2020年中考数学必须掌握的138个考点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学必须掌握的138个考点
初中数学中几何体常常是很多女生的拦路虎,究其原因出了女生的空间想象力弱一点意外,主要的原因还是几何公式记忆不够熟悉。

所以,想要搞定几何题还是要记熟公式。

初中几何公式定理:线
1、同角或等角的余角相等
2、过一点有且只有一条直线和已知直线垂直
3、过两点有且只有一条直线
4、两点之间线段最短
5、同角或等角的补角相等
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、定理线段垂直平分线上的点和这条线段两个端点的距离相等
10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
12、定理1关于某条直线对称的两个图形是全等形
13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
初中几何公式定理:角
16、同位角相等,两直线平行
17、内错角相等,两直线平行
18、同旁内角互补,两直线平行
19、两直线平行,同位角相等
20、两直线平行,内错角相等
21、两直线平行,同旁内角互补
22、定理1在角的平分线上的点到这个角的两边的距离相等
23、定理2到一个角的两边的距离相同的点,在这个角的平分线上
24、角的平分线是到角的两边距离相等的所有点的集合
初中几何公式定理:三角形
25、定理三角形两边的和大于第三边
26、推论三角形两边的差小于第三边
27、三角形内角和定理三角形三个内角的和等于180°
28、推论1直角三角形的两个锐角互余
29、推论2三角形的一个外角等于和它不相邻的两个内角的和
30、推论3三角形的一个外角大于任何一个和它不相邻的内角
31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形
初中几何公式定理:等腰、直角三角形
33、等腰三角形的性质定理等腰三角形的两个底角相等
34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
35、等腰三角形的顶角平分线、底边上的中线和高互相重合
36、推论3等边三角形的各角都相等,并且每一个角都等于60°
37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
38、推论1三个角都相等的三角形是等边三角形
39、推论2有一个角等于60°的等腰三角形是等边三角形
40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
41、直角三角形斜边上的中线等于斜边上的一半
初中几何公式定理:相似、全等三角形
42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
43、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
45、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
46、判定定理3三边对应成比例,两三角形相似(SSS)
47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
48、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
49、性质定理2相似三角形周长的比等于相似比
50、性质定理3相似三角形面积的比等于相似比的平方
51、边角边公理有两边和它们的夹角对应相等的两个三角形全等
52、角边角公理有两角和它们的夹边对应相等的两个三角形全等
53、推论有两角和其中一角的对边对应相等的两个三角形全等
54、边边边公理有三边对应相等的两个三角形全等
55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等
56、全等三角形的对应边、对应角相等
初中几何公式定理:四边形
57、定理四边形的内角和等于360°
58、四边形的外角和等于360°
59、多边形内角和定理n边形的内角的和等于(n-2)×180°
60、推论任意多边的外角和等于360°
61、平行四边形性质定理1平行四边形的对角相等
62、平行四边形性质定理2平行四边形的对边相等
63、推论夹在两条平行线间的平行线段相等
64、平行四边形性质定理3平行四边形的对角线互相平分
65、平行四边形判定定理1两组对角分别相等的四边形是平行四边形
66、平行四边形判定定理2两组对边分别相等的四边形是平行四边形
67、平行四边形判定定理3对角线互相平分的四边形是平行四边形
68、平行四边形判定定理4一组对边平行相等的四边形是平行四边形
初中几何公式定理:矩形
69、矩形性质定理1矩形的四个角都是直角
70、矩形性质定理2矩形的对角线相等
71、矩形判定定理1有三个角是直角的四边形是矩形
72、矩形判定定理2对角线相等的平行四边形是矩形
初中几何公式:菱形
73、菱形性质定理1菱形的四条边都相等
74、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
75、菱形面积=对角线乘积的一半,即S=(a×b)÷2
76、菱形判定定理1四边都相等的四边形是菱形
77、菱形判定定理2对角线互相垂直的平行四边形是菱形
初中几何公式定理:正方形
78、正方形性质定理1正方形的四个角都是直角,四条边都相等
79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
