a•a2=a2B.a6÷a2=a4C.(a3)4=a7D.(a2b)3=a2b3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法和除法、幂的乘方和积的乘方进行计算即可.【解答】解:A、a•a2=a3,错误;B、a6÷a2=a4,正确;C、(a3)4=a12,错误;D、(a2b)3=a6b3,错误;故选B.【点评】此题考查同底数幂的乘法和除法、幂的乘方和积的乘方,关键是根据法则进行计算.2.下列各数中是有理数的是()A. B.4πC.sin45°D.【考点】特殊角的三角函数值.【专题】计算题.【分析】要想解决此题,首先明确有理数的分类,其次牢记特殊角的三角函数值.【解答】解:A、==3,是无理数;B、4π是无理数;C、sin45°=是无理数;D、==2,是有理数;故选D.【点评】本题考查了特殊角的三角函数值以及有理数的分类,解题时熟记特殊角的三角函数值是关键,此题难度不大,易于掌握.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【考点】正比例函数的性质.【分析】根据正比例函数的性质对各小题进行逐一判断即可.【解答】解:A、函数图象经过点(2,4),错误;B、函数图象经过第一、三象限,错误;C、y随x的增大而增大,正确;D、当x>0时,才有y>0,错误;故选C.【点评】本题考查的是正比例函数的性质,熟知正比例函数的图象与系数的关系是解答此题的关键.4.如图,一个正方体和一个圆柱体紧靠在一起,其左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:左视图是从左面看所得到的图形,正方体从左面看是正方形,圆柱从左面看是长方形,并且正方体挡住了圆柱体,所以一个正方体和一个圆柱体紧靠在一起,则它们的左视图是一个正方形底部是一个长方形,长方形用虚线,【点评】此题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.5.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差 B.众数 C.中位数D.平均数【考点】统计量的选择.【分析】李老师想了解小张数学学习变化情况,即成绩的稳定程度.根据方差的意义判断.【解答】解:由于方差反映数据的波动大小,故想了解小张数学学习变化情况,则应关注数学成绩的方差.故选A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.6.在直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点B(﹣3,﹣4)关于y轴对称B.点A与点C(3,﹣4)关于x轴对称C.点A与点C(4,﹣3)关于原点对称D.点A与点F(﹣4,3)关于第二象限的平分线对称【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【专题】压轴题.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反;关于第二象限角平分线的对称的两点坐标的关系,纵横坐标交换位置且变为相反数可得答案.【解答】解:A、点A的坐标为(﹣3,4),则点A与点B(﹣3,﹣4)关于x轴对称,故此选项错误;B、点A的坐标为(﹣3,4),点A与点C(3,﹣4)关于原点对称,故此选项错误;C、点A的坐标为(﹣3,4),点A与点C(3,﹣4)关于原点对称,故此选项错误;D、点A与点F(﹣4,3)关于第二象限的平分线对称,故此选项正确;【点评】此题主要考查了关于xy轴对称点的坐标点的规律,以及关于原点对称的点的坐标特点,关键是熟练掌握点的变化规律,不要混淆.二、填空题7.在平面直角坐标系中,点P(﹣2,1)在第二象限.【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(﹣2,1)在第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是170m.【考点】勾股定理的应用.【专题】计算题.【分析】根据正南方向和正东方向成九十度,利用勾股定理进行计算即可.【解答】解:∵正南方向和正东方向成90°,∴根据勾股定理得学校与书店之间的距离为=170(米).故答案为:170.【点评】此题考查的是勾股定理在实际生活中的运用,解答此题的关键是根据题意画出图形,再根据勾股定理进行计算.9.已知点A(m,﹣2),B(3,m﹣1),且直线AB∥x轴,则m的值是﹣1.【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【解答】解:∵点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∴m﹣1=﹣2,解得m=﹣1.故答案为:﹣1.【点评】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.10.如图,在直角坐标系中,点B在x轴上,∠ABO=90°,A﹙1,2﹚,把△AOB绕点O逆时针旋转90°,得到△A1OB1,写出点A1的坐标:﹙﹣2,1﹚.【考点】坐标与图形变化-旋转.【专题】探究型.【分析】先根据A点坐标得出AB及OB的长,由图形旋转的性质可知△AOB≌△A1OB1,故可得出AB=A1B1=2,OB=OB1=1,进而可得出A1点的坐标.【解答】解:∵在直角坐标系中,点B在x轴上,∠ABO=90°,A﹙1,2﹚,∴AB=2,OB=1,∵△A1OB1由△AOB绕点O逆时针旋转90°得出,∴△AOB≌△A1OB1,∴AB=A1B1=2,OB=OB1=1,∴A1的坐标:(﹣2,1).故答案为:(﹣2,1).【点评】本题考查的是坐标与图形的变化﹣旋转,熟知图形旋转后所得图形与原图形全等是解答此题的关键.11.如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是10.【考点】平行四边形的判定与性质;线段垂直平分线的性质.【分析】利用平行四边形的性质和判定得出四边形ABCD是平行四边形,AB=CD,进而利用线段垂直平分线的性质得出AE=EC,进而求出答案.【解答】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴AB=CD=4,∵EF是AC的垂直平分线,∴AE=EC,∴△CDE的周长是:ED+EC+DC=AD+DC=10.故答案为:10.【点评】此题主要考查了平行四边形的性质和判定以及线段垂直平分线的性质,得出AB=CD=4是解题关键.12.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸C 的C处测得∠BCA=50°,BC=10m,则桥长AB=11.9m(用计算器计算,结果精确到0.1米)【考点】解直角三角形的应用.【分析】在Rt△ABC中,tan∠BCA=,由此可以求出AB之长.【解答】解:在△ABC中,∵BC⊥BA,∴tan∠BCA=.又∵BC=10m,∠BCA=50°,∴AB=BC•tan50°=10×tan50°≈11.9m.故答案为11.9.【点评】此题考查了正切的概念和运用,关键是把实际问题转化成数学问题,把它抽象到直角三角形中来.13.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,其中B点坐标为(4,0),直线DE是抛物线的对称轴,且与x轴交于点E,CD⊥DE于D,则下列结论正确的序号为①③④(多填或错填得0分,少填酌情给分)①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4.【考点】二次函数图象与系数的关系.【分析】根据抛物线的性质逐项判断即可.由抛物线的开口判断a的符号;由对称轴和a的符号判断b的符号;由抛物线与x轴的交点判断b2﹣4ac的符号,根据B的坐标和函数的对称性即可判断AE+CD的值.【解答】解:∵抛物线开口向下,∴a<0.∵抛物线对称轴是x=﹣>0,∴b>0.∵抛物线与x轴有两个交点,∴b2﹣4ac>0;∵CD⊥DE于D,∴四边形CDEO是矩形,∴CD=OE,∵A、B是关于对称轴DE的对称点,∴AE=BE,∴AE+CD=BE+OE=OB,∵B点坐标为(4,0),∴OB=4,∴AE+CD=4.故答案为①③④.【点评】本题考查了二次函数的图象与系数的关系以及二次函数的性质,熟练掌握二次函数的性质是解题的关键.14.如图在直角坐标系中,△ABC的面积为2,三个顶点的坐标分别为A(﹣3,﹣2),B(﹣1,﹣1),C(a,b),且a、b均为负整数,则点C的坐标为(﹣5,﹣1)、(﹣1,﹣3)、(﹣3,﹣4).【考点】坐标与图形性质;三角形的面积.【专题】数形结合.【分析】根据三角形面积公式,在第三象限内找出格点C使△ABC的面积为2,然后写出C点坐标.【解答】解:如图,∵a、b均为负整数,∴C点在第三象限,当以BC为底边时,由于△ABC的面积为2,则BC=4或BC=2,则C1(﹣5,﹣1),C3(﹣1,﹣3);当以AC为底边时,由于△ABC的面积为2,则AC=2,则C2(﹣3,﹣4);故答案为(﹣5,﹣1)、(﹣1,﹣3)、(﹣3,﹣4).【点评】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系,记住各象限内点的坐标特征.也考查了三角形面积公式.三、(本大题共4小题,每小题6分,共24分)15.关于x的不等式组.(1)当a=3时,解这个不等式组;(2)若不等式组的解集是x<1,求a的值.【考点】解一元一次不等式组.【分析】(1)把a=3代入不等式组,分别求出各不等式的解集,再求其公共解集即可.(2)解出不等式组的解集,根据已知不等式组有解比较,可求出a的值.【解答】解:(1)当a=3时,由①得:2x+8>3x+6,解得:x<2,由②得x<3,∴原不等式组的解集是x<2.(2)由①得:x<2,由②得x<a,而不等式组的解集是x<1,∴a=1.【点评】(1)把a=3代入不等式组,再根据求不等式组解集的方法求解即可.(2)是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.已知点A、点B.在网格中用无刻度直尺画两个不全等的菱形,使菱形的顶点A、B、C、D恰好为格点,并计算所画菱形面积.【考点】作图—应用与设计作图.【分析】由勾股定理得出AB==,根据菱形的性质以及格点的位置作图即可.【解答】解:如图,第一个菱形的面积为8,第二个菱形的面积为6.【点评】此题主要考查了作图﹣应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.17.如图,已知正五边形ABCDE,过点A作直线AF∥CD,交DB的延长线于点F(1)求∠AFD的度数;(2)求证:AF=BD.【考点】全等三角形的判定与性质.【分析】(1)首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可;(2)先证明∠CBD=∠F=36°,∠FBA=∠BCD=108°,于是△ABF≌△DBC,即可得出结论.【解答】(1)解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°;(2)证明:∵∠CBA=108°,∠CBD=36°,∴∠DBA=72°,∴∠FBA=108°,在△ABF和△DBC中,,∴△ABF≌△DBC,∴AF=BD.【点评】本题考查了多边形的内角和外角及平行线的性质、全等三角形的判定与性质,解题的关键是求得正五边形的内角和外角度数.18.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2的卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是.(1)求木箱中装有标1的卡片张数;(2)求从箱子中随机摸出一张标有数字3的卡片的概率.【考点】概率公式.【分析】(1)用总数乘以标有数字1的概率即可求得张数;(2)首先列方程求得标3的卡片的张数,然后利用概率公式求解即可.【解答】解:(1)根据题意得:50×=10,答:箱中装有标1的卡片10张;(2)设装有标3的卡片x张,则标2的卡片有3x﹣8张,根据题意得:x+3x﹣8=40,解得:x=12,所以摸出一张有标3的卡片的概率P==.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.四、(本大题4小题,每小题8分,共32分)19.如图,等腰三角形ABC中,BA=BC,以AB为直径作圆,交BC于点E,圆心为O.在EB上截取ED=EC,连接AD并延长,交⊙O于点F,连接OE、EF.(1)试判断△ACD的形状,并说明理由;(2)求证:∠ADE=∠OEF.【考点】圆周角定理;等腰三角形的判定与性质.【分析】(1)由AB是⊙O的直径,利用圆周角定理易得AE⊥CD,又因为ED=EC,利用垂直平分线的性质可得AC=AD,得出结论;(2)首先由外角的性质易得∠ADE=∠DEF+∠F,∠OEF=∠OED+∠DEF,由圆周角定理易得∠B=∠F,等量代换得出结论.【解答】解:(1)△ACD是等腰三角形.连接AE,∵AB是⊙O的直径,∴∠AED=90°,∴AE⊥CD,∵CE=ED,∴AC=AD,∴△ACD是等腰三角形;(2)∵∠ADE=∠DEF+∠F,∠OEF=∠OED+∠DEF,而∠OED=∠B,∠B=∠F,∴∠ADE=∠OEF.【点评】本题主要考查了圆周角定理,垂直平分线的性质,外角的性质等,作出适当的辅助线,等量代换是解答此题的关键.20.某中学准备从体育用品商店一次性购买若干个足球和篮球(2015•江西校级模拟)如图,直线y=x与反比例函数y=(k>0,x>0)的图象交于点A.将直线y=x向上平移4个单位长度后,与y轴交于点C,与反比例函数y=(k>0,x>0)的图象交于点B,分别过点A,B作AD⊥x轴于点D,BE⊥x轴于点E,且OD=3OE.(1)直线BC对应的函数解析式是y=x+4;(2)求k的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)由平移可直接求得BC的解析式;(2)可设OE=x,则OD=3x,可表示出A、B坐标,代入反比例函数解析式可求得x的值,可求得k.【解答】解:(1)∵直线BC是直线y=x向上平移4个单位得到,∴直线BC解析式为y=x+4,故答案为:y=x+4;(2)设OE=x,则OD=3x,∴B点坐标为(x,x+4),A点坐标为(3x,x),又∵A、B两点都在反比例函数图象上,∴x(x+4)=3x×x,解得x=0(舍去)或x=1,∴A点坐标为(3,),∴k=3×=.【点评】本题主要考查平移的性质和函数图象的交点,掌握函数解析式中的“左加右减、上加下减”是解题的关键,在(2)中注意A、B两点横坐标的关系是解题的关键.22.2014年某校有若干名学生参加了中考,学校随机抽取了考生总数的8%的学生数学成绩,现将他们的成绩分成:A(96分~120分)、B(84分~95分)、C(72分~83分)、D(72分以下)四个等级进行分析,并根据成绩得到如下两个统计图:(1)在所抽取的考生中,若D级只有4人:①请估算该校所有考生中,约有多少人数学成绩是D级?②考生数学成绩的中位数落在B等级中;(2)天天同学在计算所抽取的考生数学成绩的平均数时,其方法是:=(105+90+80+30)÷4=76.25,问天天同学的计算正确吗?若不正确,请你帮他计算正确的平均数.【考点】条形统计图;扇形统计图;加权平均数;中位数.【分析】(1)①根据统计图中所提供的数据计算即可;②有所抽取的考生数为4÷10%=40人分别算出各等级的人数即可求出考生数学成绩的中位数落在B等级中;(2)不正确,设抽取的考生数为n,利用加权平均数来求.【解答】解:(1)①D级的人数比:100%﹣30%﹣40%﹣20%=10%,所抽取的考生数;4÷10%=40人,该校考生总数:40÷0.08=500人,∴该校所有考生中约有500×10%=50人数学成绩是D级;②∵所抽取的考生数为4÷10%=40人,∴A级人数40×30%=12人,B级人数40×40%=16人,C级人数40×20%=8人,D级4人,∴考生数学成绩的中位数落在B等级中;故答案为:B;(2)不正确,设抽取的考生数为n,则==86.5,答;正确的平均数为:86.5,【点评】本题考查了条形统计图,扇形统计图,加权平均数,中位数,熟记这些概念是解题的关键.23.甲、乙两玩具厂从已有订单来看,两厂都预计自2011年起本厂的月利润y(十万元)与月份x之间满足一定的函数关系.甲厂预测的关系:y=x2﹣x+2;乙厂则预测该厂的月利润与月份也满足二次函数关系,且图象形状与甲厂的相同.又知乙厂预测的该厂前几个月份的月利润如图所示,试根据上述信息解决下列问题:(1)求乙厂预测的月利润y(十万元)与月份x之间的函数关系式;(2)x为何值时,两厂的月利润差距为5万元?(3)当两厂的月利润差距超过50万元时,月利润低的玩具厂被月利润高的玩具厂收购.如果不考虑其他因素,按上述趋势,是否会出现收购的情况?如果会,谁被谁收购?何时被收购?如果不会,请说明理由.【考点】二次函数的应用;条形统计图.【分析】(1)根据:乙厂则预测该厂的月利润与月份也满足二次函数关系,且图象形状与甲厂的相同,设乙厂预测的月利润y (十万元)与月份x 之间的函数关系式为y=x 2+bx+c ,根据图象,把x=2,y=0.5,x=4,y=1代入求b 、c 的值,确定乙厂的函数关系式;(2)分两种情况:y 甲﹣y 乙=0.5,y 乙﹣y 甲=0.5,列方程分别求解;(3)分两种情况:①y 乙﹣y 甲>5,②y 甲﹣y 乙>5,列不等式求x 的范围,作出判断.【解答】解:(1)设乙厂预测的月利润y (十万元)与月份x 之间的函数关系式为y=x2+bx+cc由上图可知,取,则,解得.所以,乙厂预测的月利润y (十万元)与月份x 之间的函数关系式为y=; (2)①若y 甲﹣y 乙=0.5,则(x 2﹣x+2)﹣()=0.5,解得x=1②若y 乙﹣y 甲=0.5,则()﹣(x 2﹣x+2)=0.5,解得x=3所以,x=1或3时,两厂的月利润差距为5万元;(3)①若y 乙﹣y 甲>5,即()﹣(x 2﹣x+2)>5,解得x >12 ②y 甲﹣y 乙>5,即(x 2﹣x+2)﹣()>5,解得x <﹣8(不合题意)所以,会出现收购的情况,12个月后(或一年后或第13个月),甲厂会被乙厂收购.【点评】本题考查了二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.六、(本大题共12分)24.已知如图1、2,D 是△ABC 的BC 边上的中点,DE ⊥AB 于E 、DF ⊥AC 于F ,且BE=CF ,点M 、N 分别是AE 、DE 上的点,AN ⊥FM 于G(1)如图1,当∠BAC=90°时;①求证:四边形AEDF 是正方形;②试问AN 与FM 之间的数量关系与四边形AEDF 的两对角线的数量关系相同吗?请证明你的结论;(2)如图2,当∠BAC ≠90°,且AF :DF=2:1时,求AN :FM 的值;(3)根据(1)中②和(2)的结论或求解过程,在一般情况下(即除去条件:“∠BAC﹣90°,AF:DF=2:1”,其他条件不变),问AN与FM之间的数量关系有何规律?直接用文字说明或用等式表示(不证明).【考点】相似形综合题.【分析】(1)①证明Rt△BED≌Rt△CFD,得到DE=DF,证明结论;②根据已知和正方形的性质证明Rt△AEN≌Rt△FAM,得到答案;(2)根据已知设AF=2k,DF=k,求出AD:EF,证明△FME∽△AND,求出AN:FM的值;(3)根据(1)中②和(2)的结论,可以得到AN与FM之间的数量关系与四边形AEDF的两条对角线之间的关系.【解答】(1)①证明:∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF是矩形,以上BD=DC,∠DEB=∠DFC=90°,BE=CF,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∴矩形AEDF是正方形.②答:AN与FM之间的数量关系与四边形AEDF的两条对角线的数量关系相同;理由:在正方形AEDF中,AF=AE,又∵AN⊥FM于G,∠AMF=∠ANE,∠AEN=∠MAF=90°,∴Rt△AEN≌Rt△FAM(AAS),∴AN=FM,又∵正方形AEDF的对角线相等,∴AN与FM之间的数量关系与四边形AEDF的两对角线的数量关系相同.(2)连接AD、EF,设AF=2k,DF=k,在Rt△ADF中,AD==k,∵Rt△BED≌Rt△CFD(HL),∴∠B=∠C,DE=DF,∴AB=AC,AE=AF,∴AD的垂直平分EF,则OF=EF,DF⊥AC与F,=2k×k×,∴PF=,∴EF=,又∵∠NEM=∠MGN=90°,∠GME+∠ENG=∠DNG+∠ENG=180°,∠EMF=∠DNA,∠AEO=∠NDA,∴△FME∽△AND,∴==;(3)根据(1)中②和(2)的结论或求解过程可知,∵∠NEM=∠MGN=90°,∠GME+∠ENG=∠DNG+∠ENG=180°,∠EMF=∠DNA,∠AEO=∠NDA,∴△FME∽△AND,∴=,AN、FM与四边形AEDF的两条对角线对应成比例.【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质,灵活运用判定定理和性质定理是解题的关键,注意方程思想在解题中的运用.。

江西省2016届九年级中等学校招生模拟考试(二)数学试题解析(解析版)

江西省2016届九年级中等学校招生模拟考试(二)数学试题解析(解析版)

