大石桥市第三高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大石桥市第三高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 直线在平面外是指( ) A .直线与平面没有公共点 B .直线与平面相交 C .直线与平面平行
D .直线与平面最多只有一个公共点
2. 已知函数()x e f x x
=,关于x 的方程2
()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的
取值范围是( )
A .21(,)21e e -+?-
B .21(,)21e e --?-
C .21(0,)21e e --
D .2121e e 禳-镲

-镲铪
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
3. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f ()=( )
A .2或0
B .0
C .﹣2或0
D .﹣2或2
4. 已知抛物线2
8y x =与双曲线22
21x y a
-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲
线的渐近线方程为
A 、530x y ±=
B 、350x y ±=
C 、450x y ±=
D 、540x y ±=
5. 设命题p :函数y=sin (2x+
)的图象向左平移
个单位长度得到的曲线关于y 轴对称;命题q :函数
y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假 B .¬q 为真 C .p ∨q 为真 D .p ∧q 为假
6. 双曲线

=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的
离心率为( )
A .2
B .
C .4
D .
7. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )
A .1
B .
C .
D .
8. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )
A.32
-
B.1-
C.
D.
【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.
9. 已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)
10.已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定
11.已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )
A .
B .
C .
D .6
12.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )
A .2+
B .1+
C .
D .
二、填空题
13.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +
),向量=(0,1),θn 是向量
与i 的夹角,则
+
+…+= .
14.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则
OAB ∆面积的最大值为 .
【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.
15.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .
16.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .
17.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .
18.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .
三、解答题
19.关于x 的不等式a 2x+b 2(1﹣x )≥[ax+b (1﹣x )]2
(1)当a=1,b=0时解不等式; (2)a ,b ∈R ,a ≠b 解不等式.
20.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:
x 2 4 5 6 8 y 30 40 60 50 70
(1)画出散点图; (2)求线性回归方程;
(3)预测当广告费支出7(百万元)时的销售额.
21.(本小题满分12分)已知12,F F 分别是椭圆C :22
221(0)x y a b a b
+=>>的两个焦点,且12||2F F =,点
在该椭圆上.
(1)求椭圆C 的方程;
(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两
点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.
226
(2)求年推销金额y 关于工作年限x 的线性回归方程;
(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.
23.某农户建造一座占地面积为36m 2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m ,墙高为2m ,鸡舍正面的造价为40元/m 2
,鸡舍侧面的造价为20元/m 2
,地面及其他费用合计为
1800元.
(1)把鸡舍总造价y 表示成x 的函数,并写出该函数的定义域. (2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
24.已知正项数列{a n}的前n项的和为S n,满足4S n=(a n+1)2.(Ⅰ)求数列{a n}通项公式;
(Ⅱ)设数列{b n}满足b n=(n∈N*),求证:b1+b2+…+b n<.
大石桥市第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:根据直线在平面外是指:直线平行于平面或直线与平面相交,
∴直线在平面外,则直线与平面最多只有一个公共点.
故选D.
2.【答案】
D
第Ⅱ卷(共90分)
3.【答案】D
【解析】解:由题意:函数f(x)=2sin(ωx+φ),
∵f(+x)=f(﹣x),
可知函数的对称轴为x==,
根据三角函数的性质可知,
当x=时,函数取得最大值或者最小值.
∴f()=2或﹣2
故选D.
4.【答案】A
【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|=x0+p
2
,得5=x0+2.
∴x0=3,则y20=24,所以M3,26,又点M在双曲线上,
∴32
a2-24=1,则a 2=9
25
,a=3
5

因此渐近线方程为5x±3y=0.
5.【答案】C
【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,
当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,
故命题p为假命题;
函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.
故命题q为假命题;
则¬q为真命题;
p∨q为假命题;
p∧q为假命题,
故只有C判断错误,
故选:C
6.【答案】D
【解析】解:双曲线﹣=1(a >0,b >0)的一条渐近线方程为bx+ay=0,
∵渐近线被圆M :(x ﹣8)2+y 2
=25截得的弦长为6,

