本溪市高中2019-2020学年高二上学期第一次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本溪市高中2019-2020学年高二上学期第一次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,则|PQ|的最小值为()
A.1 B.C.D.2
2.已知椭圆(0<b<3),左右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点,若|AF2|+|BF2|的最大值为8,则b的值是()
A.B.C.D.
3.“方程+=1表示椭圆”是“﹣3<m<5”的()条件.
A.必要不充分B.充要C.充分不必要D.不充分不必要
4.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则△AOF的面积为()
A.B.C.D.2
5.如图,正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为()
A.0°B.45°C.60°D.90°
6.已知集合{}
ln(12)
A x y x
==-,{}
2
B x x x
=≤,全集U A B
=,则()
U
C A B=()(A)(),0
-∞(B )1,1
2
⎛⎤
- ⎥
⎝⎦
(C)()
1
,0,1
2
⎡⎤
-∞⋃⎢⎥
⎣⎦
(D)
1
,0
2
⎛⎤
- ⎥
⎝⎦
7.设
n
S是等比数列{}
n
a的前项和,
42
5
S S
=,则此数列的公比q=()
A.-2或-1 B.1或2 C.1±或2 D.2±或-1 8.设集合()
{,|,,1
A x y x y x y
=--是三角形的三边长},则A所表示的平面区域是()
A .
B .
C .
D . 9. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( ) A .y=x ﹣4 B .y=2x ﹣3 C .y=﹣x ﹣6 D .y=3x ﹣2
10.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( ) A .{5,8} B .{7,9}
C .{0,1,3}
D .{2,4,6}
11.是首项,公差的等差数列,如果
,则序号等于( )
A .667
B .668
C .669
D .670 12.过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )
A .x ﹣2y+7=0
B .2x+y ﹣1=0
C .x ﹣2y ﹣5=0
D .2x+y ﹣5=0
二、填空题
13.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= . 14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -m
x
(m ∈R )在区间[1,e]上取得最小值4,则m =________.
15.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________. 16.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________. 17.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .
18.已知数列{}n a 中,11a =,函数32
12()3432
n n a f x x x a x -=-
+-+在1x =处取得极值,则 n a =_________.
三、解答题
19.已知角α的终边在直线y=
x 上,求sin α,cos α,tan α的值.
20.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.
21.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
22.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为
(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).
(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.
23.已知函数f(x)=|2x+1|+|2x﹣3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.
24.设F是抛物线G:x2=4y的焦点.
(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;
(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.
本溪市高中2019-2020学年高二上学期第一次月考试卷数学(参考答案)一、选择题
1.【答案】A
【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,
可知两条曲线是同心圆,如图,|PQ|的最小值为:1.
故选:A.
【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.
2.【答案】D
【解析】解:∵|AF1|+|AF2|=|BF1|+|BF2|=2a=6,|AF2|+|BF2|的最大值为8,
∴|AB|的最小值为4,
当AB⊥x轴时,|AB|取得最小值为4,
∴=4,解得b2=6,b=.
故选:D.
【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.3.【答案】C
【解析】解:若方程+=1表示椭圆,则满足,即,
即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,
当m=1时,满足﹣3<m<5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件.即必要性不成立.
故“方程+=1表示椭圆”是“﹣3<m<5”的充分不必要条件.
故选:C.
【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.
4.【答案】B
【解析】解:抛物线y2=4x的准线l:x=﹣1.
∵|AF|=3,
∴点A到准线l:x=﹣1的距离为3
∴1+x A=3
∴x A=2,
∴y A=±2,
∴△AOF的面积为=.
故选:B.
【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键.
5.【答案】C
【解析】解:连结A1D、BD、A1B,
∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,
∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,
∵A1D=A1B=BD,
∴∠DA1B=60°.
∴CD1与EF所成角为60°.
故选:C.
【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
6. 【答案】C
【解析】
[]11,,0,1,0,22A B A B ⎛⎫⎡⎫
=-∞== ⎪⎪⎢⎝⎭⎣⎭
,(],1U =-∞,故选C .
7. 【答案】D 【解析】
试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以
422
2
4==-q S S S , 2±=∴q ,故选D.
考点:等比数列的性质. 8. 【答案】A 【解析】