一、选择题(共6小题,每小题3分,满分18分)1.下列各式正确的是().A.20=0 B.|﹣|= C. =±2 D.﹣22=4【答案】B.【解析】试题分析:先根据零指数幂的计算法则,绝对值的性质,算术平方根的定义,平方的定义求出每个式子的C,故本选项错误;值,再进行判断.A、20=1,故本选项错误;B、|D、﹣22=﹣4,故本选项错误.故选B.考点:1.零指数幂;2.绝对值的性质;3.算术平方根;4.平方的计算.2.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.【答案】A.【解析】试题分析:根据旋转的性质:旋转前后的图形全等,旋转角相等,对应点到旋转中心的距离相等,及旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A.考点:旋转的性质.3.在下列四个角的度数中,一个不等边三角形的最小角度数可以是().A.80° B.65° C.60° D.59°【答案】D.【解析】试题分析:根据三角形的内角和等于180°,求出最小的角的度数的取值范围,然后选择:180°÷3=60°,∵不等边三角形的最小内角为∠A,∴∠A<60°,∴0°<∠A<60°,纵观各选项,∠A最大可取59°.故选D.考点:三角形的内角和定理.4.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为().A.880元B.800元C.720元D.1080元【答案】A.考点:一元一次方程的应用.5.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有().A.1个B.2个C.3个D.4个【答案】C.【解析】试题分析:根据全等三角形的判定得出点P的位置,要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,且满足三边对应相等,故点P的位置可以是P1,P3,P4三个,故选C.考点:全等三角形的判定.6.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是().A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0【答案】C.【解析】试题分析:分a>0和a<0两种情况,根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断:①a >0时,二次函数图象开口向上,∵|x 1﹣2|>|x 2﹣2|,∴y 1>y 2,无法确定y 1+y 2的正负情况,a (y 1﹣y 2)>0,②a <0时,二次函数图象开口向下,∵|x 1﹣2|>|x 2﹣2|,∴y 1<y 2,无法确定y 1+y 2的正负情况,a (y 1﹣y 2)>0,综上所述,表达式正确的是a (y 1﹣y 2)>0.故选C . 考点:二次函数图象上点的坐标特征.二、填空题(共6小题,每小题3分,满分18分)7.如果m ,n 互为相反数,那么|m+n ﹣2016|=___________. 【答案】2016. 【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n ﹣2016|,∵m ,n 互为相反数,∴m+n=0,∴|m+n ﹣2016|=|﹣2016|=2016;故答案为2016. 考点:1.绝对值的意义;2.相反数的性质.8.函数x 的取值范围是 . 【答案】x ≥0且x ≠1. 【解析】试题分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.根据题意得:x ≥0且x ﹣1≠0,解得:x ≥0且x ≠1.故答案为:x ≥0且x ≠1. 考点:函数自变量的取值范围.9.从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为 . 【答案】12. 【解析】试题分析:利用列举法得到所有四种结果,然后根据三角形三边的关系得到能组成三角形的结果数,然后根据概率公式求解.从长度分别为3,5,6,9的四条线段中任取三条,共有(3 5 6)、(3 5 9)、(3 6 9)、(5 6 9)四种等可能结果,其中能组成三角形的有(3 5 6)、(5 6 9)两种等可能结果,所以能组成三角形的概率=24=12.故答案为12. 考点:1.列表法与树状图法;2.概率公式.10.已知关于x 的不等式组1x ax >⎧⎨>⎩的解集为x >1,则a 的取值范围是 .【答案】a ≤1. 【解析】试题分析:根据不等式组的解集是同大取大,可得答案.由关于x 的不等式组1x ax >⎧⎨>⎩的解集为x >1,得a ≤1,故答案为:a ≤1. 考点:求不等式组的解集.11.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,EF 是OA 的中垂线,分别交AD 、OA 于点E 、F .若AB=6cm ,BC=8cm ,则△DEO 的周长= cm .【答案】13. 【解析】试题分析:根据“矩形的对角线相互平分且相等”的性质和勾股定理求得OD=12BD=5cm ;由线段垂直平分线的性质推知AE=EO ,所以△DEO 的周长=DO+AD .如图,∵在矩形ABCD 中,AB=6cm ,BC=8cm ,∴AD=BC=8,(cm ),∴OD=12BD=5cm .又∵EF 是OA 的中垂线,∴AE=EO ,∴△DEO 的周长为:EO+OD+ED=OD+AD=5+8=13(cm ).故答案是:13. 考点:1.矩形的性质;2.线段垂直平分线的性质.12.如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是 .【答案】6或7或8. 【解析】试题分析:首先根据几何体的左视图,可得这个几何体共有3层;然后从俯视图中可以看出最底层小正方体的个数及形状;最后从左视图判断出第二层、第三层的个数,进而求出组成这个几何体的小正方体的个数是多少.根据几何体的左视图,可得这个几何体共有3层,从俯视图可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上所述,组成这个几何体的小正方体的个数是6或7或8.故答案为:6或7或8.考点:由三视图判断几何体.三、解答题(共11小题,满分84分)13.(1)已知方程=的解为x=2,求a的值.(2)先化简(1﹣)÷,再将(1)中a的值代入求它的值.【答案】(1)a=3;(2)化简结果:12aa+-,值为4.考点:分式的化简求值.14.甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5,从两个口袋中各随机取出1个小球.用画树状图或列表的方法,求取出的2个小球上的数字之和为6的概率.【答案】13.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出的2个小球上的数字之和为6的情况,再利用概率公式即可求得答案.试题解析:根据题意画树状图得:由树状图求得共有6种等可能情况,其中取出的2个小球上的数字之和为6的有2种等可能情况,∴取出的2个小球上的数字之和为6的概率为:26=13.考点:树状图法与列表法求概率.15.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.16.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.【答案】(1)8环;(2)s甲2>s乙2;(3)乙,甲.【解析】试题分析:(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.则根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.试题解析:(1)根据平均数的计算公式和折线统计图给出的数据得:乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动大于乙的波动,则s甲2>s乙2;(3)乙成绩在7环附近的数据较多,甲成绩在9环附近的较多,如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲. 考点:方差的意义.17.小明家国庆期间租车到某地旅游,先匀速行驶50千米的普通公路,这时油箱内余油32升,由于国庆期间高速免费,进而上高速公路匀速行驶到达旅游目的地.如图是汽车油箱内余油量Q (升)与行驶路程s (千米)之间的函数图象,当行驶150千米时油箱内余油26升. (1)分别求出AB 段和BC 段图象所在直线的函数解析式.(2)到达旅游目的地后,司机说:“今日改走高速公路后比往日全走普通公路省油6升”,求此时油箱余油多少升?【答案】(1)AB 段:Q=﹣0.08s+36.BC 段:Q=﹣0.06s+35;(2)14升. 【解析】试题分析:(1)设AB 段所在直线的解析式为Q=k 1s+b 1,利用坐标求出k 1,b 1,设BC 图象所在直线的解析为Q=k 2s+b 2,利用坐标求出k 2,b 2;(2)根据改走高速公路后比往日全走普通公路省油6升,列出关于s 的方程,解得s=350,再求得油箱中的余油量.试题解析:(1)设AB 段所在直线的解析式为Q=k 1s+b 1,根据A 、B 的坐标可得111503236k b b +=⎧⎪⎨=⎪⎩,解得110.00836k b =-⎧⎪⎨=⎪⎩,∴AB 段所在直线的解析式为Q=﹣0.08s+36.设BC 图象所在直线的解析为Q=k 2s+b 2,根据B 、C 的坐标可得2225032262150k b b k +=⎧⎪⎨=⎪⎩+,解得220.0635k b =-⎧⎪⎨=⎪⎩,∴BC 段所在直线的解析式为Q=﹣0.06s+35;(2)根据改走高速公路后比往日全走普通公路省油6升,可得(﹣0.06s+35)﹣(﹣0.08s+36)=6,解得s=350(千米),∴当s=350时,Q=﹣0.06s+35=14(升),即此时油箱余油14升.考点:1.根据待定系数法求得函数解析式;2.一次函数的实际应用.18.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.【答案】(1)证明参见解析;(2)30°.【解析】试题分析:(1)如下图:根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得∠F=∠3,因为∠1=∠3,即可求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形求证;(2)根据菱形的四条边都相等可得AC=CE,然后求出AC=CE=AE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°求出∠CAE=60°,然后根据直角三角形两锐角互余解答.试题解析:(1)∵∠ACB=90°,E是BA的中点,直角三角形斜边上的中线等于斜边的一半,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形(一组对边平行且相等的四边形是平行四边形);(2)∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.故∠B=30°.考点:1.菱形的性质;2.平行四边形的判定;3.等边三角形的判定与性质;4.直角三角形的性质.19.如图,公路AB 为东西走向,在点A 北偏东36.5°方向上,距离5千米处是村庄M ;在点A 北偏东53.5°方向上,距离10百米处是村庄N (参考数据;sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75,sin23.6°=0.4,cos66.4°=0.4,tan21.8°=0.4). (1)求M ,N 两村之间的距离;(2)试问村庄N 在村庄M 的什么方向上?(精确到0.1度)【答案】(1;(2)北偏东68.2°方向上. 【解析】试题分析:(1)建立直角三角形,过点M 作CD ∥AB ,NE ⊥AB ,在Rt △ACM 中求出CM ,AC ,在Rt △ANE 中求出NE ,AE ,继而得出MD ,ND 的长度,在Rt △MND 中利用勾股定理可得出MN 的长度;(2)求出∠NMD 的互余角是解题的关键,在Rt △MND 中,根据tan ∠NMD=ND MD =25=0.4km ,再根据tan21.8°=0.4,得出∠NMD=21.8°,再根据∠MND=90°﹣∠NMD ,即可得出村庄N 在村庄M 的北偏东68.2°方向上. 试题解析:(1)如图:过点M 作CD ∥AB ,NE ⊥AB :,在Rt △ACM 中,∠CAM=36.5°,AM=5km ,∵sin36.5°=5CM=0.6,∴CM=3,=4km ,在Rt △ANE 中,∠NAE=90°﹣53.5°=36.5°,AN=10km ,∵sin36.5°=10NE=0.6,∴NE=6,,∴MD=CD ﹣CM=AE ﹣CM=8-3=5km ,ND=NE ﹣DE=NE ﹣AC=6-4=2km ,在Rt △MND 中,km );(2)在Rt △MND 中,tan ∠NMD=ND MD =25=0.4(km ),∴∠NMD=21.8°,∴∠NMD 的互余角=∠MND=90°﹣21.8°=68.2°,∴村庄N 在村庄M 的北偏东68.2°方向上. 考点:解直角三角形.20.如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.(1)求证:PB是⊙O的切线;(2)当OB=3,PA=6时,求MB,MC的长.【答案】(1)证明参见解析;(2)MB=4,MC=2.【解析】试题分析:(1)证出OB垂直PM是解题的关键,根据切线的性质,可得∠MAP=90°,根据直角三角形的性质,可得∠P+M=90°,根据余角的性质,可得∠M+∠MOB=90°,根据直角三角形的判定,可得∠MOB=90°,根据切线的判定,可得答案;(2)根据相似三角形的判定与性质,可得△OBM∽△APM,于是有MB AM =OBAP=OMPB,根据解方程组,可得答案.试题解析:(1)根据题意,∵PA切⊙O于点A,∴∠MAP=90°,∴∠P+∠M=90°.∵∠COB=∠APB,∴∠M+∠MOB=90°,∴∠MBO=90°,即OB⊥PB,∵PB经过直径的外端点,∴PB是⊙O的切线;(2)∵∠COB=∠APB,∠OBM=∠PAM,∴△OBM∽△APM,∴MBAM=OBAP=OMPM,6MBMC+=12①,36MCMB++=12②,联立①②得26266MB MCMC MB=+⎧⎨+=+⎩,解得24MCMB=⎧⎨=⎩,所以当OB=3,PA=6时,MB=4,MC=2.考点:1.切线的判定与性质;2.直角三角形的判定与性质;3.余角的性质;4.相似三角形的判定与性质.21.在平面直角坐标系中,反比例函数y=(x>0)的图象与四边形ABOC两边AC、AB分别交于点E、F,点E为AC的中点.(1)如图1,当四边形ABOC为正方形,k=2时,BF:FA= .(2)如图2,当四边形ABOC为矩形(AC≠AB),k=2时,BF:FA= .(3)在(2)中,若k为不等于0的任意实数,BF:FA的值与(1)或(2)相同吗?请证明你的结论.【答案】(1)1:1;(2)1:1;(3)相同.【解析】试题分析:(1)如上图,四边形ABOC为正方形,设E(2,1),得到A(2,2),求得F的纵坐标为2,得到F(1,2),根据线段中点的性质即可得到结论;(2)当四边形ABOC为矩形,设AB=2b,AC=2a,得到E(2b,a),A(2b,2a),求得F(b,2a)根据线段中点的性质即可得到结论;(3)若k为不等于0的任意实数,设AB=2b,AC=2a,得到E(2b,a),A(2b,2a),由于E在反比例函数y=kx的图象上,得到k=2ab,因为F的纵坐标为2a,于是得到F(b,2a),根据线段中点的性质即可得到结论.试题解析:(1)如图,因为四边形ABOC为正方形,设E(2,1),则A(2,2),∴F的纵坐标为2,∴2=2x,∴x=1,∴F(1,2),∴F为AB的中点,即BF:FA=1:1,故答案为:1:1;(2)当四边形ABOC为矩形,设AB=2b,AC=2a,则E(2b,a),∴k=2ab,∵F的纵坐标为2a,k=2,∴2a=2x,∴x=b,∴F(b,2a),∴F为AB的中点,即BF:FA=1:1,故答案为:1:1;(3)若k为不等于0的任意实数,设AB=2b,AC=2a,则E(2b,a),A(2b,2a),∵E在反比例函数y=kx的图象上,∴k=2ab,∴F的纵坐标为2a,∴2a=2abx,∴x=b,∴F(b,2a),∴F为AB的中点,即BF:FA=1:1,故答案为:1:1;与前面两题结果相同.考点:1.反比例函数的性质;2.正方形的性质;3.矩形的性质.22.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x 2+2x+3;(2)证明参见解析;(3)存在,P P (2,3). 【解析】 试题分析:(1)将A (﹣1,0)、C (0,3),代入二次函数y=ax 2+bx ﹣3a ,求得a 、b 的值即可确定二次函数的解析式;(2)分别求得线段BC 、CD 、BD 的长,利用勾股定理的逆定理进行判定即可;(3)分以CD 为底和以CD 为腰两种情况讨论.运用两点间距离公式建立起P 点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.试题解析:(1)∵二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),∴将A (﹣1,0)、C (0,3),代入,得3033a b a a --=⎧⎨-=⎩,解得12a b =-⎧⎨=⎩,∴抛物线的解析式为y=﹣x 2+2x+3;(2)如图,连接DC 、BC 、DB ,由y=﹣x 2+2x+3=﹣(x ﹣1)2+4得,D 点坐标为(1,4),∴CD 2+BC 2=2+(2=20,BD 2=(2=20,∴CD 2+BC 2=BD 2,∴△BCD 是直角三角形;(3)y=﹣x 2+2x+3对称轴为直线x=1.假设存在这样的点P,①以CD 为底边,则P 1D=P 1C ,设P 1点坐标为(x ,y ),根据勾股定理可得P 1C 2=x 2+(3﹣y )2,P 1D 2=(x ﹣1)2+(4﹣y )2,因此x 2+(3﹣y )2=(x ﹣1)2+(4﹣y )2,即y=4﹣x .又P 1点(x ,y )在抛物线上,∴4﹣x=﹣x 2+2x+3,即x 2﹣3x+1=0,解得x 1x 2<1,(不满足在对称轴右侧应舍去),∴∴y=4﹣x=52-,即点P 1坐标为(32,52-).②以CD 为一腰,∵点P 2在对称轴右侧的抛物线上,由抛物线对称性知,点P 2与点C 关于直线x=1对称,此时点P 2坐标为(2,3).∴符合条件的点P 坐标为(32,522,3).考点:1.二次函数图象性质;2.等腰三角形性质;3.直角三角形的判定.23.如图,在矩形纸片ABCD 中,AB=4,AD=12,将矩形纸片折叠,使点C 落在AD 边上的点M 处,折痕为PE ,此时PD=3.(1)求MP 的值;(2)在AB 边上有一个动点F ,且不与点A ,B 重合.当AF 等于多少时,△MEF 的周长最小?(3)若点G ,Q 是AB 边上的两个动点,且不与点A ,B 重合,GQ=2.当四边形MEQG 的周长最小时,求最小周长值.(计算结果保留根号)【答案】(1)5;(2)1611;(3) 【解析】 试题分析:(1)由折叠的性质可得PD=PH=3,CD=MH=4,∠H=∠D=90°,利用勾股定理可得答案;(2)先找到使三角形MEF 的周长最小的F 点,如图1,做点M 关于AB 的对称点M ′,连接M ′E 交AB 于点F ,则点F 即为所求,过点E 作EN ⊥AD ,垂足为N ,由(1)可得AM ,利用勾股定理可得ME 和NM ′,由△AFM ′∽△NEM ′,利用相似三角形的性质可得AF ;(3)由题意可知,ME,QG 的长度是个定值,当四边形MEQG 的周长最小时,QE 与GM 的长度和最小,如图2,由(2)知点M ′是点M 关于AB 的对称点,在EN 上截取ER=2,连接M ′R 交AB 于点G ,再过点E 作EQ ∥RG ,交AB 于点Q ,由平行四边形的判定定理可得四边形ERGQ 为平行四边形,由平行四边形的性质可得QE=GR ,由垂直平分线的性质易得GM=GM ′,可得此时MG+EQ 最小,于是四边形MEQG 的周长最小,在Rt △M ′RN 中,易得NR ,M ′R ,从而得到四边形MEQG 的最小周长值. 试题解析:(1)∵四边形ABCD 为矩形,∴CD=AB=4,∠D=90°,∵矩形ABCD 折叠,使点C 落在AD 边上的点M 处,折痕为PE ,∴PD=PH=3,CD=MH=4,∠H=∠D=90°,∴MP =;(2)如图1,作点M 关于AB 的对称点M ′,连接M ′E 交AB 于点F ,则点F 即为所求,过点E 作EN ⊥AD ,垂足为N ,∵AM=AD ﹣MP ﹣PD=12﹣5﹣3=4,∴AM=AM ′=4,∵矩形ABCD 折叠,使点C 落在AD 边上的点M 处,折痕为PE ,∴∠CEP=∠MEP ,∠CEP=∠MPE ,∴∠MEP=∠MPE ,∴ME=MP=5;在Rt △ENM 中,,∴NM ′=11,∵AF ∥NE ,∴△AFM ′∽△NEM ′,∴M A M N ''=AF EN ,即4114AF =,解得:AF=1611,即AF=1611时,△MEF 的周长最小;(3)如图2,由(2)知点M ′是点M 关于AB 的对称点,在EN 上截取ER=2,连接M ′R 交AB 于点G ,再过点E 作EQ ∥RG ,交AB 于点Q ,∵ER=GQ ,ER ∥GQ ,∴四边形ERGQ 是平行四边形,∴QE=GR ,∵GM=GM ′,∴MG+QE=GM ′+GR=M ′R ,此时MG+EQ 最小,四边形MEQG 的周长最小,在Rt △M ′RN 中,NR=4﹣2=2,M ′∵ME=5,GQ=2,∴四边形MEQG 的最小周长值考点:1.折叠的性质;2.最短路径问题;2.勾股定理.:。

江西省初中数学中等学校招生模拟考试试卷(C卷,含解析)

江西省初中数学中等学校招生模拟考试试卷(C卷,含解析)

江西省2016年中等学校招生模拟考试数学试题一、填空题,每小题3分,共18分1.下列运算中,正确的是()A.x+x=2x B.2x﹣x=1 C.(x3)3=x6D.x8÷x2=x42.在正三角形、正方形、正五边、正六边形中不能单独镶嵌平面的是()A.正三角形 B.正方形C.正五边形 D.正六边形3.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A.70° B.65° C.50° D.25°4.如图,数轴上两点A、B在线段AB上任意取一点C,则点C到表示1的距离不大于2的概率是()A.B.C.D.5.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.546.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.二、填空题、每小题3分,共18分,7.若m、n互为倒数,则mn2﹣(n﹣1)的值为.8.关于x的方程kx﹣1=2x的解为正实数,则k的取值范围是.9.已知正数a、b、c满足a2+c2=16,b2+c2=25,则k=a2+b2的取值范围为.10.如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD 是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为.11.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.12.王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n个“中”字形图案需根火柴棒.三、解答题、13.解方程: +=1.14.化简求值:,其中x=.15.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.16.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.3 4 x﹣2 y a2y﹣x c b备用图3 4﹣217.在劳技课上,老师请同学们在一张长为17cm,宽为16 cm的长方形纸板上剪下一个腰长为10cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).请你帮助同学们设计出不同类型的,你认为符合条件的等腰三角形,(分别在下列矩形中画出示意图)并分别计算剪下的等腰三角形的面积.(位置不同,形状全等的将视为一种结果)18.已知x1,x2是方程x2﹣2x+a=0的两个实数根,且x1+2x2=3﹣.(1)求x1,x2及a的值;(2)求x13﹣3x12+2x1+x2的值.19.在平面直角坐标系中,将A(1,0)、B(0,2)、C(2,3)、D(3,1)用线段依次连接起来形成一个图案(图案①).将图案①绕点O逆时针旋转90°得到图案②;以点O为位似中心,位似比为1:2将图案①在位似中心的异侧进行放大得到图案③.(1)在坐标系中分别画出图案②和图案③;(2)若点D在图案②中对应的点记为点E,在图案③中对应的点记为点F,则S△DEF= ;(3)若图案①上任一点P(A、B除外)的坐标为(a,b),图案②中与之对应的点记为点Q,图案③中与之对应的点记为点R,则S△PQR= .(用含有a、b的代数式表示)20.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C 的抛物线上;(3)在(2)的条件下,求证:直线CD是⊙M的切线.21.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:组别次数x 频数(人数)第1组80≤x<100 6第2组100≤x<120 8第3组120≤x<140 a第4组140≤x<160 18第5组160≤x<180 6请结合图表完成下列问题:(1)表中的a= ;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第组;(4)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或八年级同学提一条合理化建议:.22.如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC 上,抛物线P上部分点的横坐标对应的纵坐标如下:x …﹣3 ﹣2 1 2 …y …﹣4 0 …(1)求A、B、C三点的坐标;(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.23.如图,在Rt△ABC中,∠C=90°,AC=3,AD=5,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回,点Q从点A出发沿AB 以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BC﹣CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP= ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.江西省2016年中等学校招生模拟考试(数学试题卷(C)参考答案与试题解析一、填空题,每小题3分,共18分1.下列运算中,正确的是()A.x+x=2x B.2x﹣x=1 C.(x3)3=x6D.x8÷x2=x4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的除法.【分析】根据合并同类项法则,只需把系数相加减,字母和字母的指数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相加减,对各选项分析判断后利用排除法求解.【解答】解:A、x+x=2x,正确;B、应为2x﹣x=x,故本选项错误;C、应为(x3)3=x9,故本选项错误;D、应为x8÷x2=x6,故本选项错误.故选A.2.在正三角形、正方形、正五边、正六边形中不能单独镶嵌平面的是()A.正三角形 B.正方形C.正五边形 D.正六边形【考点】平面镶嵌(密铺).【分析】分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断.【解答】解:A.正三角形的每个内角是60°,能整除360°,能密铺;B.正方形的每个内角是90°,4个能密铺;C.正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;D.正六边形的每个内角是120°,3个能密铺,故选C.3.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A.70° B.65° C.50° D.25°【考点】平行线的性质;翻折变换(折叠问题).【分析】由平行可求得∠DEF,又由折叠的性质可得∠DEF=∠D′EF,结合平角可求得∠AED′.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∴∠DEF=∠EFB=65°,又由折叠的性质可得∠D′EF=∠DEF=65°,∴∠AED′=180°﹣65°﹣65°=50°,故选C.4.如图,数轴上两点A、B在线段AB上任意取一点C,则点C到表示1的距离不大于2的概率是()A.B.C.D.【考点】几何概率;数轴.【分析】先求出AB两点间的距离,根据距离的定义找出符合条件的点,再根据概率公式即可得出答案.【解答】解:∵AB间距离为6,点C到表示1的点的距离不大于2的点是﹣1到3之间的点,满足条件的点组成的线段的长是4.∴点C到表示1的距离不大于2的概率为=;故选D.5.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【考点】相似三角形的性质.【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.故选C.6.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.【考点】动点问题的函数图象.【分析】本题考查动点函数图象的问题.【解答】解:由图中可知:在开始的时候,阴影部分的面积最大,可以排除B,C.随着圆的穿行开始,阴影部分的面积开始减小,当圆完全进入正方形时,阴影部分的面积开始不再变化.应排除D.故选A.二、填空题、每小题3分,共18分,7.若m、n互为倒数,则mn2﹣(n﹣1)的值为 1 .【考点】代数式求值;倒数.【分析】由m,n互为倒数可知mn=1,代入代数式即可.【解答】解:因为m,n互为倒数可得mn=1,所以mn2﹣(n﹣1)=n﹣(n﹣1)=1.8.关于x的方程kx﹣1=2x的解为正实数,则k的取值范围是k>2 .【考点】一元一次方程的解.【分析】先解方程,然后根据解为正实数,可以得到关于k的不等式,从而可以确定出k的范围.【解答】解:∵kx﹣1=2x∴(k﹣2)x=1,解得,x=,∵关于x的方程kx﹣1=2x的解为正实数,∴>0,解得,k>2,故答案为:k>2.9.已知正数a、b、c满足a2+c2=16,b2+c2=25,则k=a2+b2的取值范围为9<k<41 .【考点】不等式的性质.【分析】根据已知条件先将原式化成a2+b2的形式,最后根据化简结果即可求得k的取值范围.【解答】解:∵正数a、b、c满足a2+c2=16,b2+c2=25,∴c2=16﹣a2,a2>0所以0<c2<16同理:有c2=25﹣b2得到0<c2<25,所以0<c2<16两式相加:a2+b2+2c2=41即a2+b2=41﹣2c2又∵﹣16<﹣c2<0即﹣32<﹣2c2<0∴9<41﹣2c2<41即9<k<41.10.如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD 是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为4:9 .【考点】扇形面积的计算.【分析】要求图1中的圆与扇环的面积比,就要先根据面积公式先计算出面积.再计算比.【解答】解:设正方形的边长为2,则圆的面积为π,扇环的面积为(4π﹣π)=π,所以图1中的圆与扇环的面积比为4:9.11.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是x<﹣1或x>3 .【考点】二次函数与不等式(组).【分析】由抛物线与x轴的一个交点(3,0)和对称轴x=1可以确定另一交点坐标为(﹣1,0),又y=ax2+bx+c>0时,图象在x轴上方,由此可以求出x的取值范围.【解答】解:∵抛物线与x轴的一个交点(3,0)而对称轴x=1∴抛物线与x轴的另一交点(﹣1,0)当y=ax2+bx+c>0时,图象在x轴上方此时x<﹣1或x>3故答案为:x<﹣1或x>3.12.王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n个“中”字形图案需6n+3@9+6(n﹣1)根火柴棒.【考点】规律型:图形的变化类.【分析】通过观察发现后边的图形总比前边的图形多的根数,即可解决.【解答】解:观察图形发现:第一个图形中有9根,后边是多一个图形,多6根.根据这一规律,则第n个图形中,需要9+6(n﹣1)=6n+3.三、解答题、13.解方程: +=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x﹣1=x﹣4,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.14.化简求值:,其中x=.【考点】分式的化简求值.【分析】首先把除法运算转化成乘法运算,进行因式分解,约分,然后进行减法运算,最后代值计算.【解答】解:原式====;当x=时,原式=.15.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【考点】列表法与树状图法;概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,方法②(列表法)第一次抽取1 2 3 4第二次抽取1 (2,1)(3,1)(4,1)2 (1,2)(3,2)(4,2)3 (1,3)(2,3)(4,3)4 (1,4)(2,4)(3,4)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.16.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.3 4 x﹣2 y a2y﹣x c b备用图3 4﹣2【考点】二元一次方程组的应用.【分析】(1)要求x,y的值,根据表格中的数据,即可找到只含有x,y的行或列,列出方程组即可;(2)根据(1)中求得的x,y的值和每行的3个数、每列的3个数、斜对角的3个数之和均相等即可完成表格的填写.【解答】解:(1)由题意,得,解得;(2)如图17.在劳技课上,老师请同学们在一张长为17cm,宽为16 cm的长方形纸板上剪下一个腰长为10cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).请你帮助同学们设计出不同类型的,你认为符合条件的等腰三角形,(分别在下列矩形中画出示意图)并分别计算剪下的等腰三角形的面积.(位置不同,形状全等的将视为一种结果)【考点】作图—应用与设计作图.【分析】(1)在BA、BC上分别截取BE=BF=10cm;(2)在BA上截取BE=10,以E为圆心,10长为半径作弧,交AD于F;(3)在BC上截取BF=10,以F为圆心10为半径作弧,交CD于E.【解答】解:如图所示:(1)10×10÷2=50cm2;(2)AE=16﹣10=6cm,AF==8cm,10×8÷2=40cm2;(3)CF=17﹣10=7cm,EC==cm,10×÷2=5cm2.画出一个且面积计算正确得,两个得,三个得.18.已知x1,x2是方程x2﹣2x+a=0的两个实数根,且x1+2x2=3﹣.(1)求x1,x2及a的值;(2)求x13﹣3x12+2x1+x2的值.【考点】根与系数的关系;解二元一次方程组;一元二次方程的解.【分析】(1)将x1+2x2=3﹣与两根之和公式、两根之积公式联立组成方程组即可求出x1,x2及a的值;(2)欲求x13﹣3x12+2x1+x2的值,先把代此数式变形为两根之积或两根之和的形式,代入数值即可求出x13﹣3x12+2x1+x2的值.【解答】解:(1)由题意,得,解得x1=1+,x2=1﹣.所以a=x1•x2=(1+)(1﹣)=﹣1;(2)由题意,得x12﹣2x1﹣1=0,即x12﹣2x1=1∴x13﹣3x12+2x1+x2=x13﹣2x12﹣x12+2x1+x2=x1(x12﹣2x1)﹣(x12﹣2x1)+x2=x1﹣1+x2=(x1+x2)﹣1=2﹣1=1.19.在平面直角坐标系中,将A(1,0)、B(0,2)、C(2,3)、D(3,1)用线段依次连接起来形成一个图案(图案①).将图案①绕点O逆时针旋转90°得到图案②;以点O为位似中心,位似比为1:2将图案①在位似中心的异侧进行放大得到图案③.(1)在坐标系中分别画出图案②和图案③;(2)若点D在图案②中对应的点记为点E,在图案③中对应的点记为点F,则S△DEF= 15 ;(3)若图案①上任一点P(A、B除外)的坐标为(a,b),图案②中与之对应的点记为点Q,图案③中与之对应的点记为点R,则S△PQR= (a2+b2).(用含有a、b的代数式表示)【考点】作图-位似变换;三角形的面积;矩形的性质.【分析】(1)将图案①中的各顶点绕点O逆时针旋转90°得到知顶点的对应点,顺次连接对应点得到图案②;以点O为位似中心,位似比为1:2将图案①在位似中心的异侧进行放大得到图案③;即连接OA,OB,OC,OD,并延长到A′,B′,C′,D′,使OA′,OB′,OC′,OD′是OA,OB,OC,OD的2倍,顺次连接各点即可;(2)根据网格分析S△DEF是由哪几个图形组成,利用面积公式计算.从图中可看出三角形是矩形的面积﹣三个三角形的面积.所以S△DEF=9×5﹣4×2÷2﹣5×5÷2﹣9×3÷2=15;(3)首先从图中找出这个三角形的三点,然后再连线组成三角形,观察网格得到三角形的面积公式=矩形﹣3个三角形的面积,列出式子计算.【解答】解:(1)如图(图②(2),图③3分)(2)从图中可看出三角形是矩形的面积﹣三个三角形的面积.所以S△DEF=9×5﹣4×2÷2﹣5×5÷2﹣9×3÷2=15.(3)(a2+b2)20.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C 的抛物线上;(3)在(2)的条件下,求证:直线CD是⊙M的切线.【考点】待定系数法求二次函数解析式;确定圆的条件;切线的判定.【分析】(1)题利用“两弦垂直平分线的交点为圆心”可确定圆心位置;(2)先根据A、B、C三点坐标,用待定系数法求出抛物线的解析式,然后将D点坐标代入抛物线的解析式中,即可判断出点D是否在抛物线的图象上;(3)由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.【解答】(1)解:如图1,点M即为所求;(2)解:由A(0,4),可得小正方形的边长为1,从而B(4,4)、C(6,2)设经过点A、B、C的抛物线的解析式为y=ax2+bx+4依题意,解得所以经过点A、B、C的抛物线的解析式为y=﹣x2+x+4把点D(7,0)的横坐标x=7代入上述解析式,得所以点D不在经过A、B、C的抛物线上;(3)证明:如图,设过C点与x轴垂直的直线与x轴的交点为E,连接MC,作直线CD∴CE=2,ME=4,ED=1,MD=5在Rt△CEM中,∠CEM=90°∴MC2=ME2+CE2=42+22=20在Rt△CED中,∠CED=90°∴CD2=ED2+CE2=12+22=5∴MD2=MC2+CD2∴∠MCD=90°∵MC为半径∴直线CD是⊙M的切线.21.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:组别次数x 频数(人数)第1组80≤x<100 6第2组100≤x<120 8第3组120≤x<140 a第4组140≤x<160 18第5组160≤x<180 6请结合图表完成下列问题:(1)表中的a= 12 ;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第三组;(4)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或八年级同学提一条合理化建议:要让80﹣100次数的6人多锻炼.【考点】频数(率)分布直方图;频数(率)分布表;中位数.【分析】(1)根据直方图的意义,各组频数之和即样本容量,结合题意只需用总数减所有频数就是a的值;(3)根据中位数的求法,先将数据按从小到大的顺序排列,中间位置的那个数或中间的两个数的平均数就是中位数;从图中可看出是中位数的所在的位置;(4)根据题意,结合统计表的信息,给出合理的建议即可.【解答】解:(1)根据题意,有a=50﹣6﹣8﹣18﹣6=12;(2)根据(1)的答案,补全直方图如图所示;(3)根据中位数的求法,先将数据按从小到大的顺序排列,读图可得:共50人,第25、26名都在第3组,所以这个样本数据的中位数落在第三组;(4)根据直方图的信息,给出合理的建议即可,答案不唯一,如要让80﹣100次数的6人多锻炼.故填12;3;要让80﹣100次数的6人多锻炼.22.如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC 上,抛物线P上部分点的横坐标对应的纵坐标如下:x …﹣3 ﹣2 1 2 …y …﹣4 0 …(1)求A、B、C三点的坐标;(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.【考点】二次函数综合题.【分析】(1)根据图表可以得到,抛物线经过的四点的坐标,根据待定系数法,设y=ax2+bx+c 把其中三点的坐标,就可以解得函数的解析式.进而就可以求出A、B、C的坐标.(2)易证△ADG∽△AOC,AD=2﹣m,根据相似三角形的对应边的比相等,就可以用m表示出DG的长,再根据△BEF∽△BOC,就可以表示出BE,就可以得到OE,因而ED就可以表示出来.因而S与m的函数关系就可以得到.(3)当矩形DEFG的面积S取最大值时,就是函数的值是最大值时,根据二次函数的性质就可以求出相应的m的值.则矩形的四个顶点的坐标就可以求出,根据待定系数法就可以求出直线DF的解析式.就可以求出直线DF与抛物线的交点的坐标,根据FM=k•DF,就可以表示出M的坐标,把M的坐标代入函数就可以得到一个关于k的方程,求出k的值,判断是否满足函数的解析式.【解答】解:(1)解法一:设y=ax2+bx+c(a≠0),任取x,y的三组值代入,求出解析式y=x2+x﹣4,令y=0,求出x1=﹣4,x2=2;令x=0,得y=﹣4,∴A、B、C三点的坐标分别是A(2,0),B(﹣4,0),C(0,﹣4).解法二:由抛物线P过点(1,﹣),(﹣3,﹣)可知,抛物线P的对称轴方程为x=﹣1,又∵抛物线P过(2,0)、(﹣2,﹣4),∴由抛物线的对称性可知,点A、B、C的坐标分别为A(2,0),B(﹣4,0),C(0,﹣4).(2)由题意, =,而AO=2,OC=4,AD=2﹣m,故DG=4﹣2m,又=,EF=DG,得BE=4﹣2m,∴DE=3m,∴S DEFG=DG•DE=(4﹣2m)3m=12m﹣6m2(0<m<2).(3)∵S DEFG=12m﹣6m2(0<m<2),∴m=1时,矩形的面积最大,且最大面积是6.当矩形面积最大时,其顶点为D(1,0),G(1,﹣2),F(﹣2,﹣2),E(﹣2,0),设直线DF的解析式为y=kx+b,易知,k=,b=﹣,∴y=x﹣,又可求得抛物线P的解析式为:y=x2+x﹣4,令x﹣=x2+x﹣4,可求出x=.设射线DF与抛物线P相交于点N,则N的横坐标为,过N作x轴的垂线交x 轴于H,有===,点M不在抛物线P上,即点M不与N重合时,此时k的取值范围是k≠且k>0.23.如图,在Rt△ABC中,∠C=90°,AC=3,AD=5,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回,点Q从点A出发沿AB 以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BC﹣CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP= 1 ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.【考点】四边形综合题.【分析】(1)先求PC,再求AP,然后求AQ,再由三角形相似求Q到AC的距离;(2)过点Q作QF⊥AC于点F,先求BC,再用t表示QF,然后得出S的函数解析式;(3)当DE∥QB时,得四边形QBED是直角梯形,由△APQ∽△ABC,由线段的对应比例关系求得t,由PQ∥BC,四边形QBED是直角梯形,△AQP∽△ABC,由线段的对应比例关系求t;(4)①第一种情况点P由C向A运动,DE经过点C、连接QC,作QG⊥BC于点G,由PC2=QC2解得t;②第二种情况,点P由A向C运动,DE经过点C,由图列出相互关系,求解t.【解答】解:(1)如图1,过点Q作QF⊥AC于点F,∵AC=3,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,∴当t=2时,AP=3﹣2=1;在Rt△ABC中,∠C=90°,AC=3,AB=5.∴BC=4,∵QF⊥AC,BC⊥AC,∴QF∥BC,∴△ACB∽△AFQ,∴=,∴=,解得:QF=;故答案为:1,;(2)如图1,过点Q作QF⊥AC于点F,如图1,AQ=CP=t,∴AP=3﹣t.由△AQF∽△ABC,得QF=.∴QF=t.∴S=(3﹣t)•t,即S=﹣t2+t;(3)能.①当由△APQ∽△ABC,DE∥QB时,如图2.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形,此时∠AQP=90°.由△APQ∽△ABC,得=,即=.解得t=;②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABC,得=,即=.解得t=,综上:在点E从B向C运动的过程中,当t=或时,四边形QBED能成为直角梯形;(4)t=或t=.①点P由C向A运动,DE经过点C.连接QC,作QG⊥BC于点G,如图4.∵sinB===,∴QG=(5﹣t),同理BG=(5﹣t),∴CG=4﹣(5﹣t),∴PC=t,QC2=QG2+CG2=[(5﹣t)]2+[4﹣(5﹣t)]2.∵CD是PQ的中垂线,∴PC=QC则PC2=QC2,得t2=[(5﹣t)]2+[4﹣(5﹣t)]2,解得t=;,②点P由A向C运动,DE经过点C,如图5.PC=6﹣t,可知由PC2=QC2可知,QC2=QG2+CG2(6﹣t)2=[(5﹣t)]2+[4﹣(5﹣t)]2,即t=.。