80、定理1关于中心对称的两个图形是全等的
81、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
初中几何公式定理:等腰梯形
83、等腰梯形性质定理等腰梯形在同一底上的两个角相等
84、等腰梯形的两条对角线相等
85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
86、对角线相等的梯形是等腰梯形
初中几何公式:等分
87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
88、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
89、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
92、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b
95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
初中几何公式:圆
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理不在同一直线上的三个点确定一条直线
110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r
122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理圆的切线垂直于经过切点的半径
124、推论1经过圆心且垂直于切线的直线必经过切点
125、推论2经过切点且垂直于切线的直线必经过圆心
126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理弦切角等于它所夹的弧对的圆周角
129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)
136定理相交两圆的连心线垂直平分两圆的公共弦
137、定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
2019-2020学年数学中考模拟试卷
一、选择题
1.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )
A .4.25分钟
B .4.00分钟
C .3.75分钟
D .3.50分钟
2.天津市委市政府决定在滨海新区和中心城区中间地带实施规划管控建设绿色生态屏障.全市绿色生态屏障规划面积约736000000平方米,将736000000用科学记数法可表示为( )
A. B.
C. D. 3.如图,P 是抛物线24y x x =--在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、
B ,则四边形OAPB 周长的最大值为( )
A.10
B.8
C.7.5
D.53
4.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是( ).
A .22
B .2π
C .2
π D .2π
5.如图,线段AB 是两个端点在2(0)y x x
=>图象上的一条动线段,且1AB =,若A B 、的横坐标分别为a b 、,则()()22214b a a b ⎡⎤⎣⎦
--+的值是( )
A .1
B .2
C .3
D .4
6.如图,将长16cm ,宽8cm 的矩形纸片ABCD 折叠,使点A 与点C 重合,则折痕EF 的长为( )cm .
A .6
B .45
C .10
D .25
7.如图,一次函数y 1=k 1x+b 1与反比例函数22k y x
=
的图象交于点A (1,3),B (3,1)两点,若y 1<y 2,则x 的取值范围是( )
A .x <1
B .x <3
C .0<x <3
D .x >3或0<x <1
8.2016年西峡香菇年出口值达到4380000000亿元,成为国内最大的干香菇出口货源集散中心.其中数学4380000000用科学记数法表示为( )
A .743810⨯
B .84.3810⨯
C .94.3810⨯
D .104.3810⨯
9.如图,∠AOB =45°,OC 是∠AOB 的角平分线,PM ⊥OB ,垂足为点M ,PN ∥OB ,PN 与OA 相交于点N ,那么PM PN
的值等于( )
A .12
B .22
C .32
D .33
10.如图,菱形ABCD 的边长为1,点M 、N 分别是AB 、BC 边上的中点,点P 是对角线AC 上的一
个动点,则MP PN
+的最小值是()
A.1
2
B.1 C.2D.2
11.下列说法中,正确的是()
A.为检测某市正在销售的酸奶质量,应该采用普查的方式
B.若两名同学连续六次数学测试成绩的平均分相同,则方差较大的同学的数学成绩更稳定
C.抛掷一个正方体骰子,朝上的面的点数为偶数的概率是1 2
D.“打开电视,正在播放广告”是必然事件
12.如图,BD为⊙O的直径,AC为⊙O的弦,AB=AC,AD交BC于点E,AE=2,ED=4,延长DB到点F,使得BF=BO,连接FA.则下列结论中不正确的是()
A.△ABE∽△ADB B.∠ABC=∠ADB
C.AB=33D.直线FA与⊙O相切
二、填空题
13.分解因式:269
mx mx m
-+=_____.
14.在正数范围内定义一种运算“△”,其规则是a△b=11
+
a b
,根据这一规则,方程x△(x+1)=
2
3

