北城乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北城乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)如图,与∠B互为同旁内角的有()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】同位角、内错角、同旁内角
【解析】【解答】解:∵当直线AB、AC被直线BC所截,∠B与∠C是同旁内角;
当直线BC、DE被直线AB所截,∠B与∠EDB是同旁内角;
当直线BC、AC被直线AB所截,∠B与∠A是同旁内角;
∴与∠B互为同旁内角的有∠C、∠EDB、∠A
故答案为:C
【分析】根据同旁内角的定义,两个角在两直线之内,在第三条直线的同旁,即可求解。
2、(2分)小明的作业本上有四道利用不等式的性质,将不等式化为x>a或x<a的作业题:①由x+7>8解得x>1;②由x<2x+3解得x<3;③由3x-1>x+7解得x>4;④由-3x>-6解得x<-2.其中正确的有()
A.1题
B.2题
C.3题
D.4题
【答案】B
【考点】不等式及其性质
【解析】【解答】解:①不等式的两边都减7,得x>1,故①正确;
②不等式两边都减(x+3),得x>-3,故②错误;
③不等式的两边都加(1-x),得2x>8,不等式的两边都除以2,得x>4,故③正确;
④不等式的两边都除以-3,得x<2,故④错误,
所以正确的有2题,
故答案为:B.
【分析】(1)根据不等式的性质①两边都减7即可作出判断。
(2)根据不等式的性质①两边都减(x+3),作出判断即可。
(3)先根据不等式的性质①两边都加(1-x),再根据不等式的性质②两边都除以2即可作出判断。
(4)根据不等式的性质②两边都除以-3(注意不等号的方向)即可作出判断。
3、(2分)如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()
A. ∠1=∠2
B. ∠3=∠4
C. ∠C=∠CBE
D. ∠C+∠ABC=180°
【答案】B
【考点】平行线的判定
【解析】【解答】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项不正确;
B、根据内错角相等,两直线平行可得AD∥BC,故此选项符合题意;
C、根据内错角相等,两直线平行可得AB∥CD,故此选项不符合题意;
D、根据同旁内角互补,两直线平行可得AB∥CD,故此选项不符合题意;
故答案为:B
【分析】判断AD∥BC,需要找到直线AD与BC被第三条直线所截形成的同位角、内错角相等,或同旁内角互补来判定.
4、(2分)若k< <k+l(k是整数),则k的值为()
A.6
B.7
C.8
D.9
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵64<80<81,
∴8<<9,
又∵k<<k+1,
∴k=8.
故答案为:C.
【分析】由64<80<81,开根号可得8<<9,结合题意即可求得k值.
5、(2分)下列说法中,正确的是()
①②一定是正数③无理数一定是无限小数
④16.8万精确到十分位⑤(﹣4)2的算术平方根是4.
A. ①②③
B. ④⑤
C. ②④
D. ③⑤
【答案】D
【考点】有理数大小比较,算术平方根,近似数及有效数字,无理数的认识
【解析】【解答】解:①∵|-|=,|-|=
∴>
∴-<-,故①错误;
②当m=0时,则=0,因此≥0(m≥0),故②错误;
③无理数一定是无限小数,故③正确;
④16.8万精确到千位,故④错误;
⑤(﹣4)2的算术平方根是4,故⑤正确;
正确的序号为:③⑤
故答案为:D
【分析】利用两个负数,绝对值大的反而小,可对①作出判断;根据算术平方根的性质及求法,可对②⑤作出判断;根据无理数的定义,可对③作出判断;利用近似数的知识可对④作出判断;即可得出答案。
6、(2分)下列说法:
①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,
用式子表示是 =±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()
A. 0个
B. 1个
C. 2个
D. 3个
【答案】D
【考点】实数的运算,实数的相反数,实数的绝对值
【解析】【解答】①实数和数轴上的点是一一对应的,正确;
②无理数不一定是开方开不尽的数,例如π,错误;
③负数有立方根,错误;
④16的平方根是±4,用式子表示是± =±4,错误;
⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确,
则其中错误的是3个,
故答案为:D
【分析】①数轴上的点一定有一个实数和它相对应,任何一个实数都可以用数轴上的点来表示,所以实数和数
轴上的点是一一对应的;
②无理数是无限不循环小数;
③因为负数的平方是负数,所以负数有立方根;
④如果一个数的平方等于a,那么这个数是a的平方根。
根据定义可得16的平方根是±4,用式子表示是=±4;
⑤因为只有0的相反数是0,所以绝对值,相反数,算术平方根都是它本身的数是0.