2016年江西省中考数学试卷(解析版)

2016年江西省中考数学试卷(解析版)

2016年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.(3分)(2016•江西)下列四个数中,最大的一个数是()A.2 B.C.0 D.﹣2【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣2<0<<2,故四个数中,最大的一个数是2.故选:A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2016•江西)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先解出不等式3x﹣2<1的解集,即可解答本题.【解答】解:3x﹣2<1移项,得3x<3,系数化为1,得x<1,故选D.【点评】本题考查解一元一次不等式\在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式的方法.3.(3分)(2016•江西)下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选B.【点评】本题考查了合并同类项、积的乘方、单项式乘单项式、完全平方公式,掌握运算法则是解答本题的关键.4.(3分)(2016•江西)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义即可得到结果.【解答】解:其主视图是C,故选C.【点评】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.5.(3分)(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2B.1C.﹣2D.﹣1【考点】根与系数的关系.【分析】根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【解答】解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ=,故选D.【点评】本题考查根与系数的关系,解题的关键是明确两根之积等于常数项与二次项系数的比值.6.(3分)(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③【考点】相似三角形的判定与性质;三角形中位线定理.【分析】利用相似三角形的判定和性质分别求出各多边形竖直部分线段长度之和与水平部分线段长度之和,再比较即可.【解答】解:假设每个小正方形的边长为1,①:m=1+2+1=4,n=2+4=6,则m≠n;②在△ACN中,BM∥CN,∴=,∴BM=,在△AGF中,DM∥NE∥FG,∴=,=,得DM=,NE=,∴m=2+=2.5,n=+1++=2.5,∴m=n;③由②得:BE=,CF=,∴m=2+2++1+=6,n=4+2=6,∴m=n,则这三个多边形中满足m=n的是②和③;故选C.【点评】本题考查了相似多边形的判定和性质,对于有中点的三角形可以利用三角形中位线定理得出;本题线段比较多要依次相加,做到不重不漏.二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)(2016•江西)计算:﹣3+2=﹣1.【考点】有理数的加法.【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【解答】解:﹣3+2=﹣1.故答案为:﹣1.【点评】此题考查了有理数的加法.注意在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.8.(3分)(2016•江西)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.9.(3分)(2016•江西)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为17°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠B'AC'=33°,∠BAB'=50°,从而得到∠B′AC的度数.【解答】解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B'AC'=33°,∠BAB'=50°,∴∠B′AC的度数=50°﹣33°=17°.故答案为:17°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.(3分)(2016•江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB 于点E,交CB的延长线于点F,则∠BEF的度数为50°.【考点】平行四边形的性质.【分析】由“平行四边形的对边相互平行”、“两直线平行,同位角相等”以及“直角三角形的两个锐角互余”的性质进行解答.【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.【点评】本题考查了平行四边形的性质.利用平行四边形的对边相互平行推知DC∥AB是解题的关键.11.(3分)(2016•江西)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=4.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义.【分析】由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=k1,S△OBP=k2,根据△OAB的面积为2结合三角形之间的关系即可得出结论.【解答】解:∵反比例函数y1=(x>0)及y2=(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=k1,S△OBP=k2.∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=2,解得:k1﹣k2=4.故答案为:4.【点评】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是得出S△OAB=(k1﹣k2).本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义用系数k来表示出三角形的面积是关键.12.(3分)(2016•江西)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是5\sqrt{2}或4\sqrt{5}或5.【考点】矩形的性质;等腰三角形的性质;勾股定理.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的对边长为5或4或5;故答案为:5或4或5.【点评】本题考查了矩形的性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质和等腰三角形的判定,进行分类讨论是解决问题的关键.三、解答题(本大题共5小题,每小题3分,满分27分)13.(3分)(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.【考点】翻折变换(折叠问题);解二元一次方程组.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.【点评】本题考查的是图形的翻折变换,涉及到平行线的判定,熟知折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.14.(6分)(2016•江西)先化简,再求值:(+)÷,其中x=6.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x=6代入进行计算即可.【解答】解:原式=÷=÷=•=,当x=6时,原式==﹣.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.15.(6分)(2016•江西)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【考点】两条直线相交或平行问题;待定系数法求一次函数解析式;勾股定理的应用.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为4,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.【解答】解:(1)∵点A(2,0),AB=∴BO===3∴点B的坐标为(0,3);(2)∵△ABC的面积为4∴×BC×AO=4∴×BC×2=4,即BC=4∵BO=3∴CO=4﹣3=1∴C(0,﹣1)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y=x﹣1【点评】本题主要考查了两条直线的交点问题,解题的关键是掌握勾股定理以及待定系数法.注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,反之也成立.16.(6分)(2016•江西)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【考点】条形统计图;用样本估计总体.【分析】(1)用甲、乙两班学生家长共100人减去其余各项目人数可得乙组关心“情感品质”的家长人数,补全图形即可;(2)用样本中关心孩子“情感品质”方面的家长数占被调查人数的比例乘以总人数3600可得答案;(3)无确切答案,结合自身情况或条形统计图,言之有理即可.【解答】解:(1)乙组关心“情感品质”的家长有:100﹣(18+20+23+17+5+7+4)=6(人),补全条形统计图如图:(2)×3600=360(人).答:估计约有360位家长最关心孩子“情感品质”方面的成长;(3)无确切答案,结合自身情况或条形统计图,言之有理即可,如:从条形统计图中,家长对“情感品质”关心不够,可适当关注与指导.【点评】本题主要考查条形统计图,条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数,也考查了用样本估计总体.17.(6分)(2016•江西)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【考点】作图—应用与设计作图.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.【点评】本题考查作图﹣应用设计、正方形、长方形、等腰直角三角形的性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.四、(本大题共4小题,每小题8根,共32分)18.(8分)(2016•江西)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.【考点】切线的性质;垂径定理.【分析】(1)连接OC,根据切线的性质和PE⊥OE以及∠OAC=∠OCA得∠APE=∠DPC,然后结合对顶角的性质可证得结论;(2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F是的中点,易得△AOF与△COF均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形.【解答】(1)证明:连接OC,∵∠OAC=∠ACO,PE⊥OE,OC⊥CD,∴∠APE=∠PCD,∵∠APE=∠DPC,∴∠DPC=∠PCD,∴DC=DP;(2)解:以A,O,C,F为顶点的四边形是菱形;∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形OACF为菱形.【点评】本题主要考查了切线的性质、圆周角定理和等边三角形的判定等,作出恰当的辅助线利用切线的性质是解答此题的关键.19.(8分)(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系直接求值;(2)根据数量关系找出关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出不等式(方程或方程组)是关键.20.(8分)(2016•江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为\frac{1}{2};(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【考点】列表法与树状图法.【分析】(1)由现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,甲摸牌数字是4与5则获胜,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后根据树状图列出甲、乙的“最终点数”,继而求得答案.【解答】解:(1)∵现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,∴甲摸牌数字是4与5则获胜,∴甲获胜的概率为:=;故答案为:;(2)画树状图得:则共有12种等可能的结果;列表得:∴乙获胜的概率为:.【点评】此题考查了列表法或树状图法求概率.注意根据题意列出甲、乙的“最终点数”的表格是难点.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2016•江西)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)【考点】解直角三角形的应用.【分析】(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件.五、(本大题共10分)22.(10分)(2016•江西)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为15°,24°;(4)图n中,“叠弦三角形”是等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为60°﹣\frac{180°}{n}(用含n的式子表示)【考点】几何变换综合题.【分析】(1)先由旋转的性质,再判断出△APD≌△AOD',最后用旋转角计算即可;(2)先判断出Rt△AEM≌Rt△ABN,在判断出Rt△APM≌Rt△AON 即可;(3)先判断出△AD′O≌△ABO,再利用正方形,正五边形的性质和旋转的性质,计算即可;(4)先判断出△APF≌△AE′F′,再用旋转角为60°,从而得出△PAO是等边三角形;(5)用(3)的方法求出正n边形的,“叠弦角”的度数.【解答】解:(1)如图1,∵四ABCD是正方形,由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,∴∠DAP=∠D'AO,∴△APD≌△AOD'(ASA)∴AP=AO,∵∠OAP=60°,∴△AOP是等边三角形,(2)如图2,作AM⊥DE于M,作AN⊥CB于N.∵五ABCDE是正五边形,由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°∴∠EAP=∠E'AO∴△APE≌△AOE'(ASA)∴∠OAE'=∠PAE.在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,AA AE=AB ∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM=∠BAN,AM=AN.在Rt△APM和Rt△AON中,AP=AO,AM=AN∴Rt△APM≌Rt△AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换).(3)由(1)有,△APD≌△AOD',∴∠DAP=∠D′AO,在△AD′O和△ABO中,,∴△AD′O≌△ABO,∴∠D′AO=∠BAO,由旋转得,∠DAD′=60°,∵∠DAB=90°,∴∠D′AB=∠DAB﹣∠DAD′=30°,∴∠D′AD=∠D′AB=15°,同理可得,∠E′AO=24°,故答案为:15°,24°.(4)如图3,∵六边形ABCDEF和六边形A′B′C′E′F′是正六边形,∴∠F=F′=120°,由旋转得,AF=AF′,EF=E′F′,∴△APF≌△AE′F′,∴∠PAF=∠E′AF′,由旋转得,∠FAF′=60°,AP=AO∴∠PAO=∠FAO=60°,∴△PAO是等边三角形.故答案为:是(5)同(3)的方法得,∠OAB=[(n﹣2)×180°÷n﹣60°]÷2=60°﹣故答案:60°﹣.【点评】此题是几何变形综合题,主要考查了正多边形的性质旋转的性质,全等三角形的判定,等边三角形的判定,解本题的关键是判定三角形全等.六、(本大题共12分)23.(12分)(2016•江西)设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n (()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A n B n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt△A n B n B n+1中,探究下列问题:①当n为何值时,Rt△A n B n B n+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△A k B k B k+1与Rt△A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)直接把点A1的坐标代入y=ax2求出a的值;(2)由题意可知:A1B1是点A1的纵坐标:则A1B1=2×12=2;A2B2是点A2的纵坐标:则A2B2=2×()2=;…则A n B n=2x2=2×[()n﹣1]2=;B1B2=1﹣=,B2B3=﹣==,…,B n B n+1=;(3)因为Rt△A k B k B k+1与Rt△A m B m B m+1是直角三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比列式,计算求出k与m的关系,并与1≤k<m≤n(k,m均为正整数)相结合,得出两种符合条件的值,分别代入两相似直角三角形计算相似比.【解答】解:(1)∵点A1(1,2)在抛物线的解析式为y=ax2上,∴a=2;(2)A n B n=2x2=2×[()n﹣1]2=,B n B n+1=;(3)由Rt△A n B n B n+1是等腰直角三角形得A n B n=B n B n+1,则:=,2n﹣3=n,n=3,∴当n=3时,Rt△A n B n B n+1是等腰直角三角形,②依题意得,∠A k B k B k+1=∠A m B m B m+1=90°,有两种情况:i)当Rt△A k B k B k+1∽Rt△A m B m B m+1时,=,=,=,所以,k=m(舍去),ii)当Rt△A k B k B k+1∽Rt△B m+1B m A m时,=,=,=,∴k+m=6,∵1≤k<m≤n(k,m均为正整数),∴取或;当时,Rt△A1B1B2∽Rt△B6B5A5,相似比为:==64,当时,Rt△A2B2B3∽Rt△B5B4A4,相似比为:==8,所以:存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64:1或8:1.【点评】本题考查了二次函数的综合问题,这是一个函数类的规律题,把坐标、二次函数和线段有机地结合在一起,以求线段的长为突破口,以相似三角形的对应边的比为等量关系,代入计算解决问题,综合性较强,因为本题小字标较多,容易出错.2016年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.(3分)(2016•江西)下列四个数中,最大的一个数是()A.2B.C.0D.﹣22.(3分)(2016•江西)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.3.(3分)(2016•江西)下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n24.(3分)(2016•江西)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.5.(3分)(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2B.1C.﹣2D.﹣16.(3分)(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)(2016•江西)计算:﹣3+2=.8.(3分)(2016•江西)分解因式:ax2﹣ay2=.9.(3分)(2016•江西)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.10.(3分)(2016•江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB 于点E,交CB的延长线于点F,则∠BEF的度数为.11.(3分)(2016•江西)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=.12.(3分)(2016•江西)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.三、解答题(本大题共5小题,每小题3分,满分27分)13.(3分)(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.14.(6分)(2016•江西)先化简,再求值:(+)÷,其中x=6.15.(6分)(2016•江西)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.16.(6分)(2016•江西)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?17.(6分)(2016•江西)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.四、(本大题共4小题,每小题8根,共32分)18.(8分)(2016•江西)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.19.(8分)(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.20.(8分)(2016•江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;。

江西省2016年中等学校招生考试数学试卷(一)(解析版)

江西省2016年中等学校招生考试数学试卷(一)(解析版)

江西省2016年中等学校招生考试数学试卷(一)(解析版)一、选择题1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形2.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.3.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y14.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A.45°B.60°C.75°D.90°5.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°6.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+17.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.428.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.9.(课改)现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A.B.C.D.10.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1 C.D.11.对于一次函数y=kx+k﹣1(k≠0),下列叙述正确的是()A.当0<k<1时,函数图象经过第一、二、三象限B.当k>0时,y随x的增大而减小C.当k<1时,函数图象一定交于y轴的负半轴D.函数图象一定经过点(﹣1,﹣2)12.如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S213.如图,△ABC内接于⊙O,BC=8,⊙O半径为5,则sinA的值为()A.B.C.D.14.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A. B.15 C.10 D.15.如图,将放置于平面直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,则B′点的坐标为()A.(,)B.(,)C.(,)D.(,)16.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.417.如图:边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.60 B.64 C.68 D.7218.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.19.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()A.7 B.﹣7 C.11 D.﹣1120.如图,正方形PQMN的边PQ在x轴上,点M坐标为(2,1),将正方形PQMN沿x轴连续翻转,则经过点(2015,)的顶点是()A.点P B.点Q C.点M D.点N21.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个22.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.323.已知二次函数y=x2+bx+c过点(0,﹣3)和(﹣1,2m﹣2)对于该二次函数有如下说法:①它的图象与x轴有两个公共点;②若存在一个正数x0,使得当x<x0时,函数值y随x的增大而减小,则m>0;若存在一个负数x0,使得当x>x0时,函数值y随x的增大而增大,则m<0;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=2时的函数值与x=2012时的函数值相等,则当x=20时的函数值为﹣3.其中正确的说法的个数是()A.1 B.2 C.3 D.4二、填空题24.分解因式:xy2﹣25x=.25.若函数,则当函数值y=8时,自变量x的值等于.26.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=°.27.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为.28.如图,PA、PB是⊙O的切线,Q为上一点,过点Q的直线MN与⊙O相切,已知PA=4,则△PMN周长=.29.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是.30.如图,直线l∥x轴,分别与函数(x>0)和(x<0)的图象相交于点A、B,交y轴于点C,若AC=2BC,则k=.31.如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形的边长为.32.如图,已知点A(1,1),B(3,2),且P为x轴上一动点,则△ABP周长的最小值为.33.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.34.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A 旋转后得到△ACE,则AE的长度为.35.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD ∽△ACO,则直线OA的解析式为.36.如图1,正方形ABCD中,点P从点A出发,以每秒2厘米的速度,沿A→D→C方向运动,点Q从点B出发,以每秒1厘米的速度,沿BA向点A运动,P、Q同时出发,当点P运动到点C时,两动点停止运动,若△PAQ的面积y(cm2)与运动时间x(s)之间的函数图象为图2,若线段PQ将正方形分成面积相等的两部分,则x的值为.三、解答题37.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.38.如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.求证:(1)∠AOC=2∠ACD;(2)AC2=ABAD.39.如图,AB是⊙O直径,∠DAC=∠BAC,CD⊥AD,交AB延长线于点P,(1)求证:PC是⊙O的切线;(2)若tan∠BAC=,PB=2,求⊙O半径.40.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC 交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.41.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连结OC交DE于点F,若sin∠ABC=,求的值.42.谷歌人工智能AlphaGo机器人与李世石的围棋挑战赛引起人们的广泛关注,人工智能完胜李世石,某教学网站开设了有关人工智能的课程并策划了A,B两种网上学习的月收费方式:设小明每月上网学习人工智能课程的时间为x小时,方案A,B的收费金额分别为y A元,y B元.(1)当x≥50时,分别求出y A,y B与x之间的函数关系式;(2)若小明3月份上该网站学习的时间为60小时,则他选择哪种方式上网学习合算?43.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是()元;②月销量是()件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?44.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=,求AE的长.45.如图,皋兰山某处有一座信号塔AB,山坡BC的坡度为1:,现为了测量塔高AB,测量人员选择山坡C处为一测量点,测得∠DCA=45°,然后他顺山坡向上行走100米到达E 处,再测得∠FEA=60°.(1)求出山坡BC的坡角∠BCD的大小;(2)求塔顶A到CD的铅直高度AD.(结果保留整数:)46.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA 上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?47.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D 的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH 的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)48.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(3)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.49.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为,AB的长度为;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM 交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由.2016年江西省中等学校招生考试数学试卷(一)参考答案与试题解析一、选择题1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.2.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:由题意,设BC=4x,则AB=5x,AC==3x,∴tanB===.故选B.【点评】本题利用了勾股定理和锐角三角函数的定义.通过设参数的方法求三角函数值.3.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【分析】先判断出函数反比例函数y=的图象所在的象限,再根据图象在每一象限的增减性及每一象限坐标的特点进行判断即可.【解答】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.4.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A.45°B.60°C.75°D.90°【分析】根据直角三角形的两锐角互余求出∠1的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°﹣60°=30°,所以,∠α=45°+30°=75°.故选C.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.5.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°【分析】主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE.∴Rt△BDF≌Rt△ADE(SAS).∴∠DBF=∠DAE=90°﹣62°=28°.故选C .【点评】熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半.6.设0<k <2,关于x 的一次函数y=kx +2(1﹣x ),当1≤x ≤2时的最大值是( ) A .2k ﹣2 B .k ﹣1 C .k D .k +1【分析】首先确定一次函数的增减性,根据增减性即可求解.【解答】解:原式可以化为:y=(k ﹣2)x +2,∵0<k <2,∴k ﹣2<0,则函数值随x 的增大而减小.∴当x=1时,函数值最大,最大值是:(k ﹣2)+2=k .故选:C .【点评】本题主要考查了一次函数的性质,正确根性质确定当x=2时,函数取得最小值是解题的关键.7.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A .48B .96C .84D .42【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S 四边形ODFC =S梯形ABEO ,根据梯形的面积公式即可求解.【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE ﹣DO=10﹣4=6,∴S 四边形ODFC =S 梯形ABEO =(AB +OE )BE=(10+6)×6=48.故选:A .【点评】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO 的面积相等是解题的关键.8.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.【分析】找到可以组成直角三角形的点,根据概率公式解答即可.【解答】解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形.P=,故选:D.【点评】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.(课改)现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A.B.C.D.【分析】因为掷骰子的概率一样,每次都有六种可能性,因此小莉和小明掷骰子各六次,P 的取值有36种.可将x、y值一一代入找出满足抛物线的x、y,用满足条件的个数除以总的个数即可得出概率.【解答】解:点P的坐标共有36种可能,其中能落在抛物线y=﹣x2+4x上的共有(1,3)、(2,4)、(3,3)3种可能,其概率为.故选B.【点评】本题综合考查函数图象上点的坐标特征与概率的确定.10.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1 C.D.【分析】若想利用tan∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ACD 的中位线,可分别得到所求的角的正切值相关的线段的比.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,则AC=2x,∴tanA===,故选A.【点评】本题涉及到三角形的中位线定理,锐角三角函数的定义,解答此题关键是作出辅助线构造直角三角形,再进行计算.11.对于一次函数y=kx+k﹣1(k≠0),下列叙述正确的是()A.当0<k<1时,函数图象经过第一、二、三象限B.当k>0时,y随x的增大而减小C.当k<1时,函数图象一定交于y轴的负半轴D.函数图象一定经过点(﹣1,﹣2)【分析】根据一次函数图象与系数的关系对A、B、C进行判断;根据一次函数图象上点的坐标特征对D进行判断.【解答】解:A、当0<k<1时,函数图象经过第一、三、四象限,所以A选项错误;B、当k>0时,y随x的增大而增大,所以B选项错误;C、当k<1时,函数图象一定交于y轴的负半轴,所以C选项正确;D、把x=﹣1代入y=kx+k﹣1得y=﹣k+k﹣1=﹣1,则函数图象一定经过点(﹣1,﹣1),所以D选项错误.故选:C.【点评】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).12.如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S2【分析】过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,根据三角函数可求AG,在Rt△ABG中,根据三角函数可求DH,根据三角形面积公式可得S1,S2,依此即可作出选择.【解答】解:过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,AG=ABsin40°=5sin40°,∠DEH=180°﹣140°=40°,在Rt△DHE中,DH=DEsin40°=8sin40°,S1=8×5sin40°÷2=20sin40°,S2=5×8sin40°÷2=20sin40°.则S1=S2.故选:C.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,关键是作出高线构造直角三角形.13.如图,△ABC内接于⊙O,BC=8,⊙O半径为5,则sinA的值为()A.B.C.D.【分析】连接BO并延长交⊙O于D,连接CD,根据圆周角定理得到∠BCD=90°,∠D=∠A,然后根据三角函数的定义即可得到结论.【解答】解:连接BO并延长交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A,∵⊙O半径为5,∴BD=10,∴sinA=sinD===,故选B.【点评】本题考查了圆周角,解直角三角形,正确的作出辅助线是解题的关键.14.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A. B.15 C.10 D.【分析】根据题意建立直角三角形DCE,然后根据∠CED=60°,DE=10可求出答案.【解答】解:由题意得:DC=2R,DE=10,∠CED=60°,∴可得:DC=DEsin60°=15.故选B.【点评】本题考查平行投影的知识,属于基础题,解答本题的关键是建立直角三角形,然后利用三角函数值进行解答.15.如图,将放置于平面直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,则B′点的坐标为()A.(,)B.(,)C.(,)D.(,)【分析】根据旋转的概念“旋转不改变图形的大小和形状”,即可解决问题.【解答】解:已知B′A′=BA=1,∠A′OB′=∠AOB=30°,OB′=OB=,做B′C⊥x轴于点C,那么∠B′OC=60°,OC=OB′×cos60°=,B′C=OB′×sin60°=×=,∴B′点的坐标为(,).故选D.【点评】需注意旋转前后对应角的度数不变,对应线段的长度不变,再由三角函数的意义,计算可得答案.16.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.【点评】本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.17.如图:边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.60 B.64 C.68 D.72【分析】由图可得,S1的边长为6,由AC=BC,BC=CE=CD,可得AC=2CD,CD=4,EC=4然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD=4,∴EC2=42+42,即EC=4,∴S2的面积为EC2=32,∵S1的边长为6,S1的面积为6×6=36,∴S1+S2=32+36=68.故选:C.【点评】本题考查了正方形的性质和等腰直角三角形的性质以及勾股定理的运用,同时也考查了学生的读图能力.18.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A .B .C .D .【分析】首先利用扇形公式计算出半圆的面积和扇形AOB 的面积,然后求出△AOB 的面积,用S 半圆+S △AOB ﹣S 扇形AOB 可求出阴影部分的面积. 【解答】解:在Rt △AOB 中,AB==,S 半圆=π×()2=π,S △AOB =OB ×OA=,S 扇形OBA ==,故S 阴影=S 半圆+S △AOB ﹣S 扇形AOB =. 故选C .【点评】本题考查了扇形的面积计算,解答本题的关键是熟练掌握扇形的面积公式,仔细观察图形,得出阴影部分面积的表达式.19.已知实数a ,b 分别满足a 2﹣6a +4=0,b 2﹣6b +4=0,且a ≠b ,则的值是( )A .7B .﹣7C .11D .﹣11【分析】根据已知两等式得到a 与b 为方程x 2﹣6x +4=0的两根,利用根与系数的关系求出a +b 与ab 的值,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将a +b 与ab 的值代入计算即可求出值.【解答】解:根据题意得:a 与b 为方程x 2﹣6x +4=0的两根, ∴a +b=6,ab=4,则原式===7.故选A【点评】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.20.如图,正方形PQMN的边PQ在x轴上,点M坐标为(2,1),将正方形PQMN沿x轴连续翻转,则经过点(2015,)的顶点是()A.点P B.点Q C.点M D.点N【分析】先确定经过(2,)的点为N点,经过点(3,)的点为点P,经过点(4,)的点为点Q,经过点(5,)的点为点M,经过点(6,)的点为点N,于是得到每四次一循环,由于2015﹣2=503×4+1,由此可判断点P经过点(2015,).【解答】解:第1次将正方形PQMN沿x轴翻转时,经过点(2,)的点为点N,第2次将正方形PQMN沿x轴翻转时,经过点(3,)的点为点P,第3次将正方形PQMN沿x轴翻转时,经过点(4,)的点为点Q,第4次将正方形PQMN沿x轴翻转时,经过点(5,)的点为点M,第5次将正方形PQMN沿x轴翻转时,经过点(6,)的点为点N,而2015﹣2=503×4+1,所以经过点(2015,)的顶点是点P.故选A.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B【点评】主要考查图象与二次函数系数之间的关系.关键是注意掌握数形结合思想的应用.22.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3【分析】首先连接PP′交BC于O,根据菱形的性质可得PP′⊥CQ,可证出PO∥AC,根据平行线分线段成比例可得=,再表示出AP、AB、CO的长,代入比例式可以算出t 的值.【解答】解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.【点评】此题主要考查了菱形的性质,勾股定理,平行线分线段成比例,关键是熟记平行线分线段成比例定理的推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.推出比例式=,再表示出所需要的线段长代入即可.23.已知二次函数y=x2+bx+c过点(0,﹣3)和(﹣1,2m﹣2)对于该二次函数有如下说法:①它的图象与x轴有两个公共点;②若存在一个正数x0,使得当x<x0时,函数值y随x的增大而减小,则m>0;若存在一个负数x0,使得当x>x0时,函数值y随x的增大而增大,则m<0;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=2时的函数值与x=2012时的函数值相等,则当x=20时的函数值为﹣3.其中正确的说法的个数是()A.1 B.2 C.3 D.4【分析】把已知点的坐标代入可得y=x2﹣2mx﹣3,可利用方程x2﹣2mx﹣3=0的判别式判断①;可求得其对称轴为x=m,结合二次函数的增减性可判断②;根据左加右减的原则,可求得平移后的解析式,可判断③;根据二次函数的对称性,可求得对称轴,可求得m的值,再把x=20代入,可求得对应函数值,可判断④;可得出答案.【解答】解:∵二次函数y=x2+bx+c过点(0,﹣3)和(﹣1,2m﹣2)∴代入可求得c=﹣3,b=﹣2m,∴二次函数解析式为y=x2﹣2mx﹣3,令y=0可得x2﹣2mx﹣3=0,则其判别式△=4m2+12>0,故二次函数图象与x轴有两个公共点,∴①正确;∴二次函数的对称轴为x=m,且二次函数图象开口向上,∴若存在一个正数x0,使得当x<x0时,函数值y随x的增大而减小,则m>0;若存在一个负数x0,使得当x>x0时,函数值y随x的增大而增大,则m<0,∴②正确;由平移可得向左平移3个单位后其函数解析式为y=(x+3)2﹣2m(x+3)﹣3,把点(0,0)代入可得m=1,∴③不正确;由当x=2时的函数值与x=2012时的函数值相等,代入可求得m=1007,∴函数解析式为y=x2﹣2014x﹣3,当x=20时,代入可得y=400﹣4028﹣3≠﹣3,∴④不正确;综上可知正确的有两个,故选B.【点评】本题主要考查二次函数的性质及与方程的关系,掌握二次函数的对称轴、增减性及图象的平移是解题的关键.注意与一元二次方程的关系.二、填空题24.分解因式:xy2﹣25x=x(y+5)(y﹣5).【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=x(y+5)(y﹣5).故答案为:x(y+5)(y﹣5)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.若函数,则当函数值y=8时,自变量x的值等于4或﹣.【分析】因为不知道x的取值范围,所以需要讨论,①x≤2,②x>2,从而在两种情况下分别求出符合条件的x的值.【解答】解:①当x≤2时,x2+2=8,解得:x=﹣;②当x>2时,2x=8,解得:x=4.故答案为:4或﹣.【点评】本题考查函数值的知识,属于基础题,解答此类题目的关键是讨论x的取值范围,避免漏解.26.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=65°.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=47°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)==115°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=180°﹣115°=65°;故答案为:65.【点评】本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.27.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2.。