解是______.
15.如图,矩形ABCD中,AB=5,BC=8,点E、G为直线BC上两个动点,BE=CC,连接AE,将△ABE沿AE折叠,将△DCC沿DG折叠,当对应点F和H重合时,BE的长为_____.
16.关于 x 的一元二次方程(a﹣1)x2﹣2x+3=0 有实数根,则整数 a 的最大值是_____________.17.如图,已知AB是⊙O的直径,弦CD与AB相交,若∠BCD=24°,则∠ABD的度数为___度.
18.若代数式
2
4
x
x
-
-
的值是2,则x=_____.
三、解答题
19.解不等式组,并把解集在数轴上表示出来:
3(2)4 12
1
3
x x
x
x
--


+

>-⎪⎩

20.如图,反比例函数y=2
x
的图象和一次函数的图象交于A、B两点,点A的横坐标和点B的纵坐标都
是1.
(1)在第一象限内,写出关于x的不等式kx+b≥2
x
的解集;
(2)求一次函数的表达式;
(3)若点P(m,n)在反比例函数图象上,且关于y轴对称的点Q恰好落在一次函数的图象上,求m2+n2的值.
21.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.
(1)该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;
(2)将条形统计图补充完整;
(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?
22.如图,点A、B、C、D依次在同一条直线上,点E、F分别在直线AD的两侧,已知BE∥CF,∠A=∠D,AE=DF.
(1)求证:四边形BFCE是平行四边形;
(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是.
23.如图所示,在建筑物顶部有一长方形广告牌架CDEF ,已知CD=2m ,在地面上A 处测得广告牌架上端C 的仰角为37︒,前进10m 到达B 处,在B 处测得广告牌架下端D 的仰角为60︒,求广告牌架下端D 到地面的距离(结果精确到0.1m ).(参考数据:tan370.75︒≈,3取1.73)
24.已知:a 、b 、c 满足2(8)5|32|0a b c -+-+-=
求:(1)a 、b 、c 的值;
(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
25.2018年底我市新湖一路贯通工程圆满竣工,若要在宽为40米的道路AD 两边安装路灯,灯柱AB 高10米,路灯的灯臂BC 与灯柱AB 成130°角,路灯采用圆锥形灯罩,灯罩的轴线CO 与灯臂BC 垂直,当灯罩的轴线CO 通过公路的中心线时照明效果最好,此时路灯的灯臂BC 应为多少米?(结果精确到0.01) (参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
【参考答案】***
一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 C B A D D B D C B B
C C
二、填空题
13.m(x-3)2
14.x =1
15.5.
16.0
17.66
18.6
三、解答题
19.x≤1,见解析.
【解析】
【分析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解不等式x﹣3(x﹣2)≥4,得:x≤1,
解不等式1+2
3
x
>x﹣1,得:x<4,
则不等式组的解集为x≤1,
将不等式组的解集表示在数轴上如下:
【点睛】
本题考查的是解一元一次不等式(组),正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
20.(1)1≤x≤2;(2)y=﹣x+3;(3)13.
【解析】
【分析】
(1)根据题意得出A、B点的坐标,根据交点即可求得不等式的解集;
(2)根据待定系数法即可求得一次函数的解析式;
(3)求得Q点的坐标,即可求得n=m+3,则P(m.m+3),即可得出m(m+3)=2,m2+n2=m2+(m+3)2
=2m2+6m+9=2(m2+3m)+9=13.
【详解】
解:(1)∵反比例函数y=2
x
的图象和一次函数的图象交于A、B两点,点A的横坐标和点B的纵坐标都
是1,
∴A(1,2),B(2,1),
∴在第一象限内,不等式kx+b≥2
x
的解集为1≤x≤2,
故答案为1≤x≤2;
(2)设一次函数的解析式为y=kx+b,∵经过A(1,2),B(2,1)点,