=4,
∴a 2=3b 2, ∴c 2=4b 2,
∴e==.
故选:D .
【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用.
7. 【答案】B
【解析】解:由约束条件
作出可行域如图,
由图可知A (a ,a ),
化目标函数z=2x+y 为y=﹣2x+z ,
由图可知,当直线y=﹣2x+z 过A (a ,a )时直线在y 轴上的截距最小,z 最小,z 的最小值为2a+a=3a=1,解
得:a=. 故选:B .
【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
8. 【答案】D 【解析】易知周期112(
)1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526
k ϕπ
=-+π
(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-
,则5(0)2cos()6
f π
=-=,故选D. 9. 【答案】C
【解析】解:∵f (x )=﹣log 2x ,
∴f (2)=2>0,f (4)=﹣<0, 满足f (2)f (4)<0,
∴f (x )在区间(2,4)内必有零点, 故选:C
10.【答案】C
【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02
>4,
求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,
故直线和圆C 相交, 故选:C .
【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.
11.【答案】C .
【解析】解:∵2a =3b
=m ,
∴a=log 2m ,b=log 3m , ∵a ,ab ,b 成等差数列, ∴2ab=a+b , ∵ab ≠0,
∴+=2,
∴=log m 2, =log m 3, ∴log m 2+log m 3=log m 6=2, 解得m=.
故选 C
【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.
12.【答案】A
【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,
∴原四边形为直角梯形,
且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,
∴直角梯形ABCD的面积为,
故选:A.
二、填空题
13.【答案】.
【解析】解:点An(n,)(n∈N+),向量=(0,1),θn是向量与i的夹角,
=,=,…,=,
∴++…+=+…+=1﹣=,
故答案为:.
【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
14.
【解析】
15.【答案】(﹣4,0].
【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;
当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,
则满足,
即,

解得﹣4<a<0,
综上:a的取值范围是(﹣4,0].
故答案为:(﹣4,0].
【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.
16.【答案】[﹣,].
【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,
∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),
即,即,得﹣≤m≤,
故答案为:[﹣,]
【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.
17.【答案】﹣1054.
【解析】解:∵2a n,a n+1是方程x2﹣3x+b n=0的两根,
∴2a n+a n+1=3,2a n a n+1=b n,
∵a1=2,∴a2=﹣1,同理可得a3=5,a4=﹣7,a5=17,a6=﹣31.
则b5=2×17×(﹣31)=1054.
故答案为:﹣1054.
【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.
18.【答案】(﹣∞,]∪[,+∞).
【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,
∴数列{a n}是以1为首项,以为公比的等比数列,
S n==2﹣()n﹣1,
对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,
∴x2+tx+1≥2,
x2+tx﹣1≥0,
令f(t)=tx+x2﹣1,
∴,
解得:x≥或x≤,
∴实数x的取值范围(﹣∞,]∪[,+∞).
三、解答题
19.【答案】
【解析】解:(1)当a=1、b=0时,原不等式化为x≥x2,(2分)
即x(x﹣1)≤0;…(4分)
解得0≤x≤1,
∴原不等式的解集为{x|0≤x≤1};…(6分)
(2)∵a2x+b2(1﹣x)≥[ax+b(1﹣x)]2,
∴(a﹣b)2x≥(a﹣b)2x2,(10分)
又∵a≠b,
∴(a﹣b)2>0,
∴x≥x2;
即x(x﹣1)≤0,…(12分)
解得0≤x≤1;
∴不等式的解集为{x|0≤x≤1}.…(14分)
【点评】本题考查了不等式的解法与应用问题,解题时应对不等式进行化简,再解不等式,是基础题.20.【答案】
【解析】解:(1)
(2)
设回归方程为=bx+a
则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52
=6.5
故回归方程为=6.5x+17.5
(3)当x=7时,=6.5×7+17.5=63,
所以当广告费支出7(百万元)时,销售额约为63(百万元).
【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.
21.【答案】
【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.
22.【答案】
【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,
设所求的线性回归方程为.
则,
∴年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.
(3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元).
∴可以估计第6名推销员的年推销金额为5.9万元.
23.【答案】
【解析】解:(1)…
=…
定义域是(0,7]…
(2)∵,…
当且仅当即x=6时取=…
∴y≥80×12+1800=2760…
答:当侧面长度x=6时,总造价最低为2760元.…
24.【答案】
【解析】(Ⅰ)解:由4S n=(a n+1)2,
令n=1,得,即a1=1,
又4S n+1=(a n+1+1)2,
∴,整理得:(a n+1+a n)(a n+1﹣a n﹣2)=0.∵a n>0,∴a n+1﹣a n=2,则{a n}是等差数列,
∴a n=1+2(n﹣1)=2n﹣1;
(Ⅱ)证明:由(Ⅰ)可知,b n==,
则b1+b2+…+b n=
=
=.。

相关文档
最新文档