2016年江西中考数学大联考试卷3(带答案和解释)

2016年江西中考数学大联考试卷3(带答案和解释)

2016年江西中考数学大联考试卷3(带答案和解释)2016年江西省中考大联考数学试卷(三)一、选择题(每小题3分,共18分) 1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是() A.∠A=30°,∠B=40°B.∠A=30°,∠B=110° C.∠A=30°,∠B=70° D.∠A=30°,∠B=90° 2.下列各数中是有理数的是() A. B.4πC.sin45° D. 3.关于函数y=2x,下列结论中正确的是() A.函数图象都经过点(2,1) B.函数图象都经过第二、四象限 C.y随x的增大而增大D.不论x取何值,总有y>0 4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A. B. C. D. 5.如图,有一个正方体纸巾盒,它的平面展开图是() A. B. C. D. 6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是() A.左、右两个几何体的主视图相同 B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同二、填空题(每题3分,共24分) 7.函数y= 中,自变量x的取值范围是. 8.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为. 9.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为. 10.已知�x2+4x的值为6,则2x2�8x+4的值为. 11.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在20%和40%,则布袋中白色球的个数很可能是个. 12.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为() 13.如图,点A、B是反比例函数(x>0)图象上的两个点,在△AOB中,OA=OB,BD垂直于x轴,垂足为D,且AB=2BD,则△AOB的面积为. 14.如图,半径为1的⊙P在射线AB上运动,且A(�3,0)B(0,3),那么当⊙P 与坐标轴相切时,圆心P的坐标是.三、解答题 15.解不等式组:,并在数轴上把解集表示出来. 16.已知(a+2+ )2与|b+2�|互为相反数,求(a+2b)2�(2b+a)(2b�a)�2a2的值. 17.当a<�1时,代数式6�9a�的值是正的还是负的?试说明你的理由. 18.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(�3,1),B、C两点在直线y=�3上,D、E两点在y轴上.(1)在△ABC中,作AH、CK分别垂直BC、AB于H、K,求证:KC=HA;(2)求F点到y轴的距离. 19.如图,下列正方形网格的每个小正方形的边长均为1,⊙O的半径为n≥8 .规定:顶点既在圆上又是正方形格点的直角三角形称为“圆格三角形”,请按下列要求各画一个“圆格三角形”,并用阴影表示出来. 20.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1 一班 5 8 8 9 8 10 10 8 5 5 二班 10 6 6 9 10 4 5 7 10 8 表2 班级平均数中位数众数方差及格率优秀率一班 7.6 8 a3.82 70% 30% 二班 b 7.5 104.94 80% 40% (1)在表2中,a= ,b= ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率. 21.4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元? 22.如图,已知△ABD和△CEF都是斜边为2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直线上,DC=4.(1)求证:四边形ABFE是平行四边形.(2)△ABD 沿着BE的方向以每秒1cm的速度运动,设△ABD运动的时间为t秒,①当t为何值时,▱ABFE是菱形?请说明你的理由.②▱ABFE有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由. 23.已知二次函数.(1)求证:不论k为任何实数,该函数的图象与x轴必有两个交点;(2)若该二次函数的图象与x轴的两个交点在点A(1,0)的两侧,且关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,求k的整数值;(3)在(2)的条件下,关于x的另一方程x2+2(a+k)x+2a�k2+6k�4=0 有大于0且小于3的实数根,求a的整数值. 24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+ ,PA= ,则:①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足 = ,求的值.(提示:请利用备用图进行探求) 2016年江西省中考大联考数学试卷(三)参考答案与试题解析一、选择题(每小题3分,共18分) 1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是() A.∠A=30°,∠B=40° B.∠A=30°,∠B=110° C.∠A=30°,∠B=70° D.∠A=30°,∠B=90° 【考点】命题与定理.【分析】判断“两个锐角的和是锐角”什么情况下不成立,即找出两个锐角的和>90°即可.【解答】解:例如:若∠A=30°,∠B=70°,则∠A+∠B>90°.故选C 2.下列各数中是有理数的是() A. B.4π C.sin45° D.【考点】特殊角的三角函数值.【分析】要想解决此题,首先明确有理数的分类,其次牢记特殊角的三角函数值.【解答】解:A、 = =3 ,是无理数; B、4π是无理数; C、sin45°= 是无理数; D、 = =2,是有理数;故选D. 3.关于函数y=2x,下列结论中正确的是() A.函数图象都经过点(2,1) B.函数图象都经过第二、四象限 C.y随x的增大而增大 D.不论x取何值,总有y>0 【考点】正比例函数的性质.【分析】根据正比例函数的性质对各小题进行逐一判断即可.【解答】解:A、函数图象经过点(2,4),错误; B、函数图象经过第一、三象限,错误; C、y随x的增大而增大,正确; D、当x>0时,才有y>0,错误;故选C. 4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A. B. C. D.【考点】生活中的旋转现象.【分析】根据△ABC 绕着点O逆时针旋转90°,得出各对应点的位置判断即可;【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A. 5.如图,有一个正方体纸巾盒,它的平面展开图是() A. B. C. D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B. 6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是() A.左、右两个几何体的主视图相同 B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同 D.左、右两个几何体的三视图不相同【考点】平移的性质;简单组合体的三视图.【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【解答】解:A、左、右两个几何体的主视图为:,故此选项错误; B、左、右两个几何体的左视图为:,故此选项正确; C、左、右两个几何体的俯视图为:,故此选项错误; D、由以上可得,此选项错误;故选:B.二、填空题(每题3分,共24分) 7.函数y= 中,自变量x的取值范围是x≥0且x≠1.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x�1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1. 8.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为4.32×10�6 .【考点】科学记数法―表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10�n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000432用科学记数法表示为4.32×10�6.故答案为:4.32×10�6. 9.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为70π.【考点】由三视图判断几何体.【分析】易得此几何体为空心圆柱,圆柱的体积=底面积×高,把相关数值代入即可求解.【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为10×(π×42�π×32)=70π,故答案为70π. 10.已知�x2+4x 的值为6,则2x2�8x+4的值为�8 .【考点】代数式求值.【分析】直接将原式变形进而将已知代入求出答案.【解答】解:∵�x2+4x=6,∴x2�4x=�6,∴2x2�8x+4=2(x2�4x)+4 =2×(�6)+4 =�8.故答案为:�8. 11.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在20%和40%,则布袋中白色球的个数很可能是20 个.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再乘以总球数求解.【解答】解:∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在20%和40%,∴口袋中白色球的个数很可能是(1�20%�40%)×50=20(个).故答案为:20. 12.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()【考点】位似变换;坐标与图形性质.【分析】直接利用位似图形的性质得出位似比进而得出答案.【解答】解:如图所示:∵△ABO缩小后变为△A′B′O,∴△OAB∽△OA′B′,∴ = = ,∵线段AB上有一点P(m,n),∴点P在A′B′上的对应点P′的坐标为:(,). 13.如图,点A、B是反比例函数(x>0)图象上的两个点,在△AOB中,OA=OB,BD垂直于x轴,垂足为D,且AB=2BD,则△AOB的面积为 3 .【考点】反比例函数综合题.【分析】作等腰三角形底边上的高,利用等腰三角形的性质和已知条件得到两个三角形全等,由此可以得到△AOB的面积是△OBD的2倍,进而求得△OAB的面积.【解答】解:作OC⊥AB于C点,∵OA=OB,∴AC=CB,∵AB=2BD,∴BC=BD,∵∠BDO=∠BCO=90°,OB=OB,∴△OCB≌△ODB,∵S△OBD= ,∴S△OAB=2S△OBC=2× =3.故答案为:3. 14.如图,半径为1的⊙P在射线AB上运动,且A(�3,0)B(0,3),那么当⊙P与坐标轴相切时,圆心P的坐标是(�2,1)或(�1,2)或(1,4).【考点】切线的性质;坐标与图形性质.【分析】由⊙P与坐标轴相切画出符合题意的图形可知有三种情况,再根据圆的半径长为1以及点A和点B的坐标即可求出不同情况下圆心的坐标.【解答】解:如图所示:当点P在第一项象限时,则点P的坐标为(1,4);当点P在第二象限时,则点P′坐标为(�1,2);点P″的坐标为(�2,1),故答案为:(�2,1)或(�1,2)或(1,4).三、解答题 15.解不等式组:,并在数轴上把解集表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式,求出其解集,在数轴上表示出来,找出公共部分,即求出了不等式组的解集.【解答】解:解第一个不等式得x<1,解第二个不等式得x≥�2,所以不等式组的解集为�2≤x<1.其解集在数轴上表示为: 16.已知(a+2+ )2与|b+2�|互为相反数,求(a+2b)2�(2b+a)(2b�a)�2a2的值.【考点】整式的混合运算―化简求值.【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出a与b 的值,原式利用完全平方公式,平方差公式化简,去括号合并后代入计算即可求出值.【解答】解:∵(a+2+ )2与|b+2� |互为相反数,∴(a+2+ )2+|b+2� |=0,∴a=�2�,b=�2+ ,则原式=a2+4ab+4b2�4b2+a2�2a2=4ab=4×(�2�)×(�2+ )=4. 17.当a<�1时,代数式6�9a�的值是正的还是负的?试说明你的理由.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据a<�1进行判断即可.【解答】解:是正的.理由:原式= =�,∵a<�1,(3a�1)2>0,∴原式的值是正的. 18.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(�3,1),B、C两点在直线y=�3上,D、E两点在y轴上.(1)在△ABC中,作AH、CK分别垂直BC、AB于H、K,求证:KC=HA;(2)求F点到y轴的距离.【考点】全等三角形的判定与性质;坐标与图形性质.【分析】(1)欲证明KC=HA,只要证明△AKC≌△CHA即可.(2)作PF⊥DE于E,只要证明△AKC≌△DPF即可.【解答】(1)证明:如图,AH⊥BC于H,CK⊥AB于K.∴∠DPF=∠AKC=∠CHA=90°,∵AB=BC,∴∠BAC=∠BCA,在△AKC和△CHA中,,∴△AKC≌△CHA,∴KC=HA.(2)作PF⊥DE于E.∵B、C在y=�3上,且点A的坐标为(�3,1),∴AH=4,∴KC=AH=4,∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF,在△AKC和△DPF中,,∴△AKC≌△DPF,∴KC=PF=4.∴F点到y轴的距离4. 19.如图,下列正方形网格的每个小正方形的边长均为1,⊙O的半径为n≥8 .规定:顶点既在圆上又是正方形格点的直角三角形称为“圆格三角形”,请按下列要求各画一个“圆格三角形”,并用阴影表示出来.【考点】作图―应用与设计作图.【分析】(1)以直径为斜边,直角边分别为2和6的圆内接直角三角形满足要求;(2)以直径为斜边,直角边分别为2 和4 的圆内接直角三角形满足要求;(3)以直径为斜边,直角边为2 的圆内接等腰直角三角形满足要求.【解答】解:(1)如图1所示,△ABC即为所求三角形,其中AC=2,BC=6;(2)如图2所示,△DEF即为所求作三角形,其中DF=2 ,EF=4 ,则其面积为×2 ×4 =8;(3)如图3所示,△PQR即为所求作三角形,其中PR=QR,∠PRQ=90°,∵PQ= =2 ,∴∠PRQ所对弧长为 = π. 20.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1 一班 5 8 8 9 8 10 10 8 5 5 二班 10 6 6 9 104 5 7 10 8 表2 班级平均数中位数众数方差及格率优秀率一班 7.6 8 a 3.82 70% 30% 二班 b 7.5 10 4.94 80% 40% (1)在表2中,a= 8 ,b= 7.5 ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.【考点】列表法与树状图法;加权平均数;中位数;众数;方差.【分析】(1)分别用平均数的计算公式和众数的定义解答即可;(2)方差越小的成绩越稳定,据此求解;(3)列表或树状图后利用概率公式求解即可;【解答】解:(1)∵数据8出现了4次,最多,∴众数a=8; b= =7.5;(2)一班的平均成绩高,且方差小,较稳定,故一班成绩好于二班;(3)列表得:∵共有6种等可能的结果,一男一女的有3种,∴P (一男一女)= = . 21.4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据买了“雀巢巧克力”和“趣多多小饼干”共10包,“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元,列出方程组,求解即可;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,求出购物金额,若在B超市购物花费少,也求出购物金额,从而得出去哪家超市购物更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据在B超市累计购物超过100元后,超过100元的部分打八折,列出不等式,再进行求解,即可得出答案.【解答】解:(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据题意得:,解得:,答:雀巢巧克力”和“趣多多小饼干”各买了3包和7包;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,则50+0.9(m�50)<100+0.8(m�100),解得:m<150,若在B超市购物花费少,则50+0.9(m�50)>100+0.8(m�100),解得:m>150,如果购物在100元至150元之间,则去A超市更划算;如果购物等于150元时,去任意两家购物都一样;如果购物超过150元,则去B超市更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据题意得:100+(22n�100)×0.8≤20n,解得:n≥8 ,据题意x取整数,可得x的取值为9,所以小欣在B超市至少购买9包“雀巢巧克力”,平均每包价格不超过20元. 22.如图,已知△ABD和△CEF都是斜边为2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直线上,DC=4.(1)求证:四边形ABFE是平行四边形.(2)△ABD沿着BE的方向以每秒1cm的速度运动,设△ABD运动的时间为t秒,①当t为何值时,▱ABFE是菱形?请说明你的理由.②▱ABFE有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.【考点】四边形综合题.【分析】(1)根据全等三角形的性质得到AB=EF,根据平行线的判定定理证明AB∥EF,根据平行四边形的判定定理证明结论;(2)①根据△ABD的移动速度和时间得到D 与C重合,根据菱形的判定定理解答即可;②根据矩形的性质和正弦的定义求出BE,根据正切的定义求出AE,求出CD的长,得到t的值,根据矩形的面积公式求出面积.【解答】(1)证明:∵已知△ABD 和△CEF都是斜边为2cm的全等直角三角形,∴AB=EF,∵∠ABD=∠FEC,∴AB∥EF,又AB=EF,∴四边形ABFE是平行四边形;(1)①当t=4时,▱ABFE是菱形.理由如下:∵△ABD沿着BE的方向以每秒1cm的速度运动, 4秒后,△ABD移动的距离为4÷1=4,又DC=4,∴D与C重合,∴AF⊥BE,又四边形ABFE是平行四边形,∴四边形ABFE是菱形;②当四边形ABFE是矩形时,∠BAE=90°,∵∠ABD=60°,∴∠BEA=30°,∴BE=2AB=4,AE= =2 ,∵∠ABD=60°,AB=2,∴BD=1,同理CE=1,∴CD=4�1�1=2,t=2÷1=2秒,矩形的面积=AB×AE=4 cm2. 23.已知二次函数.(1)求证:不论k为任何实数,该函数的图象与x轴必有两个交点;(2)若该二次函数的图象与x轴的两个交点在点A(1,0)的两侧,且关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,求k的整数值;(3)在(2)的条件下,关于x的另一方程x2+2(a+k)x+2a�k2+6k�4=0 有大于0且小于3的实数根,求a的整数值.【考点】二次函数综合题.【分析】(1)表示出方程:x2+kx+ k� =0的判别式,即可得出结论;(2)二次函数的图象与x轴的两个交点在点A(1,0)的两侧,则可得当x=1时,函数值y<0,再由关于x 的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,可得出k的取值范围,从而得出k的整数值;(3)将求得的k的值代入,然后可求出方程的根,根据方程有大于0且小于3的实数根,可得出a的取值范围,继而得出a的整数值.【解答】(1)证明:x2+kx+ k�=0,△1=b2�4ac=k2�4( k�) =k2�2k+14 =k2�2k+1+13 =(k�1)2+13>0,∴不论k为任何实数,该函数的图象与x轴必有两个交点;(2)解:∵二次函数y=x2+kx+ k�的图象与x轴的两个交点在点(1,0)的两侧,且二次函数开口向上,∴当x=1时,函数值y<0,即1+k+ k�<0,解得:k<,∵关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,∴k≠0且△2=b2�4ac=(2k+3)2�4k2=4k2+12k+9�4k2=12k+9>0,∴k>�且k≠0,∴�<k<且k≠0,∴k=1;(3)解:由(2)可知:k=1,∴x2+2(a+1)x+2a+1=0,解得x1=�1,x2=�2a�1,根据题意,0<�2a�1<3,∴�2<a<�,∴a的整数值为�1. 24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+ ,PA= ,则:①线段PB= ,PC= 2 ;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2 ;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足 = ,求的值.(提示:请利用备用图进行探求)【考点】勾股定理的应用;相似形综合题.【分析】(1)①在等腰直角三角形ACB中,由勾股定理先求得AB的长,然后根据PA的长,可求得PB的长;过点C作CD⊥AB,垂足为D,从而可求得CD、PD的长,然后在Rt三角形CDP中依据勾股定理可求得PC的长;②△ACB为等腰直角三角形,CD⊥AB,从而可求得:CD=AD=DB,然后根据AP=DC�PD,PB=DC+PD,可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(2)过点C作CD⊥AB,垂足为D,则AP=(AD+PD)=(DC+PD),PB=(DP�BD)=(PD�DC),可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(3)根据点P所在的位置画出图形,然后依据题目中的比值关系求得PD 的长(用含有CD的式子表示),然后在Rt△ACP和Rt△DCP中由勾股定理求得AC和PC的长度即可.【解答】解:(1)如图①:①∵△ABC 是等腰直直角三角形,AC=1+ ∴AB= = = + ,∵PA= ,∴PB= ,作CD⊥AB于D,则AD=CD= ,∴PD=AD�PA= ,在Rt△PCD中,PC= =2,故答案为:,2;②如图1.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD�PD)2=(DC�PD)2=DC2�2DC•PD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2DC•PD+PD2 ∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+B P2=PQ2(2)如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2, PB2=(DP�BD)2=(PD�DC)2=DC2�2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2.(3)如图③:过点C作CD⊥AB,垂足为D.①当点P位于点P1处时.∵ ,∴ .∴ .在Rt△CP1D中,由勾股定理得: = = DC,在Rt△ACD中,由勾股定理得:AC= = = DC,∴ = .②当点P位于点P2处时.∵ = ,∴ .在Rt△CP2D中,由勾股定理得: = = ,在Rt△ACD中,由勾股定理得:AC= = = DC,∴ .综上所述,的比值为或. 2017年2月28日。

2016年江西省中考数学试卷有答案

2016年江西省中考数学试卷有答案

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前江西省2016年中等学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共18分)一、选择题(本大题共6个小题,每小题3分,共18分.在每个小题给出的四个选项中,只有一项是符合题目要求的) 1.下列四个数中,最大的一个数是( ) A .2BC .0D .2-2.将不等式321x -<的解集表示在数轴上,正确的是( )ABCD3.下列运算正确的是( )A .224a a a +=B .236()b b -=-C .23222x x x =D .222()m n m n -=-4.有两个完全相同的长方体,按下面右图方式摆放,其主视图是 ( )A B C D5.设,αβ是一元二次方程2210x x +-=的两个根,则αβ的值是 ( )A .2B .1C .2-D .1-6.如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m ,水平部分线段长度之和记为n ,则这三个多边形中满足m n =的是( )A .只有②B .只有③C .②③D .①②③第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 7.计算:32-+= .8.分解因式:22ax ay -= .9.如图,ABC △中,33BAC ∠=︒,将ABC △绕点A 按顺时针方向旋转50︒,对应得到''ABC△,则'B AC ∠的度数为 . 10.如图,在□ABCD 中40C ∠=︒,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则BEF ∠的度数为 .11.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x =>及22(0)ky x x=>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2,则12k k -= .12.如图是一张长方形纸片ABCD ,已知8AB =,7AD =,E 为AB 上一点,5AE =,现要剪下一张等腰三角形纸片()AEP △,使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是 .三、解答题(本大题共11小题,共84分.解答应写出必要文字说明、证明过程或演算步骤) 13.(本小题满分6分)(1)解方程组:2,1.x y x y y -=⎧⎨-=+⎩CDA毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)(2)如图,Rt ABC △中,90ACB ∠=,将Rt ABC △向下翻折,使点A 与点C 重合,折痕为DE .求证:DE BC ∥.14.(本小题满分6分)先化简,再求值:221()339xx x x +÷+--,其中6x =.15.(本小题满分6分)如图,过点(2,0)A 的两条直线12,l l 分别交y 轴于点,B C ,其中点B 在原点上方,点C 在原点下方,已知AB =. (1)求点B 的坐标;(2)若ABC △的面积为4,求直线2l 的解析式.16.(本小题满分6分)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”“日常学习”“习惯养成”“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.(1)补全条形统计图;(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?17.(本小题满分6分)如图,六个完全相同的小长方形拼成一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画一个45角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边; (2)在图2中画出线段AB 的垂直平分线.项目情感品质日常学习习惯养成健康安全84B数学试卷 第5页(共24页) 数学试卷 第6页(共24页)18.(本小题满分8分)如图,AB 是O 的直径,点P 是弦AC 上一动点(不与,A C 重合),过点P 作PE AB ⊥,垂足为E ,射线EP 交AC 于点F ,交过点C 的切线于点D . (1)求证:DC DP =;(2)若30CAB ∠=,当F 是AC 的中点时,判断以,,,A O C F 为顶点的四边形是什么特殊四边形?说明理由.19.(本小题满分8分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,依此类推,每一节套管均比前一节套管少4cm .完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm .图3(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求x 的值.20.(本小题满分8分)甲、乙两人利用扑克牌玩“10点”游戏.游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关); ②两人摸牌结束时,将所得牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0; ③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为 . (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.图2图1• • •毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页) 数学试卷 第8页(共24页)21.(本小题满分8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯端点B 可绕点A 旋转作出圆.已知10cm OA OB ==. (1)当18AOB ∠=时,求所作圆的半径;(结果精确到0.01cm )(2)保持18AOB ∠=不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm )(参考数据:sin90.1564,cos90.9877,sin180.3090, cos180.9511≈≈≈≈,可使用科学计算器)22.(本小题满分10分) 【图形定义】如图,将正n 边形绕点A 顺时针旋转60后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60后,交旋转前的图形于点P ,连接PO ,我们称OAB ∠为“叠弦角”,AOP △为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(即AOP △)是等边三角形; (2)如图2,求证:OAB OAE ∠=∠'. 【归纳猜想】(3)图1、图2中“叠弦角”的度数分别为 , ;(4)图n 中,“叠弦三角形” 等边三角形(填“是”或“不是”); (5)图n 中,“叠弦角”的度数为 (用含n 的式子表示).23.(本小题满分12分)设抛物线的解析式为2y ax =,过点1(1,0)B 作x 轴的垂线,交抛物线于点1)(1,2A ;过点21()2,0B 作x 轴的垂线,交抛物线于点2A ;…;过点11((),0)2n n B -(n 为正整数)作x 轴的垂线,交抛物线于点n A ,连接n A 1n B +,得1Rt n n n A B B +△. (1)求a 的值;(2)直接写出线段n A n B ,n B 1n B +的长(用含n 的式子表示); (3)在系列1Rt n n n A B B +△中,探究下列问题: ①当n 为何值时,1Rt n n n A B B +△是等腰直角三角形?②设1k m n ≤<≤(,k m 均为正整数),问:是否存在1Rt k k k A B B +△与1Rt m m m A B B +△相似?若存在,求出其相似比;若不存在,说明理由.x图1图2B故选C.=x x x24【提示】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的数学试卷第9页(共24页)数学试卷第10页(共24页)数学试卷 第11页(共24页) 数学试卷 第12页(共24页)OAB S S =【提示】由反比例函数的图象过第一象限可得出5245数学试卷 第13页(共24页) 数学试卷 第14页(共24页)3)(3)(x x x -+补全条形统计图如图:46+数学试卷 第15页(共24页) 数学试卷 第16页(共24页)【考点】条形统计图,用样本估计总体17.【答案】(1)如图(画法有两种,正确画出其中一种即可)(2)如图:(画出其中一种即可)【解析】(1)如图所示,45ABC ∠=︒.(AB 、AC 是小长方形的对角线)(2)线段AB 的垂直平分线如图所示【提示】(1)根据等腰直角三角形的性质即可解决问题;(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【考点】应用与设计作图 18.【答案】(1)证明:连接OC ,∵OAC ACO ∠=∠,PE OE ⊥,OC CD ⊥,∴APE PCD ∠=∠, ∵APE DPC ∠=∠,∴DPC PCD ∠=∠,∴DC DP =; (2)解:以A ,O ,C ,F 为顶点的四边形是菱形;∵30CAB ∠=︒,∴60B ∠=︒,∴△OBC 为等边三角形,∴120AOC ∠=︒, 连接OF ,AF ,∵F 是AC 的中点,∴60AOF COF ∠=∠=︒,∴△AOF 与△COF 均为等边三角形,∴AF AO OC CF ===,∴四边形OACF 为菱形.【提示】(1)连接OC ,根据切线的性质和PE OE ⊥以及OA C OC A ∠=∠得APE DPC ∠=∠,然后结合对顶角的性质可证得结论;(2)由30CAB ∠=︒易得△OBC 为等边三角形,可得120AOC ∠=︒,由F 是AC 的中点,易得△AOF 与△COF 均为等边三角形,可得AF AO OC CF ===,易得以A ,O ,C ,F 为顶点的四边形是菱形. 【考点】切线的性质,垂径定理数学试卷 第17页(共24页)数学试卷 第18页(共24页)14)9++-他们的“最终稿点数”如下表所示:5解法二:他们的“最终稿点数”如下表所示:5数学试卷 第19页(共24页) 数学试卷 第20页(共24页)【提示】(1)由现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,甲摸牌数字是4与5则获胜,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后根据树状图列出甲、乙的“最终点数”,继而求得答案【考点】列表法与树状图法21.【答案】(1)所作圆的半径约为3.13cm (2)铅笔芯折断部分的长度是0.98cm【解析】(1)作OC AB ⊥于点C ,如图2所示,由题意可得,10OA OB cm ==,90OCB ∠=︒,18AOB ∠=︒, ∴9BOC ∠=︒∴22sin92100.1564 3.13AB BC OB cm ==︒≈⨯⨯≈,即所作圆的半径约为3.13cm;(2)作AD ⊥OB 于点D ,作AE AB =,如图3所示,∵保持18AOB ∠=︒不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等, ∴折断的部分为BE ,∵18AOB ∠=︒,OA OB =,90ODA ∠=︒, ∴81OAB ∠=︒,72OAD ∠=︒, ∴9BAD ∠=︒,∴22sin92 3.130.15640.98BE BD AB cm ==︒≈⨯⨯≈, 即铅笔芯折断部分的长度是0.98cm .【提示】(1)根据题意作辅助线OC AB ⊥于点C ,根据10OA OB cm ==,90OCB ∠=︒,18AOB ∠=︒,可以求得∠BOC 的度数,从而可以求得AB 的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE AB =,然后作出相应的辅助线,画出图形,从而可以求得BE 的长,本题得以解决. 【考点】解直角三角形的应用 22.【答案】(1)如图1,∵四边形ABCD 是正方形,由旋转知:'AD AD =,'90D D ∠=∠=︒,'60DAD OAP ∠=∠=︒,∴'D A P D A O ∠=∠,∴'()A P D A O D A S A△≌△∴AP AO =,∵60OAP ∠=︒,∴△AOP 是等边三角形;(2)如图2,作AM DE ⊥于M ,作AN CB ⊥于N .∵五边形ABCDE 是正五边形,由旋转知:'AE AE =,'108E E ∠=∠=︒,'60EAE OAP ∠=∠=︒∴'EAP E AO ∠=∠∴'()APE AOE ASA △≌△∴'OAE PAE ∠=∠. 在Rt △AEM和Rt △ABN中,72AEM ABN ∠=∠=︒,AE AB =∴Rt Rt ()AEM ABN AAS △≌△,∴EAM BAN ∠=∠,AM AN =.在Rt △APM 和Rt △AON 中,AP AO =,AM AN =∴Rt Rt ()APM AON HL △≌△∴PAM OAN∠=∠,∴PAE OAB∠=∠,∴'OAE OAB∠=∠(等量代换)数学试卷第21页(共24页)数学试卷第22页(共24页)所以:存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64:1或8:1.数学试卷第23页(共24页)数学试卷第24页(共24页)。