7、(2分)如图所示,直线L1,L2,L3相交于一点,则下列答案中,全对的一组是()
A. ∠1=90°,∠2=30°,∠3=∠4=60°;
B. ∠1=∠3=90°,∠2=∠4=30°
C. ∠1=∠3=90°,∠2=∠4=60°;
D. ∠1=∠3=90°,∠2=60°,∠4=30°
【答案】D
【考点】对顶角、邻补角
【解析】【解答】解:根据对顶角相等,可知∠2=60°,∠4=30°.
由平角的定义知,∠3=180°-∠2-∠4=90°,所以∠1=∠3=90°.
故答案为:D
【分析】因为∠1和∠3是对顶角,所以相等,∠2和的角,∠4和的角分别是对顶角.
8、(2分)“a<b”的反面是()
A.a≠b
B.a>b
C.a≥b
D.a=b
【答案】C
【考点】命题与定理
【解析】【解答】解:a<b的反面是a=b或a>b,即a≥b.
故答案为:C
【分析】a<b的反面是a=b或a>b,即a≥b.
9、(5分)下列不等式组中,不是一元一次不等式组的是()
(1 )(2)(3)(4)
A.
【答案】A
【考点】一元一次不等式组的定义
【解析】【解答】解:根据一元一次不等式组的概念,可知(1)、(2)、(4)是一元一次不等式组,(3)中含有两个未知数,且最高次数为2,故不是一元一次不等式组.
故答案为:A.
【分析】根据一元一次不等式组的概念判断.由几个含有相同未知数的一元一次不等式所组成的一组不等式叫做一元一次不等式组.
10、(2分)下列四种说法:① x=是不等式4x-5>0的解;② x=是不等式4x-5>0的一个解;
③ x>是不等式4x-5>0的解集;④ x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也是它的解集,其中正确的有()
A.1个
B.2个
C.3个
D.4个
【答案】B
【考点】不等式的解及解集
【解析】【解答】解:①当x=时,不等式4x-5=0,故原命题错误;②当x=时,不等式4x-5=5>
0,故原命题正确;③解不等式4x-5>0得,x>,故原命题正确;④与③矛盾,故错误.故正确的有②和③,故答案为:B.
【分析】解不等式4x-5>0 可得x>,不等式的解是解集中的一个,而不等式的解集包含了不等式的所
有解,①x=不在x>的范围内;②x=在x>的范围内;③解不等式4x-5>0 可得x>
;④x>2中任何一个数都可以使不等式4x-5>0成立,但它并不是所有解的集合。
根据以上分析作出判断即可。
11、(2分)利用加减消元法解方程组,下列做法正确的是()
A. 要消去z,先将①+②,再将①×2+③
B. 要消去z,先将①+②,再将①×3-③
C. 要消去y,先将①-③×2,再将②-③
D. 要消去y,先将①-②×2,再将②+③
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:利用加减消元法解方程组,要消去z,先将①+②,再将①×2+③,要消去y,先将①+②×2,再将②+③.
故答案为:A.
【分析】观察方程组的特点:若要消去z,先将①+②,再将①×2+③,要消去y,先将①+②×2,再将②+③,
即可得出做法正确的选项。
12、(2分)如果关于的不等式的解集为,那么的取值范围是()
A.
B.
C.
D.
【答案】D
【考点】不等式的解及解集
【解析】【解答】解:根据题意中不等号的方向发生了改变,可知利用了不等式的性质3,不等式的两边同时
乘以或除以一个负数,不等号的方向改变,因此可知2a+1<0,解得.