2
21
k b
k b
+=


+=

,解得
1
3
k
b
=-


=


∴一次函数的解析式为y=﹣x+3;
(3)∵点P(m,n),
∴Q(﹣m,n),
∵点P在反比例函数图象上,
∴mn=2
∵点Q恰好落在一次函数的图象上,
∴n=m+3,
∴m(m+3)=2,
∴m2+3m=2,
∴m2+n2=m2+(m+3)2=2m2+6m+9=2(m2+3m)+9=2×2+9=13.
【点睛】
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.
21.(1)10,144;(2)详见解析;(3)96
【解析】
【分析】
(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;
(2)依据D类型留守学生的数量,即可将条形统计图补充完整;
(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】
解:(1)2÷20%=10(人),
4
10
×100%×360°=144°,
故答案为:10,144;
(2)10﹣2﹣4﹣2=2(人),
如图所示:
(3)2400×
2
10
×20%=96(人),
答:估计该校将有96名留守学生在此关爱活动中受益.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
22.(1)详见解析;(2)23 【解析】 【分析】
(1)证明△ABE ≌△DCF ,继而得到BE =CF ,再结合BE//CF 即可解决问题.
(2)利用全等三角形的性质证明AB =CD ,由菱形的性质求出EF 的长,即可解决问题. 【详解】 (1)∵BE ∥CF , ∴∠EBC =∠FCB , ∴∠EBA =∠FCD , 在△ABE 和△DCF 中,
A D EBA FCD AE DF ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△ABE ≌△DCF(AAS), ∴BE =CF , 又∵BE//CF ,
∴四边形BFCE 是平行四边形; (2)连接EF 交BC 于O ,如图所示: ∵△ABE ≌△DCF , ∴AB =CD ,
∵AD =7,AB =DC =2.5, ∴BC =AD ﹣AB ﹣DC =2,
∵四边形BFCE 是菱形,∠EBD =60°,EF ⊥BC ,OB =1
2
BC =1,OE =OF , ∴△CBE 是等边三角形,∠BEO =30°, ∴BE=BC =2,
∴OE =222221BE BO -=-=3, ∴EF =23, ∴菱形BFCE 的面积=12BC×EF=1
2
×2×23=23, 故答案为:23.
【点睛】
本题考查菱形的性质,全等三角形的判定和性质,平行四边形的判定等知识,熟练掌握相关知识是解题的关键.
23.广告牌架下端D到地面的距离约为9.7米.
【解析】
【分析】
过点D作DH⊥AB,垂足为H,设DH=x,在Rt△DBH中,利用∠DBH的正切,用x表示出BH的长,在Rt△AHC中,利用∠A的正切列关于x的方程,求出x的值即可.
【详解】
过点D作DH⊥AB,垂足为H.
设DH=x
在Rt DBH中,DBH=60
∠︒,

DH
DBH=
BH tan∠,

x
3=
BH
.
∴3
BH=x
3
.
在Rt AHC中,A=37
∠.

CH
A=
AH tan∠,
得32x 43
10x
3
+

+

22 x=
43
-
≈9.7.
答:广告牌架下端D到地面的距离约为9.7米.
【点睛】
本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键. 24.(1)a=22,b=5,c=32;(2)能,52+5.
【解析】
【分析】
(1)根据非负数的性质列式求解即可;
(2)根据三角形的任意两边之和大于第三边进行验证即可.
【详解】
解:(1)根据题意得,a-8=0,b-5=0,c-32=0,
解得a=22,b=5,c=32;
(2)能.
∵22+32=52>5,
∴能组成三角形,
三角形的周长=22+5+32=52+5.
【点睛】
本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,三角形的三边关系.
25.02
【解析】
【分析】
延长CB、OA交于点E,根据锐角三角函数的定义即可求出BE与CE的长度,然后根据BC=CE﹣BE即可求出答案.
【详解】
解:延长CB、OA交于点E,
∵∠ABC=130°,
∴∠E=40°,
∵AB=10,
在Rt△ABE中,
∴sin40°=AB BE

∴BE=15.625,
∴由勾股定理可知:AE≈12.00,∵OA=20,
∴OE=12+20=32,
在Rt△OEC中,
∴cos40°=CE OE

∴CE≈24.64,
∴BC≈24.64﹣15.625≈9.02.
【点睛】
本题主要考查三角函数的应用,关键在于构造直角三角形,根据特殊的三角函数值进行计算.
2019-2020学年数学中考模拟试卷一、选择题
1.不等式组
2
14(1)
x x
x x
-