江西省中等学校招生考试近年年中考数学模拟试卷(三)(含解析)(2021年整理)

江西省中等学校招生考试近年年中考数学模拟试卷(三)(含解析)(2021年整理)

2016年江西省中等学校招生考试数学模拟试卷(三)一、选择题(共6小题,每小题3分,满分18分)1.下列计算中,结果是正数的是()A.1﹣3 B.(﹣1)×3C.3﹣1D.(﹣1)32.下列算式中,错误的是()A.a+a=2a2B.a﹣a=0 C.a•a=a2D.a÷a=13.如图,该物体是圆柱,它的三种视图中,是全等形的是()A.主视图和俯视图B.主视图和左视图C.主视图和俯视图D.主视图、左视图和俯视图4.如图,在Rt△ABC中,∠C=90°,将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形形成一圆环(阴影部分),为求该圆环的面积,只需测量一条线段的长度,这条线段就是()A.AD B.AB C.BD D.AC5.如图是甲、乙两种固体物质在0℃﹣50℃之间的溶解度随温度变化的曲线图,某同学从图中获得如下几条信息,其中错误的信息是()A.30℃时两种固体物质的溶解度一样B.在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加C.在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10gD.在0℃﹣50℃之间,甲的溶解度比乙的溶解度高6.关于二次函数y=x2﹣2x+1﹣a2图象,以下判断错误的是()A.开口方向确定B.对称轴位置确定C.与y轴的交点一定在正半轴D.与x轴的交点一定有一个在正半轴二、填空题(共6小题,每小题3分,满分18分)7.若是一个正整数,满足条件的最小正整数n= .8.如图,是三个正方形随意摆放的图形,则图中∠1+∠2+∠3等于度.9.给出一组数据:1,2,2,3,3,3,4,4,4,4,这组数据的平均数是.10.如图,在▱ABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是度.11.一次函数y=20+16x的图象与两坐标轴围成的三角形的面积是.12.如图,等边△OAB的边长为2,点B在x轴上,反比例函数图象经过A点,将△OAB绕点O 顺时针旋转a度(0<a<360),使点A落在双曲线上,则a= .三、解答题(共11小题,满分84分)13.化简:.14.解不等式组,并将解集在数轴上表示出来.15.已知关于x的方程mx2+2x﹣1=0有实数根.(1)求m的取值范围;(2)若方程有两个实数根x1,x2,求+的值.16.如图,这是某个小区内的道路示意图,小明家住在该小区的A处,他每天晚饭后都要从家出发随机沿着小区内的道路散步一圈后回家如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD 的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.18.如图,在△ABC中,已知:∠CAB=120°,AB=3,AC=5,AD⊥BC于D,试求:(1)BC的长;(2)AD的长.19.在平面直角坐标系中,若横坐标、纵坐标均为整数点称为格点,若一个多边形的顶点都是格点,则称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.(1)利用图中条件求a,b的值;(2)若某格点多边形对应的n=20,l=15,求S的值;(3)在图中画出面积等于5的格点直角三角形PQR.20.根据如图所示的程序计算:(1)选取一个你喜欢的x的值,输入计算,试求输出的y值是多少?(2)求出这样的x的值,输入计算后输出的y值是9;(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.21.江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4位选手的短信支持率情况如图2,已知两次之间这4位选手的获得短信支持条数相同.(1)比较图1,图2的变化情况,写出2条结论;(2)写出第一次4位短信支持总条数与第二次4位短信支持总条数的等式关系,并证明这个等式关系.22.我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线",锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图①所示(图②是备用图),如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如果炒菜锅时的水位高度是1dm,求此时水面的直径;(3)如果将一个底面直径为3dm,高度为3dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.23.如图1,⊙O是△ABC的外接圆,已知:AB≠AC,点M是的中点,点N是的中点,按要求解答下列问题:(1)如图2,连接MN交AB于点E,交AC于点F.①求证:AE=AF;②若2ME•NF=EF2,求∠A的度数;(2)如图3,连接CM,BN,若CM=BN,求∠A的度数.(3)在图1中,①仅用直尺找出点P,使点P为的中点;②连出六边形AMBPCN,已知⊙O的半径为1,△ABC的周长为4,求六边形AMBPCN的面积.2016年江西省中等学校招生考试数学模拟试卷(三)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.下列计算中,结果是正数的是( )A.1﹣3 B.(﹣1)×3C.3﹣1D.(﹣1)3【考点】负整数指数幂;有理数的混合运算.【分析】根据有理数的加减、乘除、乘方法则一一计算即可判断.【解答】解:∵1﹣3=﹣2,(﹣1)×3=﹣3,3﹣1=,(﹣1)3=﹣1,∴3﹣1>0,故选C.【点评】本题考查负整数指数幂,有理数的混合运算法则,解题的关键是熟练掌握这些知识,灵活一一法则计算,思考基础题,参考常考题型.2.下列算式中,错误的是()A.a+a=2a2B.a﹣a=0 C.a•a=a2D.a÷a=1【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据合并同类项的法则,同底数幂的乘法与除法的性质求解即可求得答案.【解答】解:A、a+a=2a,故本选项错误;B、a﹣a=0,故本选项正确;C、a•a=a2,故本选项正确;D、a÷a=1,故本选项正确.故选A.【点评】此题考查了合并同类项的法则,同底数幂的乘法与除法的性质.题目比较简单,解题需细心.3.如图,该物体是圆柱,它的三种视图中,是全等形的是()A.主视图和俯视图B.主视图和左视图C.主视图和俯视图D.主视图、左视图和俯视图【考点】简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,根据主视图、左视图和俯视图的形状,解答即可.【解答】解:如图,根据圆柱的主视图、左视图和俯视图,得,圆柱的主视图和左视图是全等形;故选B.【点评】本题考查了圆柱的三种视图,掌握三种视图的形状是解答的关键,考查了学生空间想象能力.4.如图,在Rt△ABC中,∠C=90°,将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形形成一圆环(阴影部分),为求该圆环的面积,只需测量一条线段的长度,这条线段就是()A.AD B.AB C.BD D.AC【考点】勾股定理.【分析】根据勾股定理得到AC2=AB2﹣BC2,又S圆环=S大圆﹣S小圆=π•AB2﹣π•BC2=π•(AB2﹣BC2)=π•AC2,即可得到答案.【解答】解:∵Rt△ABC中,∠C=90°,∴AC2=AB2﹣BC2,又∵S圆环=S大圆﹣S小圆=π•AB2﹣π•BC2=π•(AB2﹣BC2)=π•AC2,∴只需测量线段AC的长度即可计算出圆环的面积.故选D.【点评】本题考查了考查了勾股定理,圆的面积公式:S=π•R2;关键是得到S圆环=π•AC2.5.如图是甲、乙两种固体物质在0℃﹣50℃之间的溶解度随温度变化的曲线图,某同学从图中获得如下几条信息,其中错误的信息是()A.30℃时两种固体物质的溶解度一样B.在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加C.在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10gD.在0℃﹣50℃之间,甲的溶解度比乙的溶解度高【考点】函数的图象.【分析】此题只需先对图象的交点及在一点范围内图象的性质进行分析,然后再对各条信息逐一判断即可.【解答】解:由图象可以看出,30℃时两种固体物质的溶解度一样,故(A)正确;在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加,故(B)正确;在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10g,故(C)正确;在0℃﹣50℃之间,甲的溶解度比乙的溶解度高,故(D)错误,实际应改为30℃﹣50℃之间,甲的溶解度比乙的溶解度高.故选(D).【点评】本题主要考查了函数的图象,读懂图象的含义是解决该题的关键,考查的知识点也较全面.6.关于二次函数y=x2﹣2x+1﹣a2图象,以下判断错误的是()A.开口方向确定B.对称轴位置确定C.与y轴的交点一定在正半轴D.与x轴的交点一定有一个在正半轴【考点】二次函数的性质.【分析】由二次函数y=x2﹣2x+1﹣a2,可得其对称轴;由二次项系数,可知图象开口向下;由二次项系数和一次项系数可知抛物线与x轴的交点的位置,对每个选项分析、判断即可.【解答】解:A、由二次函数y=x2﹣2x+1﹣a2得,a=1>0,开口向下;故本项错误;B、由二次函数y=x2﹣2x+1﹣a2得,对称轴是x=1;故本项错误;C、由二次函数y=x2﹣2x+1﹣a2可知,与y轴的交点坐标为(0,1﹣a2),1﹣a2无法求得符号,故本项正确;D、由二次函数y=x2﹣2x+1﹣a2可知﹣=﹣=2,所以与x轴的交点一定有一个在正半轴;故本项错误;故选C.【点评】本题主要考查了二次函数的性质,应熟练掌握二次函数的性质:顶点、对称轴的求法及图象的特点.二、填空题(共6小题,每小题3分,满分18分)7.若是一个正整数,满足条件的最小正整数n= 3 .【考点】立方根.【分析】根据立方根,即可解答.【解答】解:∵,∴满足条件的最小正整数n=3,故答案为:3.【点评】本题考查立方根,解决本题的关键是熟记立方根的关键.8.如图,是三个正方形随意摆放的图形,则图中∠1+∠2+∠3等于90 度.【考点】三角形内角和定理;多边形内角与外角.【分析】根据△ABC的外角和为360°,得出∠BAD+∠BCF+∠EBC=360°,再根据∠4=∠5=∠6=90°,即可求得∠1+∠2+∠3的度数.【解答】解:如图,三个正方形中,∠4=∠5=∠6=90°,∵△ABC的外角和为360°,∴∠BAD+∠BCF+∠EBC=360°,∴∠1+∠2+∠3=360°﹣(∠4+∠5+∠6)=360°﹣90°﹣90°﹣90°=90°,故答案为:90.【点评】本题主要考查了三角形内角和定理以及三角形的外角和,解决本题的关键是运用三角形外角和为360°,以及正方形的内角为90°进行解答.9.给出一组数据:1,2,2,3,3,3,4,4,4,4,这组数据的平均数是 3 .【考点】算术平均数.【分析】直接利用算术平均数的求法得出答案.【解答】解:这组数据的平均数是:×(1+2+2+3+3+3+4+4+4+4)=3.故答案为:3.【点评】此题主要考查了算术平均数的求法,正确掌握计算公式是解题关键.10.如图,在▱ABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是85 度.【考点】平行四边形的性质.【分析】先证明∠B=∠EAD,然后利用SAS证明△ABC≌△EAD,得出∠AED=∠BAC.再证明△ABE为等边三角形,可得∠BAE=60°,求出∠BAC的度数,即可得∠AED的度数.【解答】解:∵在平行四边形ABCD中,AD∥BC,BC=AD,∴∠EAD=∠AEB,又∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS),∴∠AED=∠BAC.∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB=∠B,∴△ABE为等边三角形,∴∠BAE=60°,∴∠BAC=∠BAE+∠EAC=85°,∴∠AED=∠BAC=85°;故答案为:85.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质,等边三角形的判定与性质;熟记平行四边形的性质,证明三角形全等和等边三角形是解决问题的关键.11.一次函数y=20+16x的图象与两坐标轴围成的三角形的面积是.【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数解析式求得直线与坐标轴的交点坐标,再计算围成的三角形的面积即可.【解答】解:在一次函数y=20+16x中,当x=0时,y=20;当y=0时,x=﹣;∴直线与坐标轴交于(0,20)和(﹣,0)两点,∴一次函数图象与两坐标轴围成的三角形的面积=×20×=.故答案为:【点评】本题主要考查了一次函数图象上的点的坐标特征,解决问题的关键是利用直线解析式求直线与坐标轴的交点.注意:横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.12.如图,等边△OAB的边长为2,点B在x轴上,反比例函数图象经过A点,将△OAB绕点O 顺时针旋转a度(0<a<360),使点A落在双曲线上,则a= 30°或180°或210°.【考点】反比例函数图象上点的坐标特征;坐标与图形变化﹣旋转.【分析】根据双曲线的轴对称性和中心对称性即可求解.【解答】解:根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴a=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时a=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时a=210°;故答案为30°或180°或210°.【点评】本题考查了反比例函数的综合运用,旋转的性质.关键是通过旋转及双曲线的对称性得出结论.三、解答题(共11小题,满分84分)13.化简:.【考点】整式的除法;单项式乘多项式.【分析】先根据单项式乘多项式的法则计算并整理,再根据多项式除单项式的法则计算.【解答】解:===2x﹣4.【点评】本题考查单项式乘多项式,多项式除单项式的运算,熟练掌握运算法则是解题的关键.14.解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】解出不等式组,再根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:解不等式组,得:,∴原不等式组的解集是:﹣3≤x<2,解集在数轴上表示如右.【点评】本题考查了在数轴上表示不等式的解集问题.不等式的解集在数轴上表示出来的方法:“>"空心圆点向右画折线,“≥”实心圆点向右画折线,“<"空心圆点向左画折线,“≤”实心圆点向左画折线.15.已知关于x的方程mx2+2x﹣1=0有实数根.(1)求m的取值范围;(2)若方程有两个实数根x1,x2,求+的值.【考点】根与系数的关系;根的判别式.【分析】(1)由关于x的方程mx2+2x﹣1=0有实数根,分两种情况:①m=0时,为一元一次方程,必有实数根;②m≠0时,为一元二次方程,由判别式△≥0,可得22﹣4×m×(﹣1)≥0,解此不等式即可求得答案;(2)根据根与系数的关系得到x1+x2=﹣,x1x2=﹣,再代入+,计算即可求解.【解答】解:(1)分两种情况:①m=0时,原方程即为2x﹣1=0,为一元一次方程,必有实数根;②m≠0时,原方程为一元二次方程.△=22﹣4×m×(﹣1)=4+4m≥0,解得:m≥﹣1,即m≥﹣1且m≠0.综上可知m≥﹣1;(2)∵x1+x2=﹣,x1x2=﹣,∴+===2.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.16.如图,这是某个小区内的道路示意图,小明家住在该小区的A处,他每天晚饭后都要从家出发随机沿着小区内的道路散步一圈后回家(2016•江西校级模拟)如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.【考点】正方形的性质;平行线之间的距离.【分析】过点B作BF⊥⊥l1,垂足为点F,由正方形的性质可得出∠BAD=90°,AB=AD,再由垂直可得出∠BFA=∠AED=90°,通过角的计算得出∠EAD=∠FBA,由此即可证出△FAB≌△EDA (AAS),根据全等三角形的性质以及勾股定理即可求出AE、AD的长度.【解答】解:过点B作BF⊥⊥l1,垂足为点F,如图所示.∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD.∵BF⊥l1,DE⊥l1,∴∠FAB+∠EAD=90°,∠FAB+∠FBA=90°,∠BFA=∠AED=90°.∴∠EAD=∠FBA.在△FAB和△EDA中,,∴△FAB≌△EDA(AAS),∴AE=BF=1.∵ED=2,∴AD==.【点评】本题考查了正方形的性质、平行线间的距离以及全等三角形的判定与性质,解题的关键是根据全等三角形的性质找出AE=BF=1.本题属于基础题,难度不大,解决该题型题目时,构建全等三角形,根据全等三角形的性质找出相等的边角关系是关键.18.如图,在△ABC中,已知:∠CAB=120°,AB=3,AC=5,AD⊥BC于D,试求:(1)BC的长;(2)AD的长.【考点】相似三角形的判定与性质;勾股定理.【专题】计算题;图形的相似.【分析】(1)如图,过点B作BH⊥AC,交AC的延长线于点H,根据∠CAB的度数求出∠HAB 的度数,进而求出∠ABH=30°,利用30度所对的直角边等于斜边的一半及勾股定理分别求出AH与BH的长,利用勾股定理求出BC的长即可;(2)由三角形CBH与三角形ACD相似,由相似得比例求出AD的长即可.【解答】解:(1)如图,过点B作BH⊥AC,交AC的延长线于点H,∵∠CAB=120°,∴∠HAB=60°,∠ABH=30°,∵AB=3,∴AH=1.5,BH=1。

江西省2016年中等学校招生考试数学试题卷(word解析版)

江西省2016年中等学校招生考试数学试题卷(word解析版)

江西省2016年中等学校招生考试数学试题卷(word 解析版)(江西省 南丰县第二中学 方政昌)说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最大的一个数是( ). A .2B .C .0D .-2【答案】 A.2.将不等式的解集表示在数轴上,正确的是( ). A .B.C.D.【答案】 D .3.下列运算正确的是是( ). A . B . C . D . 【答案】 B.4.有两个完全相同的长方体,按下面右图方式摆放,其主视图是( ).AB .C .D .【答案】 C.5.设是一元二次方程的两个根,则的值是( ).A. 2B. 1C. -2D. -1 【答案】 D.6.如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为○1,○2,○3)的顶点都在网格上,被一个多边形覆盖的...网格线...中,竖直部分线段长度之和为,水平部分线段长度之和为,则这三个多边形满足的是().A.只有○2B.只有○3C.○2○3D.○1○2○3 【答案】 C.二、填空题(本大题共6小题,每小题3分,共18分)第6题7.计算:-3+2= ___ ____. 【答案】 -1.8.分解因式____ ____. 【答案】 .9.如图所示,中,绕点A 按顺时针方向旋转50°,得到,则∠的度数是___ _____.第9题 第10题 第11题 【答案】 17°.10.如图所示,在,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为 _______. 【答案】 50°.11.如图,直线于点P ,且与反比例函数及的图象分别交于点A ,B ,连接OA,OB ,已知的面积为2,则 ______. 【答案】 4.12.如图,是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长...是___ ____. 【答案】 5,5, .如下图所示:三、(本大题共5小题,每小题6分,共30分) 13.(本题共2小题,每小题3分) (1)解方程组【解析】 由○1得:,代入○2得: , 解得 把代入○1得: , ∴原方程组的解是 .(2)如图,Rt 中,∠ACB=90°,将Rt 向下翻折,使点A 与点C 重合,折痕为DE ,求证:DE ∥BC.【解析】 由折叠知:, ∴∠∠ ,xACAE B又点A 与点C 重合, ∴∠, ∴∠∠, ∴∠,∵∠,∴∠, ∴∠, ∴DE ∥BC.14.先化简,再求值:+ )÷ ,其中. 【解析】 原式=+ )=+ ) =- =把代入得:原式 = .15.如图,过点A(2,0)的两条直线 分别交轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=. (1)求点B 的坐标; (2)若【解析】 (1) 在Rt , ∴ ∴∴点B 的坐标是(0,3) . (2) ∵∴ ∴ ∴设 , 把(2,0), 代入得: ∴ ∴ 的解析式是 .16.为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”, “日常学习”, “习惯养成”, “情感品质”四个项目,并随机抽取甲,乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.x(1)补全条形统计图;(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和 指导?【解析】(1)如下图所示:(2) (4+6) ÷100×3600=360∴约有360位家长最关心孩子“情感品质”方面的成长. (3) 没有确定答案,说的有道理即可.17.如图,六个完全相同的小长方形拼成一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:○1仅用无刻度直尺,○2保留必要的画图痕迹. (1)在图(1)中画一个45°角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边; (2)在图(2)中画出线段AB 的垂直平分线.【解析】 如图所示:情感品质日常学习习惯养成健康安全84情感品质日常学习习惯养成健康安全图2图1AA(1) ∠BAC=45º ; (2)OH 是AB 的垂直平分线.四、(本大题共4小题,每小题8分,共32分)18.如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E ,射线EP 交于点F ,交过点C 的切线于点D. (1)求证DC=DP(2)若∠CAB=30°,当F 是的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;【解析】 (1) 如图1连接OC, ∵CD 是⊙O 的切线,∴ OC ⊥CD ∴∠OCD=90º,∴∠DCA= 90º-∠OCA .又PE ⊥AB ,点D 在EP 的延长线上, ∴∠DEA=90º ,∴∠DPC=∠APE=90º-∠OAC. ∵OA=OC , ∴∠OCA=∠OAC. ∴∠DCA=∠DPC ,∴DC=DP.(2) 如图2 四边形AOCF 是菱形.图1连接CF 、AF , ∵F 是 的中点,∴ ∴ AF=FC .∵∠BAC=30º ,∴ =60º ,又AB 是⊙O 的直径, ∴ =120º, ∴ = 60º , ∴∠ACF=∠FAC =30º .∵OA=OC, ∴∠OCA=∠BAC=30º, 图2 ∴⊿OAC ≌⊿FAC (ASA) , ∴AF=OA ,∴AF=FC=OC=OA , ∴四边形AOCF 是菱形.图1AAAC AC B BA C =C F A FBC A C B =C F A F B19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管都比前一节套管少4cm ,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为cm . (1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求的值 .图3【解析】 (1) 第5节的套管的长是34cm . (注:50-(5-1)×4 )(2) (50+46+…+14) -9x =311 ∴320-9x =311 , ∴x =1 ∴x 的值是1.20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:○1将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关); ○2两人摸牌结束时,将所得牌的“点数”相加 ,若“点数”之和小于或等于10,此时“点数”之和就是“最图2图1• • •终点数”,若“点数”之和大于10,则“最终点数”是0;○3游戏结束之前双方均不知道对方“点数”; ○4判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负. 现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为 .(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【解析】 (1) .(2) 如图:∴所有可能的结果是(4,5)(4,6)(4,7)(5,4)(5,6)(5,7)(6,4)(6,5)(6,7) (7,4)(7,5)(7,6) 共12种.∴21.如图1是一副创意卡通圆规,图2是其平面示意图,OA 是 支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯 端点B 可以绕点A 旋转作出圆.已知OA=OB=10cm.754654764765乙甲7654(1)当∠AOB=18º时,求所作圆的半径;(结果精确到0.01cm )(2)保持∠AOB=18º不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm) (参考数据:sin9º≈0.1564,com9º≈0.9877º,sin18º≈0.3090, com18º≈0.9511,可使用科学计算器) 图1 图2【解析】 (1) 图1,作OC ⊥AB ,∵OA=OB, OC ⊥AB ,∴AC=BC, ∠AOC=∠BOC=∠AOB=9°, 在Rt ⊿AOC 中,sin ∠AOC = , ∴AC ≈0.1564×10=1.564, ∴AB=2AC=3.128≈3.13. ∴所作圆的半径是3.13cm.图1(2)图2,以点A 为圆心,AB 长为半径画弧,交OB 于点C,作AD⊥BC 于点D; ∵AC=AB, AD ⊥BC ,∴BD=CD, ∠BAD=∠CAD=∠BAC, ∵∠AOB=18°,OA=OB ,AB=AC, ∴∠BAC=18°, ∴∠BAD=9°, 在Rt ⊿BAD 中, sin ∠BAD = , ∴BD ≈0.1564×3.128≈0.4892, ∴BC=2BD=0.9784≈0.98∴铅笔芯折断部分的长度约为0.98cm. 图2五、(本大题共10分)22.【图形定义】如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB 为“叠弦角”,⊿AOP 为“叠弦三角形”. 【探究证明】BD B(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(即⊿AOP)是等边三角形; (2)如图2,求证:∠OAB=∠OAE '. (3)图1、图2中“叠弦角”的度数分别为 , ; (4)图n 中,“叠弦三角形” 等边三角形(填“是”或“不是”); 【解析】 (1) 如图1 ∵四ABCD 是正方形,由旋转知:AD=AD ',∠D=∠D '=90°, ∠DAD '=∠OAP=60°∴∠DAP=∠D 'AO , ∴⊿APD ≌⊿AOD '(ASA )∴AP=AO ,又∠OAP=60°, ∴⊿AOP 是等边三角形.(2)如右图,作AM ⊥DE 于M, 作AN ⊥CB 于N.∵五ABCDE 是正五边形,由旋转知:AE=AE ',∠E=∠E '=108°, ∠EAE '=∠OAP=60°∴∠EAP=∠E 'AO , ∴⊿APE ≌⊿AOE '(ASA ) ∴∠OAE '=∠PAE.在Rt ⊿AEM 和Rt ⊿ABN 中,∴Rt ⊿AEM ≌Rt ⊿ABN (AAS) ∴ ∠EAM=∠BAN , AM=AN. 在Rt ⊿APM 和Rt ⊿AON 中,MD'∴Rt⊿APM≌Rt⊿AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换).(3) 15°, 24°(4) 是(5) ∠OAB=[(n-2)×180°÷n-60°]÷2=60°-六、(本大题共共12分)23.设抛物线的解析式为y = a x2 , 过点B1 (1, 0 )作x轴的垂线,交抛物线于点A1 (1, 2);过点B2 (1, 0 )作x 轴的垂线,交抛物线于点A2,…;过点B n (, 0 ) (n为正整数)作x轴的垂线,交抛物线于点A n , 连接A n B n+1 , 得直角三角形A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt⊿A n B n B n+1中,探究下列问题:○1当n为何值时,Rt⊿A n B n B n+1是等腰直角三角形?○2设1≤k<m≤n (k , m均为正整数) ,问是否存在Rt⊿A k B k B k+1与Rt⊿A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【解析】(1) 把A(1 , 2)代入得:2= , ∴.(2) 2×==-=(3) ○1若Rt⊿A n B n B n+1是等腰直角三角形,则.∴, ∴n=3.○2若Rt⊿A k B k B k+1与Rt⊿A m B m B m+1相似,则或,∴或,∴m=k (舍去) 或k+m=6 x∵m>k ,且m , k都是正整数,∴,∴相似比=,或.∴相似比是8:1或64:111。

中考数学中等学校招生考试模拟试卷(一)(含解析)

中考数学中等学校招生考试模拟试卷(一)(含解析)