点:二元一次不等式所表示的平面区域.
9. 【答案】A
【解析】解:设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=﹣2,x 12=﹣2y 1,x 22
=﹣2y 2. 两式相减可得,(x 1+x 2)(x 1﹣x 2)=﹣2(y 1﹣y 2) ∴直线AB 的斜率k=1,
∴弦AB 所在的直线方程是y+5=x+1,即y=x ﹣4.
故选A ,
10.【答案】B
【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},
所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},
所以(C U A)∩(C U B)={7,9}
故选B
11.【答案】C
【解析】
由已知,由得,故选C
答案:C
12.【答案】A
【解析】解:由题意可设所求的直线方程为x﹣2y+c=0
∵过点(﹣1,3)
代入可得﹣1﹣6+c=0 则c=7
∴x﹣2y+7=0
故选A.
【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣
2y+c=0.
二、填空题
13.【答案】35.
【解析】解:∵2a n=a n﹣1+a n+1,(n∈N*,n>1),
∴数列{a n}为等差数列,
又a2+a8=6,∴2a5=6,解得:a5=3,
又a4a6=(a5﹣d)(a5+d)=9﹣d2=8,
∴d2=1,解得:d=1或d=﹣1(舍去)
∴a n=a5+(n﹣5)×1=3+(n﹣5)=n﹣2.
∴a1=﹣1,
∴S10=10a1+=35.
故答案为:35.
【点评】本题考查数列的求和,判断出数列{a n}为等差数列,并求得a n=2n﹣1是关键,考查理解与运算能力,属于中档题.
14.【答案】-3e
【解析】f ′(x )=1x +2m x =2
x m x +,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递减,
当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;
若1<-m ≤e ,即-e ≤m<-1时,f (x )
min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3(-e ,-
1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-m e ,令1-m
e
=4,得m =-3e ,符合题意.综上所述,m =-3e. 15.【答案】
【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×9
2×c =200,∴c =4.
答案:4 16.【答案】
【解析】(2a +b )·a =(2,-2+t )·(1,-1) =2×1+(-2+t )·(-1) =4-t =2,∴t =2. 答案:2
17.【答案】 3 .
【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,
∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),
故三角形的面积S=×2×3=3,
故答案为:3.
【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.
18.【答案】1
231n --
【解析】

点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.
【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式.
三、解答题
19.【答案】
【解析】解:直线y=x ,
当角α的终边在第一象限时,在α的终边上取点(1,
),
则sin α=
,cos α=,tan α=

当角α的终边在第三象限时,在α的终边上取点(﹣1,﹣),
则sin α=﹣
,cos α=﹣,tan α=

【点评】本题考查三角函数的定义,涉及分类讨论思想的应用,属基础题.
20.【答案】 【解析】解:根据题意画出图形,如图所示:
当圆心C 1在第一象限时,过C 1作C 1D 垂直于x 轴,C 1B 垂直于y 轴,连接AC 1,
由C 1在直线y=x 上,得到C 1B=C 1D ,则四边形OBC 1D 为正方形,
∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),
在直角三角形ABC
中,根据勾股定理得:AC1=2,
1
则圆C1方程为:(x﹣2)2+(y﹣2)2=8;
当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,
由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),
在直角三角形A′B′C
中,根据勾股定理得:A′C2=2,
2
则圆C1方程为:(x+2)2+(y+2)2=8,
∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.
【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.
21.【答案】
【解析】解:(1)由已知,切点为(2,0),故有f(2)=0,
即4b+c+3=0.①
f′(x)=3x2+4bx+c,由已知,f′(2)=12+8b+c=5.
得8b+c+7=0.②
联立①、②,解得c=1,b=﹣1,
于是函数解析式为f(x)=x3﹣2x2+x﹣2.
(2)g(x)=x3﹣2x2+x﹣2+mx,
g′(x)=3x2﹣4x+1+,令g′(x)=0.
当函数有极值时,△≥0,方程3x2﹣4x+1+=0有实根,
由△=4(1﹣m)≥0,得m≤1.
①当m=1时,g′(x)=0有实根x=,在x=左右两侧均有g′(x)>0,故函数g(x)无极值.
②当m<1时,g′(x)=0有两个实根,
x1=(2﹣),x2=(2+),
x g x g x
极大值
当x=(2﹣)时g(x)有极大值;
当x=(2+)时g(x)有极小值.
【点评】本题考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.
22.【答案】
【解析】解:(Ⅰ)根据直线l的参数方程为(t为参数),
消去参数,得
x+y﹣=0,
直线l的直角坐标方程为x+y﹣=0,
∵圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).
∴(x+)2+(y+)2=r2(r>0).
∴圆C的直角坐标方程为(x+)2+(y+)2=r2(r>0).
(Ⅱ)∵圆心C(﹣,﹣),半径为r,…(5分)
圆心C到直线x+y﹣=0的距离为d==2,
又∵圆C上的点到直线l的最大距离为3,即d+r=3,
∴r=3﹣2=1.
【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识.23.【答案】
【解析】解:(Ⅰ)原不等式等价于或或

解得:<x≤2或﹣≤x≤或﹣1≤x<﹣,
∴不等式f(x)≤6的解集为{x|﹣1≤x≤2}.
(Ⅱ)不等式f(x)﹣>2恒成立⇔+2<f(x)=|2x+1|+|2x﹣3|恒成立⇔
+2<f(x)min恒成立,
∵|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,
∴f(x)的最小值为4,
∴+2<4,
即,
解得:﹣1<a<0或3<a<4.
∴实数a的取值范围为(﹣1,0)∪(3,4).
24.【答案】
【解析】解:(1)设切点.
由,知抛物线在Q点处的切线斜率为,
故所求切线方程为.
即y=x0x﹣x02.
因为点P(0,﹣4)在切线上.
所以,,解得x0=±4.
所求切线方程为y=±2x﹣4.
(2)设A(x1,y1),C(x2,y2).
由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.
因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.
点A,C的坐标满足方程组,
得x2﹣4kx﹣4=0,
由根与系数的关系知,
|AC|==4(1+k2),
因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.
同理可求得|BD|=4(1+),
S ABCD=|AC||BD|==8(2+k2+)≥32.
当k=1时,等号成立.
所以,四边形ABCD面积的最小值为32.
【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.。

相关文档
最新文档