--

的解集为()
A.x>0 B.x>1 C.无解D.0<x<1
2.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数
y=c
x
在同一平面直角坐标系中的图象可能是()
A. B.C.D.
3.如图,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为( )
A.1
3
π﹣
3
2
B.
1
3
π﹣3C.
2
3
π﹣
3
2
D.
2
3
π﹣3
4.如图所示的几何体的主视图是()
A. B.
C. D.
5.如图,将△ABC绕点C旋转60°得到△A′B′C,已知AC=7,BC=5,则线段AB扫过的图形面积为()
A. B.
C.4
D.
6.估算在哪两个整数之间()
A.0和1
B.1和2
C.2和3
D.3和4
7.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()
A.(1+x)2=11
10
B.(1+x)2=
10
9
C.1+2x=11
10
D.1+2x=
10
9
8.如图,△ABC中,AB=AC=2,BC=2,D点是△ABC所在平面上的一个动点,且∠BDC=60°,则△DBC面积的最大值是( )
A.3
B.3
C.
D.2
9.如图,正△ABC内接于⊙O,将△ABC绕点O顺时针旋转20°得到△DEF,若⊙O半径为3,则DB的长为()
A.5
3
πB.2πC.
7
3
πD.
8
3
π
10.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是()
A .10
B .5
C .22
D .3
11.现有一组数据:3、4、5、5、6、6、6、6、7,若去掉其中一个数6则不受影响的是( ) A .众数
B .中位数
C .平均数
D .众数和中位数
12.将一副三角板按如图所示方式摆放,点D 在AB 上,AB ∥EF ,∠A =30°,∠F =45°,那么∠1等于( )
A .75°
B .90°
C .105°
D .115°
二、填空题
13.某公司向银行申请了甲 、乙两种贷款,共计68万元,每年需付出8.42万元利息。

已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司甲、乙两种贷款的数额分别为_____________. 14.两个无理数的和为有理数,这两个无理数可以是______和_______.
15.如图,在平面直角坐标系xOy 中,已知抛物线y =﹣x (x ﹣3)(0≤x≤3)在x 轴上方的部分,记作1C ,它与x 轴交于点O ,1A ,将1C 绕点1A 旋转180°得2C ,2C 与x 轴交于另一点2A .请继续操作并探究:将2C 绕点2A 旋转180°得3C ,与x 轴交于另一点3A ;将3C 绕点3A 旋转180°得4C ,与x 轴交于另一点4A ,这样依次得到x 轴上的点1A ,2A ,3A ,…,n A ,…,及抛物线1C ,2C ,…,n C ,…则n C 的顶点坐标为_____.
16.将数67500用科学记数法表示为____________. 17.若(x+2)(x ﹣1)=x 2+mx ﹣2,则m =_____. 18.把多项式224m n -因式分解的结果是______. 三、解答题
19.如图,在Rt △ABC 中,∠C =90°,EF ⊥AB 于点F ,交AC 于点E ,且AF =BF ,若AB =10,3
sin 5
A =.求线段EF 长.
20.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
21.求不等式组
3(1)253
1
34
2
x x
x
x x
-++


⎨-
+≥-
⎪⎩

的解集,并将解集在数轴上表示出来.
22.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民
节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示
.
(1)补全统计图;
(2)计算这100户居民3月份较2月份的平均节水量;
(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨? 23.为在中小学生中普及交通法规常识,倡导安全出行,某市教育局在全市范围内组织七年级学生进行了一次“交规记心间”知识竞赛.为了解市七年级学生的竟赛成绩,随机抽取了若干名学生的竞赛成绩(成绩为整数,满分100分),进行统计后,绘制出如下频数分布表和如图所示的频数分布直方图(频数分布直方图中有一处错误).
组别(单位:分)频数频率
50.5~60.5 20 0.1
60.5~70.5 40 0.2
70.5~80.5 70 b。

相关文档
最新文档