2016年江西省中等学校招生考试数学模拟试卷(一)一、选择题(本大题6小题,每小题3分,共18分)1.下列各组数中,互为相反数的是()A.﹣(﹣3)和3 B.﹣3和|﹣3| C.﹣3和D.和2.将一副三角尺按如图方式进行摆放,∠1、∠2不一定互补的是()A.B.C.D.3.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元 B.3(a+b)元C.(3a+b)元D.(a+3b)元4.以下图形中对称轴的数量小于3的是()A.B.C.D.5.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点6.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.一种细菌的半径是0.000045米,该数字用科学记数法表示为______.8.如果x=2是方程x+a=﹣1的根,那么a的值是______.10.如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为______.11.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为______m.12.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为______.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:4cos45°﹣+(π﹣)0+(﹣1)3;(2)化简:(1﹣)÷.14.解不等式组,并写出不等式组的整数解.15.某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?16.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?17.在图1中,△ABC的顶点都在网格线的交点上,由此我们称这种三角形为格点三角形.(1)在图1中,每个小正方形的边长为1时,AC=______;(2)在图2中,若每个小正方形的边长为a,请在此网格上画出三边长分别为a、2a、a的格点三角形;(3)图3是由12个长为m,宽为n小矩形构成的网格,请在此网格中画出边长分别为、、2的格点三角形.四、本大题(本大题4小题,每小题8分,共32分)18.某文具店销售甲、乙两种圆规,当销售5只甲种、1只乙种圆规,可获利润25元,销售6只甲种、3只乙种圆规,可获利润39元.(1)问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?(2)在(1)中,文具店共销售甲、乙两种圆规50只,其中甲种圆规为a只,求文具店所获得利润P与a的函数关系式,并求当a≥30时P的最大值.19.如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC的中点,连接EF.(1)试判断EF与⊙O的关系,并说明理由.(2)若DC=2,EF=,点P是⊙O上除点E、C外的任意一点,则∠EPC的度数为______(直接写出答案)20.在直角坐标系中,△ABO的顶点坐标分别为O(0,0)、A(2a,0)、B(0,﹣a),线段EF两端点坐标为(﹣m,a+1),F(﹣m,1),(2a>m>a);直线l∥y轴交x轴于P(a,0),且线段EF与CD关于y轴对称,线段CD与NM关于直线l对称.(1)求点N、M的坐标(用含m、a的代数式表示);(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明其理由,若能请你说出一个平移方案(平移的单位数用m、a表示)21.如图,点A(a,b)是双曲线y=(x>0)上的一点,点P是x轴负半轴上的一动点,AC⊥y轴于C点,过A作AD⊥x轴于D点,连接AP交y轴于B点.(1)△PAC的面积是______;(2)当a=2,P点的坐标为(﹣2,0)时,求△ACB的面积;(3)当a=2,P点的坐标为(x,0)时,设△ACB的面积为S,试求S与x之间的函数关系.五、本大题(本大题共10分)22.以点P(n,n2+2n+1)(n≥1)为顶点的抛物线y=﹣x2+bx+c与x轴交于点A、B(点A在点B的左边).(1)当n=1时,试求b和c的值;当n>1时,求b与n,c与n之间的关系式.(2)若点P到AB的距离等于线段AB长的10倍,求此抛物线y=﹣x2+bx+c的解析式.(3)设抛物线y=﹣x2+bx+c与y轴交于点D,O为原点,矩形OEFD的顶点E、F分别在x轴和该抛物线上,当矩形OEFD的面积为42时,求点P的坐标.六、本大题(共12分)23.定义:长宽比为:1(n为正整数)的矩形称为矩形,下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF,则四边形BCEF为矩形.证明:设正方形ABCD的边长为1.则BD==.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.∴∠A=∠BFE.∴EF∥AD.∴=,即=,∴BF=.∴BC:BF=1:=.∴四边形BCEF为矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是______,tan∠HBC的值是______;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②.求证:四边形BCMN是矩形;(3)将图②中矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”.求n 的值.2016年江西省中等学校招生考试数学模拟试卷(一)参考答案与试题解析一、选择题(本大题6小题,每小题3分,共18分)1.下列各组数中,互为相反数的是( )A .﹣(﹣3)和3B .﹣3和|﹣3|C .﹣3和D .和【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A 、都是3,故A 错误;B 、只有符号不同的两个数互为相反数,故B 正确;C 、只有符号不同的两个数互为相反数,故C 错误;D 、只有符号不同的两个数互为相反数,故D 错误;故选:B .2.将一副三角尺按如图方式进行摆放,∠1、∠2不一定互补的是( )A .B .C .D .【考点】余角和补角.【分析】如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角,据此分别判断出每个选项中∠1+∠2的度数和是不是180°,即可判断出它们是否一定互补.【解答】解:如图1,,∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°,∴∠1、∠2互补.如图2,,∠2=∠3,∵∠1+∠3=180°,∴∠1+∠2=180°,∴∠1、∠2互补.如图3,,∵∠2=60°,∠1=30°+90°=120°,∴∠1+∠2=180°,∴∠1、∠2互补.如图4,,∵∠1=90°,∠2=60°,∴∠1+∠2=90°+60°=150°,∴∠1、∠2不互补.故选:D.3.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元 B.3(a+b)元C.(3a+b)元D.(a+3b)元【考点】列代数式.【分析】求用买1个面包和2瓶饮料所用的钱数,用1个面包的总价+三瓶饮料的单价即可.【解答】解:买1个面包和3瓶饮料所用的钱数:(a+3b)元;故选D.4.以下图形中对称轴的数量小于3的是()A.B.C.D.【考点】轴对称图形.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选D.5.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用对称点的性质结合体得出原点的位置.【解答】解:如图所示:以B点为原点,建立平面直角坐标系,此时存在两个点A,C关于y轴对称,故选:B.6.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看外边是一个矩形,里边是一个矩形,里面矩形的宽用虚线表示,故选:A.二、填空题(本大题共6小题,每小题3分,共18分)7.一种细菌的半径是0.000045米,该数字用科学记数法表示为 4.5×10﹣5米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000045米用科学记数法表示为4.5×10﹣5米.故答案为:4.5×10﹣5米.8.如果x=2是方程x+a=﹣1的根,那么a的值是﹣2 .【考点】一元一次方程的解.【分析】虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.【解答】解:把x=2代入x+a=﹣1中:得:×2+a=﹣1,解得:a=﹣2.故填:﹣2.从表中看出全班视力数据的众数是 1.0 .【考点】众数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【解答】解:众数是一组数据中出现次数最多的数据,1.0占全班人数的40%,故1.0是众数.故答案为:1.0.10.如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为28 .【考点】菱形的性质.【分析】根据菱形的性质可得:AB=AD,然后根据∠A=60°,可得三角形ABD为等边三角形,继而可得出边长以及周长.【解答】解:∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∵BD=7,∴AB=BD=7,∴菱形ABCD的周长=4×7=28.故答案为:28.11.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为12 m.【考点】相似三角形的应用.【分析】先根据题意得出△ABE∽△ACD,再根据相似三角形的对应边成比例即可求出CD的值.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=2,BC=14,∴AC=16,∴=,∴CD=12.故答案为:12.12.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为(﹣2,0)或(1,﹣).【考点】坐标与图形变化-旋转.【分析】在Rt△OAB中利用勾股定理计算出OA=2,则利用含30度的直角三角形三边的关系得∠A=30°,所以∠AOB=60°,然后分类讨论:当△ABO绕点O逆时针旋转120°后,点A 的对应点A′落在x轴的负半轴上,如图,OA′=OA=2,易得A′的坐标为(﹣2,0);当△ABO绕点O顺时针旋转120°后,点A的对应点A1落在第三象限,如图,则OA1=OA=2,∠AOA1=120°,作OA1⊥y轴于C,计算出∠COA1=30°,在Rt△COA1中利用含30度的直角三角形三边的关系计算出CA1=1,OC=,则A1(1,﹣),综上所述,A1的坐标为(﹣2,0)或(1,﹣).【解答】解:在Rt△OAB中,∵AB=,OB=1,∴OA==2,∴∠A=30°,∴∠AOB=60°,当△ABO绕点O逆时针旋转120°后,点A的对应点A′落在x轴的负半轴上,如图,OA′=OA=2,此时A′的坐标为(﹣2,0);当△ABO绕点O顺时针旋转120°后,点A的对应点A1落在第三象限,如图,则OA1=OA=2,∠AOA1=120°,作OA1⊥y轴于C,∴∠COA1=30°,在Rt△COA1中,CA1=OA1=1,OC=CA1=,∴A1(1,﹣),综上所述,A1的坐标为(﹣2,0)或(1,﹣).故答案为(﹣2,0)或(1,﹣).三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:4cos45°﹣+(π﹣)0+(﹣1)3;(2)化简:(1﹣)÷.【考点】分式的混合运算;实数的运算;特殊角的三角函数值.【分析】(1)原式第一项利用特殊角的三角函数值化简,第二项化为最简二次根式,第二项利用零指数幂法则计算,最后一项表示3个﹣1的乘积,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=4×﹣2+1﹣1=0;(2)原式=(﹣)•=•=m﹣n.14.解不等式组,并写出不等式组的整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】分别求出各不等式的解集,再求出其公共解集,在x的取值范围内找出符合条件的x的整数值即可.【解答】解:由①得,x≥﹣;由②得,x<4,故此不等式组的解集为:﹣≤x<4 整数解有:0,1,2,3.15.某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据已知条件列式计算即可,如图2所示,先计算出其它类的频数,再画条形统计图即可;(2)根据已知条件列式计算即可;(3)根据已知条件列式计算即可.【解答】解;(1)8÷20%=40(本),其它类;40×15%=6(本),补全条形统计图,如图2所示:(2)文学类书籍的扇形圆心角度数为:360×=126°;(3)普类书籍有:×1200=360(本).16.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?【考点】游戏公平性;可能性的大小.【分析】(1)比较A、B两位同学的概率解答即可;(2)根据游戏的公平性,列出方程解答即可.【解答】解:(1)A同学获胜可能性为,B同学获胜可能性为,因为,当x=3时,B同学获胜可能性大;(2)游戏对双方公平必须有:,解得:x=4,答:当x=4时,游戏对双方是公平的.17.在图1中,△ABC的顶点都在网格线的交点上,由此我们称这种三角形为格点三角形.(1)在图1中,每个小正方形的边长为1时,AC= ;(2)在图2中,若每个小正方形的边长为a,请在此网格上画出三边长分别为a、2a、a的格点三角形;(3)图3是由12个长为m,宽为n小矩形构成的网格,请在此网格中画出边长分别为、、2的格点三角形.【考点】作图—应用与设计作图;勾股定理.【分析】(1)直接利用勾股定理得出AC 的长;(2)根据勾股定理画出长为a 、2a 、a 的三角形即可.(3)根据勾股定理画出长为、、2的三角形即可.【解答】解:(1)AC==;故答案为:;(2)如图2所示:△ABC 就是所求的三角形.其中AB=a 、AC=2a 、BC=a .(3)如图3所示:△ABC 就是所求的三角形.其中AB=、BC=、AC=2.四、本大题(本大题4小题,每小题8分,共32分)18.某文具店销售甲、乙两种圆规,当销售5只甲种、1只乙种圆规,可获利润25元,销售6只甲种、3只乙种圆规,可获利润39元.(1)问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?(2)在(1)中,文具店共销售甲、乙两种圆规50只,其中甲种圆规为a 只,求文具店所获得利润P 与a 的函数关系式,并求当a ≥30时P 的最大值.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)根据题意可以列出相应的方程组,然后解方程组即可解答本题;(2)根据题意可以列出文具店所获利p 与a 的函数关系式,然后根据当a ≥30,可以求得p 的最大值.【解答】解:(1)设文具店销售甲、乙两种圆规,每只的利润分别是x 元、y 元,,解得:,即文具店销售甲、乙两种圆规,每只的利润分别是4元、5元;(2)由题意可得,p=4a+5(50﹣a)=4a+250﹣5a=250﹣a,∵a≥30,∴当a=30时,p取得最大值,此时,p=250﹣30=220,即文具店所获利p与a的函数关系式是p=250﹣a,当a≥30时p的最大值是220.19.如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC的中点,连接EF.(1)试判断EF与⊙O的关系,并说明理由.(2)若DC=2,EF=,点P是⊙O上除点E、C外的任意一点,则∠EPC的度数为60°或120°(直接写出答案)【考点】切线的判定与性质;矩形的性质.【分析】(1)直线EF与⊙O相切.理由如下:如图,连接OE、OF.通过△EFO≌△CFO(SAS),证得∠FEO=∠FCO=90°,则直线EF与⊙O相切.(2)若点P在弧EC上可根据圆内接四边形的性质得到∠EPC+∠D=180°、若点P在弧EDC上由圆周角定理可得∠EPC=∠D,利用(1)中的全等三角形的对应边相等求得FC=EF=,所以通过解直角△BCD来求∠D的度数即可.【解答】解:(1)直线EF与⊙O相切.理由如下:如图,连接OE、OF.∵OD=OE,∴∠1=∠D.∵点F是BC的中点,点O是DC的中点,∴OF∥BD,∴∠3=∠D,∠2=∠1,∴∠2=∠3.在△EFO与△CFO中,∵,∴△EFO≌△CFO(SAS),∴∠FEO=∠FCO=90°,∴直线EF与⊙O相切.(2)如图,连接DF.∵由(1)知,△EFO≌△CFO,∴FC=EF=.∴BC=2在直角△FDC中,tan∠D==,∴∠D=60°.当点P在上时,∵点E、P、C、D四点共圆,∴∠EPC+∠D=180°,∴∠EPC=120°,当点P在上时,∠EPC=∠D=60°,故答案为:60°或120°.20.在直角坐标系中,△ABO的顶点坐标分别为O(0,0)、A(2a,0)、B(0,﹣a),线段EF两端点坐标为(﹣m,a+1),F(﹣m,1),(2a>m>a);直线l∥y轴交x轴于P(a,0),且线段EF与CD关于y轴对称,线段CD与NM关于直线l对称.(1)求点N、M的坐标(用含m、a的代数式表示);(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明其理由,若能请你说出一个平移方案(平移的单位数用m、a表示)【考点】坐标与图形变化-对称;坐标与图形变化-平移.【分析】(1)先根据EF与CD关于y轴对称,得到EF两端点坐标,再设CD与直线l之间的距离为x,根据CD与MN关于直线l对称,l与y轴之间的距离为a,求得M的横坐标即可;(2)先判定△ABO≌△MFE,得出△ABO与△MFE通过平移能重合,再根据对应点的位置,写出平移方案即可.【解答】解:(1)∵EF与CD关于y轴对称,EF两端点坐标为(﹣m,a+1),F(﹣m,1),∴C(m,a+1),D(m,1),设CD与直线l之间的距离为x,∵CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a﹣x,∵x=m﹣a,∴M的横坐标为a﹣(m﹣a)=2a﹣m,∴M(2a﹣m,a+1),N(2a﹣m,1);(2)能重合.∵EM=2a﹣m﹣(﹣m)=2a=OA,EF=a+1﹣1=a=OB又∵EF∥y轴,EM∥x轴,∴∠MEF=∠AOB=90°,∴△ABO≌△MFE(SAS),∴△ABO与△MFE通过平移能重合.平移方案:将△ABO向上平移(a+1)个单位后,再向左平移m个单位,即可重合.21.如图,点A(a,b)是双曲线y=(x>0)上的一点,点P是x轴负半轴上的一动点,AC⊥y轴于C点,过A作AD⊥x轴于D点,连接AP交y轴于B点.(1)△PAC的面积是 4 ;(2)当a=2,P点的坐标为(﹣2,0)时,求△ACB的面积;(3)当a=2,P点的坐标为(x,0)时,设△ACB的面积为S,试求S与x之间的函数关系.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】(1)由点A(a,b)是双曲线y=(x>0)上,得到ab=8,根据反比例函数系数k的几何意义,就看得到△PAC的面积=AD•AC=ab=4;(2)先求出直线AP的解析式为y=x+2,得到B(0,2),即可求出S△ABC=AC•BC==2;(3)求出直线AP 的解析式为y=﹣,得到B (0,﹣),代入三角形的面积公式即可求出S=×2×(﹣)=﹣.【解答】解:(1)∵点A (a ,b )是双曲线y=(x >0)上,∴ab=8,∵AC ⊥y 轴于C 点,AD ⊥x 轴于D 点,∴AC=a ,AD=b ,∴△PAC 的面积=AD•AC=ab=4;故答案为:4;(2)∵a=2,∴b=4,∴AC=2,AD=4,A (2,4),设直线AP 的解析式为y=kx+b ,∴,∴, ∴直线AP 的解析式为y=x+2,∴B (0,2),∴S △ABC =AC•BC==2;(3)同理直线AP 的解析式为y=﹣,∴B (0,﹣),∴S=×2×(﹣)=﹣.五、本大题(本大题共10分)22.以点P (n ,n 2+2n+1)(n ≥1)为顶点的抛物线y=﹣x 2+bx+c 与x 轴交于点A 、B (点A 在点B 的左边).(1)当n=1时,试求b 和c 的值;当n >1时,求b 与n ,c 与n 之间的关系式.(2)若点P 到AB 的距离等于线段AB 长的10倍,求此抛物线y=﹣x 2+bx+c 的解析式.(3)设抛物线y=﹣x 2+bx+c 与y 轴交于点D ,O 为原点,矩形OEFD 的顶点E 、F 分别在x 轴和该抛物线上,当矩形OEFD 的面积为42时,求点P 的坐标.【考点】二次函数综合题.【分析】(1)当n=1时,可求出P 的坐标,由此可设抛物线的解析式为y=﹣(x ﹣1)2+4,化为一般式左右对照即可求出b 和c 的值;当n >1时思路雷同;(2)根据抛物线的解析式可求出A和B的坐标,又点P到x轴的距离为n2+2n+1,所以有n2+2n+1=10(2n+2),解方程求出n的值,进而可求出抛物线解析式;(3)根据已知条件可求出OD,DF的长,再根据矩形的面积公式可得:OD•DF=2n(2n+1)=42,求出n的值,即可求出P的坐标.【解答】解:(1)当n=1时,点P坐标为(1,4),则y=﹣(x﹣1)2+4=﹣x2+2x+3=﹣x2+bx+c,解得:b=2,c=3.当n>1时,则y=﹣(x﹣n)2+n2+2n+1=﹣x2+2nx+2n+1=﹣x2+bx+c,所以b=2n,c=2n+1.(2)∵y=﹣(x﹣n)2+n2+2n+1=﹣x2+2nx+2n+1,∴当y=0时,即﹣x2+2nx+2n+1=0.解得x1=﹣1,x2=2n+1.由于点A在点B的左边,∴A(﹣1,0)、B(2n+1,0),即AB=2n+1﹣(﹣1)=2n+2.又∵点P到x轴的距离为n2+2n+1,∴有n2+2n+1=10(2n+2).解得n=19或n=﹣1(不合,舍去),即n=19.故,此时抛物线的解析式为y=﹣x2+38x+39.(3)如图所示,∵c=2n+1,∴D(0,2n+1),即OD=2n+1.又DF∥x轴,且D、F关于直线x=n对称,∴F(2n,2n+1).有DF=2n.从而OD•DF=2n(2n+1)=42,解得n=3或(不合,舍去),即n=3.故点P的坐标为(3,16).六、本大题(共12分)23.定义:长宽比为:1(n为正整数)的矩形称为矩形,下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF,则四边形BCEF为矩形.证明:设正方形ABCD的边长为1.则BD==.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.∴∠A=∠BFE.∴EF∥AD.∴=,即=,∴BF=.∴BC:BF=1:=.∴四边形BCEF为矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是GH,DG ,tan∠HBC的值是﹣1 ;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②.求证:四边形BCMN是矩形;(3)将图②中矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”.求n 的值.【考点】相似形综合题.【分析】(1)由折叠即可得到DG=GH=CH,设HC=x,则有DG=GH=x,DH=x,根据DC=DH+CH=1,就可求出HC,然后运用三角函数的定义即可求出tan∠HBC的值;(2)只需借鉴阅读中证明“四边形BCEF为矩形”的方法就可解决问题;(3)同(2)中的证明可得:将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,由此就可得到n的值.【解答】解:(1)由折叠可得:DG=HG,GH=CH,∴DG=GH=CH.设HC=x,则DG=GH=x.∵∠DGH=90°,∴DH=x,∴DC=DH+CH=x+x=1,解得x=﹣1,∴tan∠HBC===﹣1,故答案为:GH、DG,﹣1;(2)∵BC=1,EC=BF=,∴BE==,由折叠可得BP=BC=1,∠FNM=∠BNM=90°,∠EMN=∠CMN=90°.∵四边形BCEF是矩形,∴∠F=∠FEC=∠C=∠FBC=90°,∴四边形BCMN是矩形,∠BNM=∠F=90°,∴MN∥EF,∴=,即BP•BF=BE•BN,∴1×=BN,∴BN=,∴BC:BN=1:=:1,∴四边形BCMN是的矩形;(3)同理可得:将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,所以将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,。

江西省中等学校2016-2017学年中考模拟数学考试试卷及参考答案

江西省中等学校2016-2017学年中考模拟数学考试试卷及参考答案

江西省中等学校2016-2017学年中考模拟数学考试试卷一、选择题1. 实数a ,b ,c ,d 在数轴上对应的位置如图所示,绝对值相等的两个实数是( )A . a 与bB . b 与cC . c 与dD . a 与d2. 下列运算正确的是( )A . a +a =aB . a ÷a =aC . a ×a =aD . (a b )=a b 3. 按如图所示的方法折纸,下面结论正确的个数( )①∠2=90°;②∠1=∠AEC ;③△ABE ∽△ECF ;④∠BAE=∠3.A . 1个B . 2个C . 3个D . 4个4. 若α、β是一元二次方程x +2x ﹣6=0的两个不相等的根,则α﹣2β的值是( )A . 10B . 16C . ﹣2 D . ﹣105. 如图1所示,将一个正四棱锥(底面为正方形,四条测棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是( )A . PA ,PB ,AD ,BC B . PD ,DC ,BC ,AB C . PA ,AD ,PC ,BC D . PA ,PB ,PC ,AD6. 如图1,在等边三角形ABC 中,AB=2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且∠AGH=30°.设BG=x,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的( )A . 线段CGB . 线段AGC . 线段AHD . 线段CH二、填空题7. 据了解2016年11月12日凌晨双“十一”天猫的总成交金额达到1207亿元,1207亿元用科学记数法可表示为________元.8. 如图,△ABC 中,AC 、BC 上的中线交于点O ,且BE ⊥AD .若BD=10,BO=8,则AO 的长为________.2246323253253229. 《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为________.10. 一次函数y=﹣2x+4与y= 交于点(m ,n),则 =________.11. 4二次函数y=x +bx 的图象如图,对称轴为直线x=1.若关于x 的一元二次方程x +bx ﹣t=0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是________.12. 在菱形ABCD 中,AB=5,AC=8,点P 是AC 上的一个动点,过点P 作EF 垂直于AC 交AD 于点E ,交AB 于点F ,将△AEF 沿EF 折叠,使点A 落在点A'处,当△A'CD 是直角三角形时,AP 的长为________.三、解答题13. 根据要求回答问题:(1) 解不等式组:(2) 如图,已知正五边形ABCDE ,AF ∥CD 交DB 的延长线于点F ,交DE 的延长线于点G .求∠G 的度数.14. 先化简,再求值: ÷ ﹣1,其中a= .15. 如图,四边形ABCD 是平行四边形,点E 在AD 上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)(1) 在图1中,过点E 作直线EF 将四边形ABCD 的面积平分;(2) 在图2中,DE=DC ,作∠A 的平分线AM ;2216. 某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张)500100020006500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.17. “低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)18. 随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价规则如图①所示,若车辆以平均速度vkm/h行驶了skm,则打车费用为(ps+60q• )元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y(元)与行驶里程x(km)的函数关系也可由如图②表示.(1)当x≥6时,求y与x的函数关系式.(2)若p=1,q=0.5,求该车行驶的平均速度.19. 我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,求出所选两个班正好不在同一年级的概率.20. 如图所示,已知四边形OABC是菱形,OC在x轴上,B(18,6),反比例函数y= (k≠0)的图象经过点A,与O B交于点E.(1)求出k;(2)求OE:EB.21. 如图,圆形靠在墙角的截面图,A、B分别为⊙O的切点,BC⊥AC,点P在上以2°/s的速度由A点向点B运动(A、B点除外),连接AP、BP、BA.(1)当∠PBA=28°,求∠OAP的度数;(2)若点P不在AO的延长线上,请写出∠OAP与∠PBA之间的关系;(3)当点P运动几秒时,△APB为等腰三角形.22. 已知三个全等的等边三角形如图1所示放置,其中点B、C、E在同一直线上,(1)写出两个不同类型的结论;(2)连接BD,P为BD上的动点(D点除外),DP绕点D逆时针旋转60°到DQ,如图2,连接PC,QE,①判断CP 与QE 的大小关系,并说明理由;②若等边三角形的边长为2,连接AP ,在BD 上是否存在点P ,使AP+CP+DP 的值最小,并求最小值.23. 如图,抛物线y=ax +bc+c (a >0)的顶点为M ,若△MCB 为等边三角形,且点C ,B 在抛物线上,我们把这种抛物线称为“完美抛物线”,已知点M 与点O 重合,BC=2.(1)求过点O 、B 、C 三点完美抛物线y 的解析式;(2)若依次在y 轴上取点M 、M 、…M 分别作等边三角形及完美抛物线y 、y 、…y ,其中等边三角形的相似比都是2:1,如图,n 为正整数.①则完美抛物线a ,y =,完美抛物线y =;完美抛物线y =;②直接写出B 的坐标;③判断点B 、B 、…、B 是否在同一直线,若在,求出直线的解析式,若不在同一直线上,说明理由.参考答案1.2.3.4.5.6.7.8.2112n 12323n n 12n9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。

2016年江西省中考数学试卷-答案

2016年江西省中考数学试卷-答案

23=24 x x x故选C.OAB S S =-+ x x (3)(x16.【答案】(1)补全条形统计图如图:补全条形统计图如图:46+答:估计约有360位家长最关心孩子“情感品质”方面的成长;(3)无确切答案,结合自身情况或条形统计图,言之有理即可,如:从条形统计图中,家长对“情感品质”关心不够,可适当关注与指导.【提示】(1)用甲、乙两班学生家长共100人减去其余各项目人数可得乙组关心“情感品质”的家长人数,补全图形即可;(2)用样本中关心孩子“情感品质”方面的家长数占被调查人数的比例乘以总人数3600可得答案; (3)无确切答案,结合自身情况或条形统计图,言之有理即可. 【考点】条形统计图,用样本估计总体17.【答案】(1)如图(画法有两种,正确画出其中一种即可)(2)如图:(画出其中一种即可)【解析】(1)如图所示,45ABC ∠=︒.(AB 、AC 是小长方形的对角线)(2)线段AB 的垂直平分线如图所示【提示】(1)根据等腰直角三角形的性质即可解决问题;(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【考点】应用与设计作图 18.【答案】(1)证明:连接OC ,∵OAC ACO ∠=∠,PE OE ⊥,OC CD ⊥,∴APE PCD ∠=∠, ∵APE DPC ∠=∠,∴DPC PCD ∠=∠,∴DC DP =; (2)解:以A ,O ,C ,F 为顶点的四边形是菱形;∵30CAB ∠=︒,∴60B ∠=︒,∴△OBC 为等边三角形,∴120AOC ∠=︒, 连接OF ,AF ,∵F 是AC 的中点,∴60AOF COF ∠=∠=︒,∴△AOF 与△COF 均为等边三角形,∴AF AO OC CF ===, ∴四边形OACF 为菱形.【提示】(1)连接OC ,根据切线的性质和PE OE ⊥以及OAC OCA ∠=∠得APE DPC ∠=∠,然后结合对顶角的性质可证得结论;(2)由30CAB ∠=︒易得△OBC 为等边三角形,可得120AOC ∠=︒,由F 是AC 的中点,易得△AOF 与△COF 均为等边三角形,可得AF AO OC CF ===,易得以A ,O ,C ,F 为顶点的四边形是菱形. 【考点】切线的性质,垂径定理19.【答案】(1)第5节套管的长度为34cm (2)1x =【解析】(1)第5节套管的长度为:504(51)34-⨯-=(cm ). (2)第10节套管的长度为:504(101)14-⨯-=(cm ), 设每相邻两节套管间重叠的长度为xcm , 根据题意得:(50464214)9311x ++++-=,即:3209311x -=, 解得:1x =.答:每相邻两节套管间重叠的长度为1cm .【提示】(1)根据“第n 节套管的长度=第1节套管的长度4(1)n -⨯-”,代入数据即可得出结论; (2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm ,根据“鱼竿长度=(2)解法一:他们的“最终稿点数”如下表所示:5他们的“最终稿点数”如下表所示:5sin92OB︒≈⨯即所作圆的半径约为3.13cm;(2)作AD ⊥OB 于点D ,作AE AB =,如图3所示,∵保持18AOB ∠=︒不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE ,∵18AOB ∠=︒,OA OB =,90ODA ∠=︒, ∴81OAB ∠=︒,72OAD ∠=︒, ∴9BAD ∠=︒,∴22sin92 3.130.15640.98BE BD AB cm ==︒≈⨯⨯≈, 即铅笔芯折断部分的长度是0.98cm .【提示】(1)根据题意作辅助线OC AB ⊥于点C ,根据10OA OB cm ==,90OCB ∠=︒,18AOB ∠=︒,可以求得∠BOC 的度数,从而可以求得AB 的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE AB =,然后作出相应的辅助线,画出图形,从而可以求得BE 的长,本题得以解决. 【考点】解直角三角形的应用 22.【答案】(1)如图1,∵四边形ABCD 是正方形,由旋转知:'AD AD =,'90D D ∠=∠=︒,'60DAD OAP ∠=∠=︒,∴'DAP D AO ∠=∠,∴'()APD AOD ASA △≌△∴AP AO =,∵60OAP ∠=︒,∴△AOP 是等边三角形;(2)如图2,作AM DE ⊥于M ,作AN CB ⊥于N .∵五边形ABCDE 是正五边形,由旋转知:'AE AE =,'108E E ∠=∠=︒,'60EAE OAP ∠=∠=︒ ∴'EAP E AO ∠=∠∴'()APE AOE ASA △≌△∴'OAE PAE ∠=∠.在Rt △AEM 和Rt △ABN 中,72AEM ABN ∠=∠=︒,AE AB =∴Rt Rt ()AEM ABN AAS △≌△,∴PAM OAN ∠=∠,∴PAE OAB ∠=∠,∴'OAE OAB ∠=∠(等量代换)所以:存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64:1或8:1.。