故答案为:D
【分析】先根据不等式的性质②(注意不等式的符号)得出2a+1<0,然后解不等式即可得出答案。
二、填空题
13、(1分)为了奖励数学社团的同学,张老师恰好用100元在网上购买《数学史话》、《趣味数学》两种书(两种书都购买了若干本),已知《数学史话》每本10元,《趣味数学》每本6元,则张老师最多购买了________《数学史话》.
【答案】7本
【考点】二元一次方程的应用
【解析】【解答】解:设张老师购买了x本《数学史话》,购买了y本《趣味数学》,
根据题意,得:10x+6y=100,
当x=7时,y=5;当x=4时,y=10;
∴张老师最多可购买7本《数学史话》,
故答案为:7本。
【分析】等量关系为:《数学史话》的数量×单价+《趣味数学》的数量×单价=100,设未知数列方程,再求出这个不定方程的正整数解,就可得出张老师最多可购买《数学史话》的数量。
14、(1分)是二元一次方程ax+by=11的一组解,则2017﹣2a+b=________.
【答案】2028
【考点】代数式求值,二元一次方程的解
【解析】【解答】解:∵是二元一次方程ax+by=11的一组解,
∴代入得:﹣2a+b=11,
∴2017﹣2a+b=2017+11=2028,
故答案为:2028.
【分析】将二元一次方程的解代入方程,求出﹣2a+b的值,再整体代入求值。
15、(2分)若方程的解中,x、y互为相反数,则________, ________
【答案】;-
【考点】解二元一次方程组
【解析】【解答】解:∵x、y互为相反数,
∴y=-x,
将y=-x代入方程
得2x+x=
解得x=
所以y=- .
故答案是:,- .
【分析】根据x、y互为相反数得出y=-x,然后用-x替换方程中的y,即可得出关于x的方程,求解得出x的值,进而得出y的值。
16、(1分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数=________.
【答案】-2
【考点】解二元一次方程组
【解析】【解答】解:把x=5代入2x-y=12得2×5-y=12,解得y=-2.
∴★为-2.
故答案为-2.
【分析】将x=5代入两方程,就可求出结果。
17、(1分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看
错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:将代入②得,﹣12+b=﹣2,b=10;
将代入①,5a+20=15,a=﹣1.
故原方程组为,
解得.
故答案为:.
【分析】甲看错了方程①中的a 但没有看错b,所以可把x=-3和y=-1代入方程②得到关于b的方程,激发出可求得b的值;乙看错了方程组②中的b 但没有看错a,所以把x=5和y=4代入①可得关于a的方程,解方程可求得a的值;再将求得的a、b的值代入原方程组中,解这个新的方程组即可求解。
18、(3分)同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a ________c .若a∥b,b∥c,则a ________c .若a∥b,b⊥c,则a ________c.
【答案】∥;∥;⊥
【考点】平行公理及推论
【解析】【解答】解:∵a⊥b,b⊥c,
∴a∥c;
∵a∥b,b∥c,
∴a∥c;
∵a∥b,b⊥c,
∴a⊥c.
故答案为:∥;∥;⊥.
【分析】根据垂直同一条直线的两条直线平行可得a∥c;
根据平行于同一条直线的两条直线平行可得a∥c;
根据垂直同一条直线的两条直线平行逆推即可.
三、解答题
19、(5分)如图,AB∥CD.证明:∠B+∠F+∠D=∠E+∠G.
【答案】证明:作EM∥AB,FN∥AB,GK∥AB,
∵AB∥CD,
∴AB∥ME∥FN∥GK∥CD,
∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6,
又∵∠E+ ∠G=∠1+∠2+∠5+∠6,
∠B+ ∠F+ ∠D=∠B+ ∠3+∠4+ ∠D,
∴∠B+ ∠F+ ∠D=∠E+ ∠G.
【考点】平行公理及推论,平行线的性质
【解析】【分析】作EM∥AB,FN∥AB,GK∥AB,根据平行公理及推论可得AB∥ME∥FN∥GK∥CD,再由平行线性质得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,相加即可得证.
20、(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
21、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
22、(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC 于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
23、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值. 【答案】解:由题意可知:
把代入,得,
,
,
把代入,得,
,
∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。
24、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求
∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据求得∠BOD。
25、(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。
26、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。