江西省2016年中等学校招生考试数学试卷(含答案)

江西省2016年中等学校招生考试数学试卷(含答案)

江西省2016年中等学校招生考试数学试题卷说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最大的一个数是( ). A .2B .√3C .0D .-2【答案】 A.2.将不等式3x −2<1的解集表示在数轴上,正确的是( ). A . B.C.D.【答案】D .3.下列运算正确的是是( ). A .a 2+a 2=a 4 B .(−b 2)3=−b 6 C .2x ∙2x 2=2x 3 D .(m −n)2=m2−n 2 【答案】 B.4.有两个完全相同的长方体,按下面右图方式摆放,其主视图是( ).A .B .C .D .【答案】 C.5.设α,β是一元二次方程x 2+2x −1=0的两个根,则αβ的值是( ). A. 2 B. 1 C. -2D. -1 【答案】 D.6.如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为○1,○2,○3)的顶点都在网格上,被一个多边形覆盖的网格线......中,竖直部分线段长度之和为m ,水平部分线段长度之和为n ,则这三个多边形满足m =n 的是( ). A.只有○2 B.只有○3 C.○2○3 D.○1○2○3第6题【答案】 C.二、填空题(本大题共6小题,每小题3分,共18分) 7.计算:-3+2= ___ ____. 【答案】 -1.8.分解因式ax 2−ay 2=____ ____. 【答案】 a(x +y)(x −y).9.如图所示,∆ABC 中,∠BAC =33°,将∆ABC 绕点A 按顺时针方向旋转50°,得到∆AB ′C ′,则∠B′AC 的度数是___ _____.第9题 第10题 第11题 【答案】17°.10.如图所示,在□ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为 ____ ___. 【答案】 50°.11.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=k 1x(x >0)及y 2=k2x(x >0)的图象分别交于点A ,B ,连接OA,OB ,已知∆OAB 的面积为2,则k1−k 2= ______. 【答案】 4.12.如图,是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长...是___ ____. 【答案】5√2,5,4√5 . 如下图所示:三、(本大题共5小题,每小题6分,共30分) 13.(本题共2小题,每小题3分) (1)解方程组{x −y =2 ……………①x −y =y +1 …………②【答案】 由○1得:x =y +2,代入○2得:y +2−y =y +1 , 解得y =1, 把y =1代入○1得:x =3 ,xAAACA∴原方程组的解是{x =3y =1.(2)如图,Rt ∆ABC 中,∠ACB=90°,将Rt ∆ABC 向下翻折,使点A 与点C 重合,折痕为DE ,求证:DE ∥BC.【答案】由折叠知:∆ADE ≌∆CDE , ∴∠AED =∠CED , 又点A 与点C 重合, ∴∠AEC =180°, ∴∠AED =∠CED =90°, ∴∠EDC +∠ECD =90°,∵∠ACB =90°,∴∠BCD +∠ECD =90°, ∴∠EDC =∠BCD , ∴DE ∥BC.14.先化简,再求值:(2x+3+13−x)÷xx 2−9 ,其中x =6. 【答案】 原式=(2x+3+13−x)×x 2−9x=(2x+3+13−x )×(x+3)(x−3)x= 2(x−3)x -x+3x=x−9x把x =6代入得:原式 =6−36=12 .15.如图,过点A(2,0)的两条直线l 1,l 2 分别交 y 轴于B ,C ,其中点B 在原点上方,点C在原点下方,已知AB=√13. (1)求点B 的坐标;(2)若∆ABC 的面积为4,求l 2的解析式.【答案】 (1) 在Rt ∆AOB 中,OA 2+OB 2=AB 2, ∴ 22+OB 2=(√13)2∴ OB =3∴点B 的坐标是(0,3) . (2) ∵S ∆ABC =12 BC ∙OA∴12 BC ×2=4 ∴BC =4 ∴C(0,−1) 设l 2∶ y =kx +b , 把A (2,0),C(0,−1) 代入得:{ 2k +b =0b =−1 ∴{ k =12 b =−1∴ l 2的解析式的解析式是y =12x −1 .EBx16.为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”, “日常学习”, “习惯养成”, “情感品质”四个项目,并随机抽取甲,乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.(1)补全条形统计图;(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【答案】(1)如下图所示:(2) (4+6) ÷100×3600=360∴约有360位家长最关心孩子“情感品质”方面的成长. (3) 没有确定答案,说的有道理即可.17.如图,六个完全相同的小长方形拼成一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:○1仅用无刻度直尺,○2保留必要的画图痕迹. (1)在图(1)中画一个45°角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边; (2)在图(2)中画出线段AB 的垂直平分线.项目情感品质日常学习习惯养成健康安全84项目情感品质日常学习习惯养成健康安全图2图1AA【答案】 如图所示:(1) ∠BAC=45º ; (2)OH 是AB 的垂直平分线.四、(本大题共4小题,每小题8分,共32分)18.如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E ,射线EP 交 于点F ,交过点C 的切线于点D. (1)求证DC=DP(2)若∠CAB=30°,当F 是的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;【答案】 (1) 如图1连接OC, ∵CD 是⊙O 的切线,∴ OC ⊥CD ∴∠OCD=90º,∴∠DCA= 90º-∠OCA .又PE ⊥AB ,点D 在EP 的延长线上, ∴∠DEA=90º ,∴∠DPC=∠APE=90º-∠OAC. ∵OA=OC , ∴∠OCA=∠OAC. ∴∠DCA=∠DPC ,∴DC=DP. (2) 如图2 四边形AOCF 是菱形. 图1连接CF 、AF , ∵F 是 的中点,∴ ∴ AF=FC .∵∠BAC=30º ,∴ =60º ,又AB 是⊙O 的直径, ∴ =120º, ∴ = 60º , ∴∠ACF=∠FAC =30º .图1AAACAC B A C=C FA FBC A C B =C F A F B∵OA=OC, ∴∠OCA=∠BAC=30º, 图2 ∴⊿OAC ≌⊿FAC (ASA) , ∴AF=OA ,∴AF=FC=OC=OA , ∴四边形AOCF 是菱形.19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管都比前一节套管少4cm ,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm . (1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求x 的值 .图3【答案】 (1) 第5节的套管的长是34cm . (注:50-(5-1)×4 )(2) (50+46+…+14) -9x =311 ∴320-9x =311 , ∴x =1 ∴x 的值是1.20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:○1将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关); ○2两人摸牌结束时,将所得牌的“点数”相加 ,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”,若“点数”之和大于10,则“最终点数”是0;○3游戏结束之前双方均不知道对方“点数”; ○4判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负. 现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克图2图1• • •牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为 . (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【答案】 (1) P 甲获胜=12 .(2) 如图:∴所有可能的结果是(4,5)(4,6)(4,7)(5,4)(5,6)(5,7)(6,4)(6,5)(6,7) (7,4)(7,5)(7,6) 共12种.甲 54 5 6 7 甲“最终点数”9101112乙 55 6 7 4 6 7 4 5 7 4 5 6 乙“最终点数” 10 11 12 9 11 12 9 10 12 9 10 11 获胜情况乙胜甲胜甲胜甲胜甲胜甲胜乙胜乙胜平乙胜乙胜平∴ P 乙胜=51221.如图1是一副创意卡通圆规,图2是其平面示意图,OA 是 支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯 端点B 可以绕点A 旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18º时,求所作圆的半径;(结果精确到0.01cm ) (2)保持∠AOB=18º不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,754654764765乙甲7654开始B求铅笔芯折断部分的长度.(结果精确到0.01cm) (参考数据:sin9º≈0.1564,com9º≈0.9877º,sin18º≈0.3090, com18º≈0.9511,可使用科学计算器) 图1 图2【答案】 (1) 图1,作OC ⊥AB ,∵OA=OB, OC ⊥AB ,∴AC=BC, ∠AOC=∠BOC=12∠AOB=9°, 在Rt ⊿AOC 中,sin ∠AOC = ACOA , ∴AC ≈0.1564×10=1.564, ∴AB=2AC=3.128≈3.13. ∴所作圆的半径是3.13cm.(2)图2,以点A 为圆心,AB 长为半径画弧,交OB 于点C,作AD ⊥BC于点D; ∵AC=AB, AD ⊥BC ,∴BD=CD, ∠BAD=∠CAD=12∠BAC, ∵∠AOB=18°,OA=OB ,AB=AC, ∴∠BAC=18°, ∴∠BAD=9°, 在Rt ⊿BAD 中, sin ∠BAD = BD AB , ∴BD ≈0.1564×3.128≈0.4892, ∴BC=2BD=0.9784≈0.98∴铅笔芯折断部分的长度约为0.98cm.图2五、(本大题共10分)22.【图形定义】如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P ,连接PO,我们称∠OAB 为“叠弦角”,⊿AOP 为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(即⊿AOP)是等边三角形; (2)如图2,求证:∠OAB=∠OAE '.BD B【归纳猜想】【答案】 (1) 如图1 ∵四ABCD 是正方形,由旋转知:AD=AD ',∠D=∠D '=90°, ∠DAD '=∠OAP=60°∴∠DAP=∠D 'AO , ∴⊿APD ≌⊿AOD '(ASA )∴AP=AO ,又∠OAP=60°, ∴⊿AOP 是等边三角形.(2)如右图,作AM ⊥DE 于M, 作AN ⊥CB 于N.∵五ABCDE 是正五边形,由旋转知:AE=AE ',∠E=∠E '=108°, ∠EAE '=∠OAP=60°∴∠EAP=∠E 'AO , ∴⊿APE ≌⊿AOE '(ASA ) ∴∠OAE '=∠PAE.在Rt ⊿AEM 和Rt ⊿ABN 中,{∠M =∠N =90°∠AEM =∠ABN =72° AE =AB∴Rt ⊿AEM ≌Rt ⊿ABN (AAS) ∴ ∠EAM=∠BAN , AM=AN.MD'在Rt ⊿APM 和Rt ⊿AON 中,{AP =AOAM =AN∴Rt ⊿APM ≌Rt ⊿AON (HL). ∴∠PAM=∠OAN, ∴∠PAE=∠OAB∴∠OAE '=∠OAB (等量代换).(3) 15°, 24° (4) 是(5) ∠OAB=[(n-2) ×180°÷n -60°] ÷2=60°-180°n六、(本大题共共12分)23.设抛物线的解析式为y = a x 2 , 过点B 1 (1, 0 )作x 轴的垂线,交抛物线于点A 1 (1, 2 );过点B 2 (1, 0 )作x 轴的垂线,交抛物线于点A 2 ,… ;过点B n ((12)n−1 , 0 ) (n 为正整数 )作x 轴的垂线,交抛物线于点A n , 连接A n B n+1 , 得直角三角形A n B n B n+1 . (1)求a 的值;(2)直接写出线段A n B n ,B n B n+1 的长(用含n 的式子表示); (3)在系列Rt ⊿A n B n B n+1 中,探究下列问题:○1当n 为何值时,Rt ⊿A n B n B n+1 是等腰直角三角形? ○2设1≤k <m ≤n (k , m 均为正整数) ,问是否存在Rt ⊿A k B k B k+1 与Rt ⊿A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【答案】 (1) 把A(1 , 2)代入y =ax 2 得: 2=a ×12 , ∴a =2 . (2) A n B n =2×[(12)n−1]2 =23−2nB n B n+1 = (12)n−1-(12)n = 2−n(3) ○1 若Rt ⊿A n B n B n+1 是等腰直角三角形 ,则A n B n =B n B n+1 . ∴23−2n =2−n , ∴n=3.○2 若Rt ⊿A k B k B k+1 与Rt ⊿A m B m B m+1相似, 则A kB k A m B m= B k Bk+1B m B m+1或 A k B kBm B m+1=B k B k+1A m B m,x∴ 23−2k23−2m = 2−k 2−m 或 23−2k 2−m = 2−k 23−2m , ∴ m=k (舍去) 或 k+m=6∵m>k ,且m , k 都是正整数,∴ {m =4k =2 或 {m =5k =1, ∴ 相似比=2−k23−2m =2−223−2×4 =8∶1 ,或 2−k 23−2m =2−123−2×5 =64∶1. ∴相似比是8:1或64:1。

江西省上饶市余干县2016届中考数学三模试卷含答案解析

江西省上饶市余干县2016届中考数学三模试卷含答案解析

2016年江西省上饶市余干县中考数学三模试卷一、选择题:本大题共6个小题,每小题3分,共18分.1.在下列实数中,无理数是()A.3.1415926 B.C.D.2.在网络上用“百度”引擎搜索“中国梦”,能搜索到与之相关的结果为20900000个,“20900000”这个数用科学记数法表示为()A.2.09×107B.2.09×108C.20.9×107D.209×1073.计算:(﹣2a)2•(﹣3a)3的结果是()A.﹣108a5B.﹣108a6C.108a5D.108a64.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°5.如图,若将如图正方形剪成四块,恰好能拼成如图的矩形,则等于()A.B.C.D.6.小兰画了一个函数y=的图象如图,那么关于x的分式方程=2的解是()A.x=1 B.x=2 C.x=3 D.x=4二、填空题:本大题共8小题,每小题3分,共24分.7.计算:(﹣2)﹣3=.8.化简:a﹣2(3﹣4a)=.9.成立的条件是.10.从长度分别为3,5,7,9的4条线段中任取3条作边,能组成三角形的概率为.11.如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为.12.如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为.13.如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是.14.已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离为.三、解答题:本大题共4小题,每小题6分,共24分.15.化简:()÷(m2+2m+1)16.某商场为了促销,凡购买1000元商品的顾客获抽奖券一张.抽奖活动设置了如下的电翻奖牌,一张抽奖券只能有一次机会在9个数字中选中一个翻牌,其对应的反面就是奖品(重新启动会自动随机交换位置).(1)求一张抽奖券翻到一台电风扇的概率;(2)有两张抽奖券翻奖牌,请你根据题意写出一个事件,使这个事件发生的概率是.翻奖牌正面翻奖牌反面.17.如图,△ABC是⊙O的内接三角形,∠BAD是它的一个外角,OP⊥BC交⊙O于点P,仅用直尺按下列要求分别画图:(1)在图1中,画并标出△ABC的中线AE;(2)在图2中,画并标出△ABC的角平分线AF;(3)在图3中,画并标出△ABC的外角∠BAD的角平分线AG.18.如图,已知直线l的解析式为y=x+4与y轴交于A点,与x轴交于B点.(1)写出A、B两点的坐标;(2)又知点C(﹣2,0),请在直线l上找一点P,使得OP+CP的值最小,求P点的坐标.四、解答题:本大题共4小题,每小题8分,共32分.19.已知关于x的一元二次方程(a﹣c)x2﹣2bx+(a+c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.20.如图,△ABC、△DEF都是等腰三角形,D、E、F分别在AB、BC、CA上,已知:∠B=∠DEF=90°,AB=BC,DE=EF.(1)写出图中所有与∠BDE相等的角;(2)求证:BD+BE=EC.21.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此七(1)班数学兴趣小组的同学对学校的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶550ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:①全部喝完;②喝剩约;③喝剩约一半;④开瓶但基本未喝;⑤未开瓶.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有人,在图乙中④所在扇形的圆心角是度,并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少(计算结果请保留整数);(3)对会议浪费的矿泉水一事,请你提出两条改进的建议.22.如图1是小明在健身器材上进行仰卧起坐锻炼时情景,如图2是小明锻炼时上半身由EM位置运动到地面垂直的EN位置时的示意图,已知:BC⊥CD,AD⊥CD,BC=0.64m,AD=0.24m,AB=1.29m.(1)求AB的倾斜角α的度数(精确到1°,友情提示:sin17°=0.2923,sin18°=0.3090,sin19°=0.3256);(2)若测得EN=0.88m,试计算小明头顶由M运动到N点的路径的长度.(精确到0.01m)五、解答题:共10分.23.如图,在一张透明的纸上画了一个∠BAC,且∠BAC=α.(1)如图2,把纸片∠BAC沿DE折起(DE为折痕),使顶点A在∠BAC的内部,点A的对称点为点O,求证:∠CDO+∠OEB=2α.(2)如图3,把纸片∠BAC沿DE折起(DE为折痕),使顶点A在∠BAC的外部,点A的对称点为点O写出∠CDO、∠OEB与α的等式关系(只写出答案,无需证明).(3)如图4,在图2的基础上再以FG为折痕叠纸片,使顶点D、E在∠BAC的内部,且点D、E 的对称点分别为点P、Q,求∠CFP+∠PMO+∠ONQ+∠QGB的大小.(4)如图5,是一个侧“M”形HUKL.已知:∠HIJ+∠JKL=2∠IJK.分别延长HI、LK交于点R,问∠HRL与∠IJK是否相等?如果相等,则请证明;如果不相等,则说明理由(举一反例).六、解答题:共12分.24.如果两个二次函数图象的开口向上,顶点坐标都相同,那么称这两个二次函数互为“同簇二次函数”,显然“同簇二次函数”不是唯一的.(1)已知二次函数y=3x2﹣6x+1.①写出它的开口方向,顶点坐标;②请写出它的两个不同的“同簇二次函数”.(2)已知两个二次函数y1=a1(x﹣k1)2+h1,y2=a2(x﹣k2)2+h2是“同簇二次函数”,则a1a20,k1k2,h1h2(均填“>”、“=“、或“<”号)①如果y3=y1+y2也是y1的“同簇二次函数”,求证:y3的顶点在x轴上;②如果直线y=t,与y1、y2顺次交于点A、B、C、D,且AB=BC=CD,求的值.2016年江西省上饶市余干县中考数学三模试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.1.在下列实数中,无理数是()A.3.1415926 B.C.D.【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、3.1415926是有理数,故A错误;B、是有理数,故B错误;C、是无理数,故C正确;D、是有理数,故D错误;故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(2016•余干县三模)在网络上用“百度”引擎搜索“中国梦”,能搜索到与之相关的结果为20900000个,“20900000”这个数用科学记数法表示为()A.2.09×107B.2.09×108C.20.9×107D.209×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将20900000用科学记数法表示为:2.09×107.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.计算:(﹣2a)2•(﹣3a)3的结果是()A.﹣108a5B.﹣108a6C.108a5D.108a6【考点】单项式乘单项式.【分析】根据积的乘方等于乘方的积,可得单项式的乘法;根据单项式乘单项式,系数乘系数,同底数的幂相乘;可得答案.【解答】解:(﹣2a)2•(﹣3a)3=(4a2)•(﹣27a3)=﹣108a5.故选:A.【点评】本题考查了单项式乘单项式,熟记法则并根据法则计算是解题关键.4.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°【考点】三角形内角和定理;等边三角形的性质.【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC 各角的度数,再根据三角形内角和定理即可得出结论.【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选D.【点评】本题考查的是等边三角形的性质,三角形的内角和,熟知等边三角形各内角均等于60°是解答此题的关键.5.如图,若将如图正方形剪成四块,恰好能拼成如图的矩形,则等于()A.B.C.D.【考点】图形的剪拼.【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出.【解答】解:依题意得(a+b)2=b(b+a+b),整理得:a2+b2+2ab=2b2+ab则a2﹣b2+ab=0,方程两边同时除以b2,则()2﹣1+=0,解得:=,∵不能为负,∴=.故选D.【点评】此题主要考查了图形的剪拼,此题是一个信息题目,首先正确理解题目的意思,然后会根据题目隐含条件找到数量关系,然后利用数量关系列出方程解决问题.6.小兰画了一个函数y=的图象如图,那么关于x的分式方程=2的解是()A.x=1 B.x=2 C.x=3 D.x=4【考点】反比例函数的图象.【专题】压轴题.【分析】关于x的分式方程=2的解就是函数y=中,纵坐标y=2时的横坐标x的值,据此即可求解.【解答】解:由图可知当x=3时,y=0,即=0,解得a=3,当=2时,解得x=1.故选A.【点评】本题考查了函数的图象,正确理解:关于x的分式方程=2的解,就是函数y=中,纵坐标y=2时的横坐标x的值是关键.二、填空题:本大题共8小题,每小题3分,共24分.7.计算:(﹣2)﹣3=﹣.【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式==﹣.故答案为:﹣.【点评】本题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数是解题关键.8.化简:a﹣2(3﹣4a)=9a﹣6.【考点】整式的加减.【分析】先去括号,再合并同类项即可.【解答】解:原式=a﹣6+8a=9a﹣6.故答案为9a﹣6.【点评】本题考查了整式的加减,去括号与合并同类项是解题的关键.9.成立的条件是﹣1≤x≤1.【考点】二次根式的乘除法.【分析】直接利用二次根式的性质结合不等式组的解法求出答案.【解答】解:∵成立,∴,解得:﹣1≤x≤1.故答案为:﹣1≤x≤1.【点评】此题主要考查了二次根式的性质,正确得出关于x的不等式组是解题关键.10.从长度分别为3,5,7,9的4条线段中任取3条作边,能组成三角形的概率为.【考点】概率公式;三角形三边关系.【分析】由从长度分别为3、5、7、9的4条线段中任取3条作三角形的边,等可能的结果有:3、5、7;3、7、9;5、7、9;3、7、9,且能组成三角形的有:3、5、7;5、7、9;3、7、9;直接利用概率公式求解即可求得答案.【解答】解:∵从长度分别为3、5、7、9的4条线段中任取3条作三角形的边,等可能的结果有:3、5、7;3、7、9;5、7、9;3、7、9,且能组成三角形的有:3、5、7;5、7、9;3、7、9;∴能组成三角形的概率为:;故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为6π.【考点】弧长的计算;矩形的性质;旋转的性质.【专题】压轴题;规律型.【分析】如图根据旋转的性质知,点A经过的路线长是三段:①以90°为圆心角,AD长为半径的扇形的弧长;②以90°为圆心角,AB长为半径的扇形的弧长;③90°为圆心角,矩形ABCD对角线长为半径的扇形的弧长.【解答】解:∵四边形ABCD是矩形,AB=4,BC=3,∴BC=AD=3,∠ADC=90°,对角线AC(BD)=5.∵根据旋转的性质知,∠ADA′=90°,AD=A′D=BC=3,∴点A第一次翻滚到点A′位置时,则点A′经过的路线长为:=.同理,点A′第一次翻滚到点A″位置时,则点A′经过的路线长为:=2π.点A″第一次翻滚到点A1位置时,则点A″经过的路线长为:=.则当点A第一次翻滚到点A1位置时,则点A经过的路线长为:+2π+=6π.故答案是:6π.【点评】本题考查了弧长的计算、矩形的性质以及旋转的性质.根据题意画出点A运动轨迹,是突破解题难点的关键.12.如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为﹣.【考点】二次函数综合题.【专题】压轴题.【分析】连接OB,根据正方形的对角线平分一组对角线可得∠BOC=45°,过点B作BD⊥x轴于D,然后求出∠BOD=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得BD=OB,再利用勾股定理列式求出OD,从而得到点B的坐标,再把点B的坐标代入抛物线解析式求解即可.【解答】解:如图,连接OB,∵四边形OABC是边长为1的正方形,∴∠BOC=45°,OB=1×=,过点B作BD⊥x轴于D,∵OC与x轴正半轴的夹角为15°,∴∠BOD=45°﹣15°=30°,∴BD=OB=,OD==,∴点B的坐标为(,﹣),∵点B在抛物线y=ax2(a<0)的图象上,∴a()2=﹣,解得a=﹣.故答案为:﹣.【点评】本题是二次函数综合题型,主要利用了正方形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,二次函数图象上点的坐标特征,熟记正方形性质并求出OB 与x轴的夹角为30°,然后求出点B的坐标是解题的关键.13.如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是(2,0).【考点】垂径定理;点的坐标;坐标与图形性质.【专题】常规题型.【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0).【点评】本题考查垂径定理的知识,理解本题中圆心在圆的弦的垂直平分线上,是垂直平分线的交点.14.已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离为1.【考点】等边三角形的性质.【分析】根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG与直线ME 都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P 到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,利用锐角三角函数定义及特殊角的三角函数值求出DB与FB的长,以及CG与CE的长,由BC﹣BF﹣CG求出FG的长,求出等边三角形NFG的高,即可确定出点P到BC的最小距离.【解答】解:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;根据题意得:BC=AB==,△NFG与△MDE都为等边三角形,∴DB=BF==,CE=CG==,∴FG=BC﹣BF﹣CG=﹣﹣=,∴NH=FG=1,即点P到BC的最小距离是1;故答案为:1.【点评】此题考查了等边三角形的性质,以及平行线间的距离,作出相应的图形是解本题的关键.三、解答题:本大题共4小题,每小题6分,共24分.15.化简:()÷(m2+2m+1)【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中第二项变形后,利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.16.某商场为了促销,凡购买1000元商品的顾客获抽奖券一张.抽奖活动设置了如下的电翻奖牌,一张抽奖券只能有一次机会在9个数字中选中一个翻牌,其对应的反面就是奖品(重新启动会自动随机交换位置).(1)求一张抽奖券翻到一台电风扇的概率;(2)有两张抽奖券翻奖牌,请你根据题意写出一个事件,使这个事件发生的概率是.翻奖牌正面翻奖牌反面.【考点】概率公式.【分析】(1)由共有9种等可能的结果,只有1种情况是一台电风扇,直接利用概率公式求解即可求得答案;(2)由题意可得共有等可能的结果:9×9=81(种),其中都是“谢谢参与”的有9种情况,则可求得答案.【解答】解:(1)∵共有9种等可能的结果,只有1种情况是一台电风扇,∴一张抽奖券翻到一台电风扇的概率为:;(2)∵共有等可能的结果:9×9=81(种),其中都是“谢谢参与”的有9种情况,∴两张抽奖券都是“谢谢参与”的概率为:.事件:得到总是“谢谢参与”的概率.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,△ABC是⊙O的内接三角形,∠BAD是它的一个外角,OP⊥BC交⊙O于点P,仅用直尺按下列要求分别画图:(1)在图1中,画并标出△ABC的中线AE;(2)在图2中,画并标出△ABC的角平分线AF;(3)在图3中,画并标出△ABC的外角∠BAD的角平分线AG.【考点】作图—复杂作图.【专题】作图题.【分析】(1)OP⊥BC于E,根据垂径定理得BE=CE,则AE为△ABC的中线;(2)连结AP交BC于F,根据垂径定理得到=,则∠BAP=∠CAP,所以AF为△ABC的角平分线;(3)延长PO交⊙O于G,连结GB、GC,根据垂径定理得GP垂直平分BC,则GB=GC,于是∠GBC=∠GCB,根据圆内接四边形的性质得∠DAG=∠GBC,根据圆周角定理得∠GAB=∠GCB,所以∠DAG=∠GAB,即AG平分∠BAD.【解答】解:(1)如图1,(2)如图2,连结AP交BC于F,则AF为所求;(3)如图3,延长PO交⊙O于G,则射线AG为所求.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.如图,已知直线l的解析式为y=x+4与y轴交于A点,与x轴交于B点.(1)写出A、B两点的坐标;(2)又知点C(﹣2,0),请在直线l上找一点P,使得OP+CP的值最小,求P点的坐标.【考点】轴对称-最短路线问题;一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0代入解答即可;(2)根据轴对称的性质解答即可.【解答】解:(1)把x=0代入y=x+4=4,点A的坐标为(0,4);把y=0代入y=x+4,解得:x=﹣4,点B的坐标为(﹣4,4),(2)点O关于l的轴对称点O'(﹣4,4),连接O'C交l于点P,则OP+CP=O'P+CP=O'C=为最小,设经过O'、C两点的直线解析式为y=mx+n,将O'(﹣4,4),(﹣2,0)分别代入,得,解得,所以经过O'、C两点的直线解析式为y=﹣2x﹣4,联立,解得.所以点P的坐标为(,).【点评】本题考查了轴对称的问题,关键是根据直线的交点坐标解答.四、解答题:本大题共4小题,每小题8分,共32分.19.已知关于x的一元二次方程(a﹣c)x2﹣2bx+(a+c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.【考点】根的判别式;一元二次方程的解;等腰三角形的判定;勾股定理的逆定理.【分析】(1)根据根的定义,把x=1代入即可得出△ABC的形状;(2)根据根的判别式得出b2﹣4ac=0,即可得出a,b,c的关系,即可根据勾股定理的逆定理判断△ABC的形状.【解答】解:(1)∵x=1是一元二次方程(a﹣c)x2﹣2bx+(a+c)=0的根,∴(a﹣c)﹣2b+(a+c)=0,∴a=b,∵a﹣c≠0,∴a≠c,∴△ABC为等腰三角形;(2)∵方程有两个相等的实数根,∴b2﹣4ac=0,即4b2﹣4(a+c)(a﹣c)=0,∴b2+c2=a2,∴△ABC为直角三角形.【点评】本题考查了根的判别式以及一元二次方程、等腰三角形的判定、直角三角形的判定,掌握各个定理的内容是解题的关键.20.如图,△ABC、△DEF都是等腰三角形,D、E、F分别在AB、BC、CA上,已知:∠B=∠DEF=90°,AB=BC,DE=EF.(1)写出图中所有与∠BDE相等的角;(2)求证:BD+BE=EC.【考点】全等三角形的判定与性质.【分析】(1)结合等腰三角形的性质,结合“同角的余角相等”即可判断;(2)过点F作FG⊥BC,证明三角形BDE与三角形GEF全等即可.【解答】(1)解:图中与∠BDE相等的角有:∠FEC,∠AFD;(2)证明:如图1,过点F作FG⊥BC与点G,∵△ABC、△DEF都是等腰三角形,∴∠B=∠EGF,DE=EF,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,在△DBE和△EGF中,,∴△DBE≌△EGF,∴BD=EG,BE=FG,∵∠C=∠CFG=45°,∴FG=GC,∴BD+BE=EG+GC=EC.【点评】此题主要考查全等三角形的判定与运用,会根据题意构造全等三角形解决问题是解题的关键.21.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此七(1)班数学兴趣小组的同学对学校的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶550ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:①全部喝完;②喝剩约;③喝剩约一半;④开瓶但基本未喝;⑤未开瓶.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有60人,在图乙中④所在扇形的圆心角是30度,并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少(计算结果请保留整数);(3)对会议浪费的矿泉水一事,请你提出两条改进的建议.【考点】条形统计图;扇形统计图;加权平均数.【分析】(1)由扇形统计图可看出②类占了整个圆的一半即50%,从条形统计图又知②类共30人,这样已知部分数的百分比就可以求出总人数,而④类有5人,已知部分数和总数可以求出④类所占总数百分比,再由百分比确定所占圆的圆心角的度数;根据⑤类圆形角占360°的可得⑤类的人数,已知总人数和①、②、④、⑤类的人数可求出③类的人数为5人,将条形统计图中补完整;(2)用总的浪费量除以总人数60就得到平均每人的浪费量;(3)从节约用水角度提出合理建议均可.【解答】解:(1)根据所给扇形统计图可知,喝剩约的人数是总人数的50%,∴30÷50%=60,即参加这次会议的总人数为60人.∵360°=30°,∴④所在扇形的圆心角是30°.补全条形统计图如下:(2)平均每人浪费的矿泉水量为:(30××550+5××550+5×550)÷60≈160ml,(3)建议:①改发小瓶矿泉水;②自选矿泉水;③供应开水;④有剩余矿泉水带走等.故答案为:(1)60,30.【点评】此题主要考查了条形统计图与扇形统计图的综合应用,根据图象得出正确信息是解题关键.22.如图1是小明在健身器材上进行仰卧起坐锻炼时情景,如图2是小明锻炼时上半身由EM位置运动到地面垂直的EN位置时的示意图,已知:BC⊥CD,AD⊥CD,BC=0.64m,AD=0.24m,AB=1.29m.(1)求AB的倾斜角α的度数(精确到1°,友情提示:sin17°=0.2923,sin18°=0.3090,sin19°=0.3256);(2)若测得EN=0.88m,试计算小明头顶由M运动到N点的路径的长度.(精确到0.01m)【考点】解直角三角形的应用-坡度坡角问题;弧长的计算.【分析】(1)过A作AF∥DC,分别交BC,NE延长线于F,H,则四边形AFCD为矩形,AF=CD,AD=CF,可求得BF,在直角三角形ABF中,已知两边,满足解直角三角形的条件,就可求得α的值;(2)由在直角三角形中两个锐角互余,求得∠NEM的度数,由弧长公式求得弧MN的长.【解答】解:(1)过A作AF∥DC,分别交BC,NE延长线于F,H∵AD⊥CD,BC⊥CD∴AD∥BC∴四边形AFCD为矩形∴BF=BC﹣AD=0.4.在Rt△ABF中,∵sinα==≈0.310,∴α≈18°.即AB的倾斜角度数约为18°;(2)∵NE⊥AF,∴∠AEH=90°﹣18°=72°.∴∠MEN=180°﹣∠AEH=108°.∴的长=≈1.66(米).答:小明头顶运动的路径的长约为1.60米.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数的概念和弧长公式是解题关键.五、解答题:共10分.23.如图,在一张透明的纸上画了一个∠BAC,且∠BAC=α.(1)如图2,把纸片∠BAC沿DE折起(DE为折痕),使顶点A在∠BAC的内部,点A的对称点为点O,求证:∠CDO+∠OEB=2α.(2)如图3,把纸片∠BAC沿DE折起(DE为折痕),使顶点A在∠BAC的外部,点A的对称点为点O写出∠CDO、∠OEB与α的等式关系(只写出答案,无需证明).(3)如图4,在图2的基础上再以FG为折痕叠纸片,使顶点D、E在∠BAC的内部,且点D、E 的对称点分别为点P、Q,求∠CFP+∠PMO+∠ONQ+∠QGB的大小.(4)如图5,是一个侧“M”形HUKL.已知:∠HIJ+∠JKL=2∠IJK.分别延长HI、LK交于点R,问∠HRL与∠IJK是否相等?如果相等,则请证明;如果不相等,则说明理由(举一反例).【考点】几何变换综合题.【分析】(1)由平角和对折的性质简单计算∠CDO=180°﹣2∠ADE即可;(2)由平角和对折的性质简单计算∠OEB=∠AED﹣180°即可;(3)由对折和平角的意义进行简单的计算,(3)利用几何图形,对折,平角的意义简单的计算.【解答】解:(1)∵如图2,∵把三角形纸片ABC的∠A沿DE折起,点A的对称点为点O,∴∠CDO+∠OEB=(180°﹣2∠ADE)+(180°﹣2∠AED)=2(180°﹣∠ADE﹣∠AED)=2α;(2)∠CDO﹣∠OEB=2α,理由如下:如图3,∠CD0﹣∠OEB=(180°﹣2∠ADE)﹣(2∠AED﹣180°)=2(180°﹣∠ADE﹣∠AED)=2α;(3)∠CFP+PMO+∠ONQ+∠QGB=4α,理由如下:如图4,∠CFP+∠PMO+∠ONQ+∠QGB=(∠CFP+∠PMO)+(∠ONQ+QGB)=2∠FDM+2∠NEG=2(∠FDM+NEG)=4∠BAC=4α;(4)∠HRL=∠IJK,理由如下:如图5,∵∠HIJ+∠JKL=(∠IRJ+∠IJR)+(∠KRJ+∠KJR)=(∠IJR+∠KJR)+(∠IRJ+∠KRJ)=∠IJK+∠IRK=2∠IJK,∴∠HRL=∠IJK.【点评】本题是几何变换题,主要考查了对折的性质,本题的关键是从复杂图形分离出有用的部分,本题易出错的地方是,写错角.六、解答题:共12分.24.如果两个二次函数图象的开口向上,顶点坐标都相同,那么称这两个二次函数互为“同簇二次函数”,显然“同簇二次函数”不是唯一的.(1)已知二次函数y=3x2﹣6x+1.①写出它的开口方向,顶点坐标;②请写出它的两个不同的“同簇二次函数”.(2)已知两个二次函数y1=a1(x﹣k1)2+h1,y2=a2(x﹣k2)2+h2是“同簇二次函数”,则a1a2>0,k1=k2,h1=h2(均填“>”、“=“、或“<”号)①如果y3=y1+y2也是y1的“同簇二次函数”,求证:y3的顶点在x轴上;②如果直线y=t,与y1、y2顺次交于点A、B、C、D,且AB=BC=CD,求的值.【考点】二次函数综合题.【分析】(1)①由a>0,可判断出抛物线的开口方向,然后利用配方法可求得抛物线的顶点坐标;②由“同簇二次函数”的定义写出两个顶点坐标为(1,﹣2),a≠3的二次函数即可;(2)由同簇二次函数可知a1>0,a2>0,k1=k2,h1=h2;①列出关于y3的函数关系式,然后依据“同簇二次函数”的定义可求得h1=0,从而可求得y3的顶点在x轴上;②分别求得y1=a1(x﹣k1)2+h1与y=t、y2=a2(x﹣k1)2+h1与y=t的交点横坐标,最后依据AD=3BC可求得的值.【解答】解:(1)①∵a=3>0,∴抛物线的开口向上.∵y=3x2﹣6x+1=3(x﹣1)2﹣2,∴抛物线的顶点坐标为(1,﹣2).②由“同簇二次函数”的定义可知y1=2(x﹣1)2﹣2,y2=(x﹣1)2﹣2均是y=3x2﹣6x+1的同簇二次函数.(2)∵由同簇二次函数可知a1>0,a2>0,k1=k2,h1=h2,∴a1a2>0,k1=k2,h1=h2.故答案为:>,=,=.①∵y3=y1+y2,∴y3=a1(x﹣k1)2+h1+a2(x﹣k2)2+h2.∵k1=k2,h1=h2,∴y3=(a1+a2)(x﹣k1)2+2h1.∵y3与y1互为同簇二次函数.∴2h1=h1.解得h1=0.∴y3=(a1+a2)(x﹣k1)2.∴y3的顶点在x轴上.②将y1=a1(x﹣k1)2+h1与y=t联立解得:x=k1±.将y2=a2(x﹣k1)2+h1与y=t联立解得:x=k1±.∵AB=BC=CD,∴AD=3BC.∴2=6.解得:=9.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的顶点坐标、函数图象的交点与方程组的关系、理解同簇二次函数的概念是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年江西省中等学校招生考试数学模拟试卷(三)一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列计算中,结果是正数的是()A.1﹣3 B.(﹣1)×3 C.3﹣1D.(﹣1)32.(3分)下列算式中,错误的是()A.a+a=2a2B.a﹣a=0 C.a•a=a2D.a÷a=13.(3分)如图,该物体是圆柱,它的三种视图中,是全等形的是()A.主视图和俯视图 B.主视图和左视图C.主视图和俯视图 D.主视图、左视图和俯视图4.(3分)如图,在Rt△ABC中,∠C=90°,将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形形成一圆环(阴影部分),为求该圆环的面积,只需测量一条线段的长度,这条线段就是()A.AD B.AB C.BD D.AC5.(3分)如图是甲、乙两种固体物质在0℃﹣50℃之间的溶解度随温度变化的曲线图,某同学从图中获得如下几条信息,其中错误的信息是()A.30℃时两种固体物质的溶解度一样B.在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加C.在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10gD.在0℃﹣50℃之间,甲的溶解度比乙的溶解度高6.(3分)关于二次函数y=x2﹣2x+1﹣a2图象,以下判断错误的是()A.开口方向确定B.对称轴位置确定C.与y轴的交点一定在正半轴D.与x轴的交点一定有一个在正半轴二、填空题(共6小题,每小题3分,满分18分)7.(3分)若是一个正整数,满足条件的最小正整数n=.8.(3分)如图,是三个正方形随意摆放的图形,则图中∠1+∠2+∠3等于度.9.(3分)给出一组数据:1,2,2,3,3,3,4,4,4,4,这组数据的平均数是.10.(3分)如图,在▱ABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是度.11.(3分)一次函数y=20+16x的图象与两坐标轴围成的三角形的面积是.12.(3分)如图,等边△OAB的边长为2,点B在x轴上,反比例函数图象经过A点,将△OAB绕点O顺时针旋转a度(0<a<360),使点A落在双曲线上,则a=.三、解答题(共11小题,满分84分)13.(6分)化简:.14.(6分)解不等式组,并将解集在数轴上表示出来.15.(6分)已知关于x的方程mx2+2x﹣1=0有实数根.(1)求m的取值范围;(2)若方程有两个实数根x1,x2,求+的值.16.(6分)如图,这是某个小区内的道路示意图,小明家住在该小区的A处,他每天晚饭后都要从家出发随机沿着小区内的道路散步一圈后回家(每条道路不能重复走,有的道路可以不走)(1)利用树形图描述出小明散步的路线情况;(2)求小明散步经过点E的概率P(E).17.(6分)如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.18.(8分)如图,在△ABC中,已知:∠CAB=120°,AB=3,AC=5,AD⊥BC于D,试求:(1)BC的长;(2)AD的长.19.(8分)在平面直角坐标系中,若横坐标、纵坐标均为整数点称为格点,若一个多边形的顶点都是格点,则称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.(1)利用图中条件求a,b的值;(2)若某格点多边形对应的n=20,l=15,求S的值;(3)在图中画出面积等于5的格点直角三角形PQR.20.(8分)根据如图所示的程序计算:(1)选取一个你喜欢的x的值,输入计算,试求输出的y值是多少?(2)求出这样的x的值,输入计算后输出的y值是9;(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.21.(8分)江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4位选手的短信支持率情况如图2,已知两次之间这4位选手的获得短信支持条数相同.(1)比较图1,图2的变化情况,写出2条结论;(2)写出第一次4位短信支持总条数与第二次4位短信支持总条数的等式关系,并证明这个等式关系.22.(10分)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图①所示(图②是备用图),如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如果炒菜锅时的水位高度是1dm,求此时水面的直径;(3)如果将一个底面直径为3dm,高度为3dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.23.(12分)如图1,⊙O是△ABC的外接圆,已知:AB≠AC,点M是的中点,点N是的中点,按要求解答下列问题:(1)如图2,连接MN交AB于点E,交AC于点F.①求证:AE=AF;②若2ME•NF=EF2,求∠A的度数;(2)如图3,连接CM,BN,若CM=BN,求∠A的度数.(3)在图1中,①仅用直尺找出点P,使点P为的中点;②连出六边形AMBPCN,已知⊙O的半径为1,△ABC的周长为4,求六边形AMBPCN的面积.2016年江西省中等学校招生考试数学模拟试卷(三)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列计算中,结果是正数的是()A.1﹣3 B.(﹣1)×3 C.3﹣1D.(﹣1)3【解答】解:∵1﹣3=﹣2,(﹣1)×3=﹣3,3﹣1=,(﹣1)3=﹣1,∴3﹣1>0,故选C.2.(3分)下列算式中,错误的是()A.a+a=2a2B.a﹣a=0 C.a•a=a2D.a÷a=1【解答】解:A、a+a=2a,故本选项错误;B、a﹣a=0,故本选项正确;C、a•a=a2,故本选项正确;D、a÷a=1,故本选项正确.故选A.3.(3分)如图,该物体是圆柱,它的三种视图中,是全等形的是()A.主视图和俯视图 B.主视图和左视图C.主视图和俯视图 D.主视图、左视图和俯视图【解答】解:如图,根据圆柱的主视图、左视图和俯视图,得,圆柱的主视图和左视图是全等形;故选B.4.(3分)如图,在Rt△ABC中,∠C=90°,将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形形成一圆环(阴影部分),为求该圆环的面积,只需测量一条线段的长度,这条线段就是()A.AD B.AB C.BD D.AC【解答】解:∵Rt△ABC中,∠C=90°,∴AC2=AB2﹣BC2,又∵S圆环=S大圆﹣S小圆=π•AB2﹣π•BC2=π•(AB2﹣BC2)=π•AC2,∴只需测量线段AC的长度即可计算出圆环的面积.故选D.5.(3分)如图是甲、乙两种固体物质在0℃﹣50℃之间的溶解度随温度变化的曲线图,某同学从图中获得如下几条信息,其中错误的信息是()A.30℃时两种固体物质的溶解度一样B.在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加C.在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10gD.在0℃﹣50℃之间,甲的溶解度比乙的溶解度高【解答】解:由图象可以看出,30℃时两种固体物质的溶解度一样,故(A)正确;在0℃﹣50℃之间,甲、乙两固体物质的溶解度随温度上升而增加,故(B)正确;在0℃﹣40℃之间,甲、乙两固体物质溶解度相差最多是10g,故(C)正确;在0℃﹣50℃之间,甲的溶解度比乙的溶解度高,故(D)错误,实际应改为30℃﹣50℃之间,甲的溶解度比乙的溶解度高.故选(D).6.(3分)关于二次函数y=x2﹣2x+1﹣a2图象,以下判断错误的是()A.开口方向确定B.对称轴位置确定C.与y轴的交点一定在正半轴D.与x轴的交点一定有一个在正半轴【解答】解:A、由二次函数y=x2﹣2x+1﹣a2得,a=1>0,开口向下;故本项错误;B、由二次函数y=x2﹣2x+1﹣a2得,对称轴是x=1;故本项错误;C、由二次函数y=x2﹣2x+1﹣a2可知,与y轴的交点坐标为(0,1﹣a2),1﹣a2无法求得符号,故本项正确;D、由二次函数y=x2﹣2x+1﹣a2可知﹣=﹣=2,所以与x轴的交点一定有一个在正半轴;故本项错误;故选C.二、填空题(共6小题,每小题3分,满分18分)7.(3分)若是一个正整数,满足条件的最小正整数n=3.【解答】解:∵,∴满足条件的最小正整数n=3,故答案为:3.8.(3分)如图,是三个正方形随意摆放的图形,则图中∠1+∠2+∠3等于90度.【解答】解:如图,三个正方形中,∠4=∠5=∠6=90°,∵△ABC的外角和为360°,∴∠BAD+∠BCF+∠EBC=360°,∴∠1+∠2+∠3=360°﹣(∠4+∠5+∠6)=360°﹣90°﹣90°﹣90°=90°,故答案为:90.9.(3分)给出一组数据:1,2,2,3,3,3,4,4,4,4,这组数据的平均数是3.【解答】解:这组数据的平均数是:×(1+2+2+3+3+3+4+4+4+4)=3.故答案为:3.10.(3分)如图,在▱ABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是85度.【解答】解:∵在平行四边形ABCD中,AD∥BC,BC=AD,∴∠EAD=∠AEB,又∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS),∴∠AED=∠BAC.∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB=∠B,∴△ABE为等边三角形,∴∠BAE=60°,∴∠BAC=∠BAE+∠EAC=85°,∴∠AED=∠BAC=85°;故答案为:85.11.(3分)一次函数y=20+16x的图象与两坐标轴围成的三角形的面积是.【解答】解:在一次函数y=20+16x中,当x=0时,y=20;当y=0时,x=﹣;∴直线与坐标轴交于(0,20)和(﹣,0)两点,∴一次函数图象与两坐标轴围成的三角形的面积=×20×=.故答案为:12.(3分)如图,等边△OAB的边长为2,点B在x轴上,反比例函数图象经过A点,将△OAB绕点O顺时针旋转a度(0<a<360),使点A落在双曲线上,则a=30°或180°或210°.【解答】解:根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴a=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时a=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时a=210°;故答案为30°或180°或210°.三、解答题(共11小题,满分84分)13.(6分)化简:.【解答】解:===2x﹣4.14.(6分)解不等式组,并将解集在数轴上表示出来.【解答】解:解不等式组,得:,∴原不等式组的解集是:﹣3≤x<2,解集在数轴上表示如右.15.(6分)已知关于x的方程mx2+2x﹣1=0有实数根.(1)求m的取值范围;(2)若方程有两个实数根x1,x2,求+的值.【解答】解:(1)分两种情况:①m=0时,原方程即为2x﹣1=0,为一元一次方程,必有实数根;②m≠0时,原方程为一元二次方程.△=22﹣4×m×(﹣1)=4+4m≥0,解得:m≥﹣1,即m≥﹣1且m≠0.综上可知m≥﹣1;(2)∵x1+x2=﹣,x1x2=﹣,∴+===2.16.(6分)如图,这是某个小区内的道路示意图,小明家住在该小区的A处,他每天晚饭后都要从家出发随机沿着小区内的道路散步一圈后回家(每条道路不能重复走,有的道路可以不走)(1)利用树形图描述出小明散步的路线情况;(2)求小明散步经过点E的概率P(E).【解答】解:(1)画树状图得:则共有6种等可能的结果;(2)∵小明散步经过点E的有4种情况,∴小明散步经过点E的概率P(E)==.17.(6分)如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.【解答】解:过点B作BF⊥⊥l1,垂足为点F,如图所示.∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD.∵BF⊥l1,DE⊥l1,∴∠FAB+∠EAD=90°,∠FAB+∠FBA=90°,∠BFA=∠AED=90°.∴∠EAD=∠FBA.在△FAB和△EDA中,,∴△FAB≌△EDA(AAS),∴AE=BF=1.∵ED=2,∴AD==.18.(8分)如图,在△ABC中,已知:∠CAB=120°,AB=3,AC=5,AD⊥BC于D,试求:(1)BC的长;(2)AD的长.【解答】解:(1)如图,过点B作BH⊥AC,交AC的延长线于点H,∵∠CAB=120°,∴∠HAB=60°,∠ABH=30°,∵AB=3,∴AH=1.5,BH=1.5,则BC==7;(2)∵△BCH∽△ACD,∴=,即=,解得:AD=.19.(8分)在平面直角坐标系中,若横坐标、纵坐标均为整数点称为格点,若一个多边形的顶点都是格点,则称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.(1)利用图中条件求a,b的值;(2)若某格点多边形对应的n=20,l=15,求S的值;(3)在图中画出面积等于5的格点直角三角形PQR.【解答】解:(1)根据题意,可得:,解得:,∴S=n+l﹣1;(2)将n=20、l=15代入可得S=20+×15﹣1=26.5;(3)如图,.20.(8分)根据如图所示的程序计算:(1)选取一个你喜欢的x的值,输入计算,试求输出的y值是多少?(2)求出这样的x的值,输入计算后输出的y值是9;(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.【解答】解:(1)∵y=x2+2x﹣6,∴当x=5时,y=25+10﹣6=29;(2)根据题意得x2+2x﹣6=9,即x2+2x﹣15=0,解得:x=3或x=﹣5;(3)当y=x且y<0时,输入计算后始终在内循环计算而输不出y的值,此时x2+2x﹣6=x,解得:x=2>0(舍去)或x=﹣3<0,∴当x=﹣3时,输入计算后始终在内循环计算而输不出y的值.21.(8分)江西二套“谁是赢家”二七王比赛中,节目要统计4位选手的短信支持率,第一次公布4位选手的短信支持率情况如图1,一段时间后,第二次公布4位选手的短信支持率情况如图2,已知两次之间这4位选手的获得短信支持条数相同.(1)比较图1,图2的变化情况,写出2条结论;(2)写出第一次4位短信支持总条数与第二次4位短信支持总条数的等式关系,并证明这个等式关系.【解答】解:(1)两次之间这4位选手的短信支持条数相同情况下,比较图1,图2的变化情况,可知:①短信支持率高于25%的会下降;②短信支持率等于25%的会不变;③短信支持率低于25%的会上升(2分);(2)设第一次4位短信支持总条数为a与第二次4位短信支持总条数b,它们等式关系为:b=2a.(4分)证明如下:∵两次之间这4位选手的短信支持条数相同∴25%b﹣25%a=22.5%b﹣20%a=30%b﹣35%a(7分)整理得:b=2a(8分).22.(10分)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图①所示(图②是备用图),如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如果炒菜锅时的水位高度是1dm,求此时水面的直径;(3)如果将一个底面直径为3dm,高度为3dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.【解答】解:(1)由于抛物线C1、C2都过点A(﹣3,0)、B(3,0),可设它们的解析式为:y=a(x﹣3)(x+3);抛物线C1还经过D(0,﹣3),则有:﹣3=a(0﹣3)(0+3),解得:a=即:抛物线C1:y=x2﹣3(﹣3≤x≤3);抛物线C2还经过C(0,1),则有:1=a(0﹣3)(0+3),解得:a=﹣即:抛物线C2:y=﹣x2+1(﹣3≤x≤3).(2)当炒菜锅里的水位高度为1dm时,y=﹣2,即x2﹣3=﹣2,解得:x=±,∴此时水面的直径为2dm.(3)锅盖能正常盖上,理由如下:当x=时,抛物线C1:y=×()2﹣3=﹣,抛物线C2:y=﹣×()2+1=,而﹣(﹣)=3,∴锅盖能正常盖上.23.(12分)如图1,⊙O是△ABC的外接圆,已知:AB≠AC,点M是的中点,点N是的中点,按要求解答下列问题:(1)如图2,连接MN交AB于点E,交AC于点F.①求证:AE=AF;②若2ME•NF=EF2,求∠A的度数;(2)如图3,连接CM,BN,若CM=BN,求∠A的度数.(3)在图1中,①仅用直尺找出点P,使点P为的中点;②连出六边形AMBPCN,已知⊙O的半径为1,△ABC的周长为4,求六边形AMBPCN的面积.【解答】解:(1)①证明:如图1,连接AM、AN,∵点M是的中点,点N是的中点,∴=,=,∴∠EMA=∠FAN,∠EAM=∠FNA,∴∠AEF=∠EMA+∠EAM=∠FAN+∠FNA=∠AFE,∴AE=AF;②由①可知△EMA∽△FA,∴=,∴AE2=AF2=ME•MF,又2ME•MF=EF2,∴AE2+AF2=EF2,∴∠BAC=90°;(2)∵CM=BN,∴有=或=,①当=时,则有=或,=,∴AB=AC,这与AB≠AC矛盾;②当=时,则有=,又=+=+,∴==+=⊙O,∴∠BOC=120°,∴∠BAC=60°;(3)①如图2,连接CM、BN交于点Q,连接AQ并延长,交⊙O于点P,∵点M是的中点,点N是的中点,∴CM、BN分别平分∠BCA和∠CBA,∴AP平分∠BAC,∴∠BPA=∠CPA,∴=,即P为的中点;②连接OA、OB、MO,如图3,∵点M是的中点,∴OM⊥AB,且OM=1,∴S=OM•AB=AB,同理可得S四边形OBPC=BC,S四边形OCNA=AC,四边形OAMB∴S=S四边形OAMB+S四边形OBPC+S四边形OCNA=AB+BC+AC=(AB+BC+CA)=六边形AMBPCN×4=2.。

相关文档
最新文档