高考物理试卷分类汇编物理带电粒子在磁场中的运动(及答案)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理试卷分类汇编物理带电粒子在磁场中的运动(及答案)含解析
一、带电粒子在磁场中的运动专项训练
1.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为
03mv qB ,虚线MN 右侧电场强度为3mg
q
,重力加速度为g .求:
(1)MN 左侧区域内电场强度的大小和方向;
(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;
(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .
【答案】(1)
mg
q
,方向竖直向上;(2);(3013v .
【解析】 【详解】
(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mg
E q
左=
,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:20
0mv Bv q R
=,
所以轨道半径0
mv R qB
=
; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有0
33AO mv d R =
=;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹
角1260AO
d arcsin R
θ==︒
; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:
;
(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度
003
60y v v sin v =︒=
,水平分速度001602x v v cos v =︒=;
质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间0
23y v v t g
=
=
; 所以质点在P 点的竖直分速度03
2
yP y v v v ==, 水平分速度00031
7322
xP x v qE v v t v g v m g =+
=+⋅=; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度
22
013P yP xP v v v v =+=;
2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:
(1)带电粒子入射速度的大小;
(2)带电粒子在矩形区域内作直线运动的时间;
(3)匀强电场的电场强度大小.
【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB d
m θ
【解析】 【分析】
画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】
(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .
由几何关系可知:cos d R
θ=
洛伦兹力做向心力:20
0v qv B m R
= 解得0cos qBd
v m θ
=
(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d x
θ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θ
θ
=
(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B
解得2qB d
E mcos θ
=
【点睛】
此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理
量;知道粒子作直线运动的条件是洛伦兹力等于电场力.
3.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.
(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;
(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)
(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eU
v v m
=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】
(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=
ne
I t
求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】
(1)对电子经 CA 间的电场加速时,由动能定理得
2211
22
e e U mv mv =
- 解得:22e eU
v v m
=
+(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =
ne I t
224d dN
n N a a
ππ=
=⨯
解得
4alt N
ed
π
=
(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为B.设此轨迹圆的半径为r,则
222
(2)
a r r a
-=+
2
v
Bev m
r
=
解得:
4
3
mv
B
ae
=
4.如图所示,在xOy坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x轴正向、电场强度大小为E的匀强磁场。
一质量为m、电荷量为q的带正电粒子,从x轴上的P点以大小为v0的速度垂直射入电场,不计粒子重力和空气阻力,P、O两点间的距离为
2
2
mv
qE。
(1)求粒子进入磁场时的速度大小v以及进入磁场时到原点的距离x;
(2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。
【答案】(1
2v;
2
mv
qE
(2)
(21)E
B
v
≥
【解析】
【详解】
(1)由动能定理有:
2
22
11
222
mv
qE mv mv
qE
⋅=-
解得:v2v0
设此时粒子的速度方向与y轴负方向夹角为θ,则有co sθ
=0
2
2
v
v
=
解得:θ=45°
根据tan21
x
y
θ=⋅=,所以粒子进入磁场时位置到坐标原点的距离为PO两点距离的两倍,故
2
mv
x
qE
=
(2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x轴相切,如图所示,由几何关系有:
s=R+R sinθ
又:
2
v
qvB m
R
=
解得:
(21)E
B
v
+
=
故
(21)E
B
v
+
≥
5.如图所示,一匀强磁场磁感应强度为B;方向向里,其边界是半径为R的圆,AB为圆的一直径.在A点有一粒子源向圆平面内的各个方向发射质量m、电量-q的粒子,粒子重力不计.
(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.
(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?
(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面
积(结果保留2位有效数字).
【答案】(1)(2)(3)
【解析】
【分析】
(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.
(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.
(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.
【详解】
(1)由得r1=2R
粒子的运动轨迹如图所示,则α=
因为周期.
运动时间.
(2)粒子运动情况如图所示,β=.
r2=R tanβ=R
由得
(3)粒子的轨道半径r3==1.5cm
粒子到达的区域为图中的阴影部分
区域面积为S=πr32+2×π(2r3)2−r32=9.0×10-4m2
【点睛】
本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.
6.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.
()1求粒子运动的速度大小;
()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?
()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?
【答案】(1EqR
m
(2)2
1
2
R;
1
1
n+
;(3)2π
mR
Eq
【解析】
【分析】
【详解】
(1)由题可知,粒子进入静电分析器做圆周运动,则有:
2
mv
Eq
R
=
解得:
EqR v
m =
(2)粒子从D到A匀速圆周运动,轨迹如图所示:
由图示三角形区域面积最小值为:
2
2
R S
= 在磁场中洛伦兹力提供向心力,则有:
2
mv Bqv R
= 得:
mv R Bq
=
设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:
若只碰撞一次,则有:
112R mv R B q
=
= 22mv
R R B q
==
故
2112
B B = 若碰撞n 次,则有:
111R mv R n B q
=
=+ 22mv
R R B q
==
故
2111
B B n =+
(3)粒子在电场中运动时间:
1242R mR
t v Eq
ππ
=
= 在MN 下方的磁场中运动时间:
211122n m mR
t R R v EqR Eq
πππ+=
⨯⨯== 在MN 上方的磁场中运动时间:
232142
R mR
t v Eq ππ=⨯=
总时间:
1232mR
t t t t Eq
π
=++=
7.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:
(1)求带电粒子在磁场中运动的半径r ;
(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;
(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~o o 曲线方程为
222x y R +=(3
0.10.1R m x m =≤≤) 【解析】 【分析】 【详解】
(1)洛伦兹力充当向心力,根据牛顿第二定律可得2
v qvB m r
=,解得0.1r m =
(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,
粒子在电场中运动的加速度qE a m
= 粒子在电场中运动的时间2v t a
= 解得43.310t s -=⨯
(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,
则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,
曲线方程为2
2
x y R += 3
0.1,0.1R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭
【点睛】
带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径
8.如图,平面直角坐标系中,在,y >0及y <-
3
2
L 区域存在场强大小相同,方向相反均平
行于y
轴的匀强电场,在-
3
2
L<y
<0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(
3
2
L,0)进入磁场.在磁场中的运转半径R=
5
2
L (不计粒子重力),求:
(1)粒子到达P2点时的速度大小和方向;
(2)
E
B
;
(3)粒子第一次从磁场下边界穿出位置的横坐标;
(4)粒子从P1点出发后做周期性运动的周期.
【答案】(1)
5
3
v0,与x成53°角;(2)0
4
3
v
;(3)2L;(4)
()
40537
60
L
v
π
+
.
【解析】
【详解】
(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,
由运动学规律知
3
2
L=v0t1,
L=
2
y
v
t1
可得t1=
3
2
L
v,v y=
4
3
v0
故粒子在P2的速度为v22
0y
v v
+=
5
3
v0
设v与x成β角,则tanβ=
y
v
v
=
4
3
,即β=53°;
(2)粒子从P 1到P 2,根据动能定理知qEL =
12mv 2-1
2
mv 02可得 E =2089mv qL
粒子在磁场中做匀速圆周运动,根据qvB =m 2
v R
解得:B =mv qR =05352
m v q L ⨯⨯=023mv qL
解得:
43
v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-3
2
L 直线与Q ′点,可得: P 2O ′=
3253L cos o
=5
2
L =r 故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-
32
L 直线从M 点穿出磁场,由几何关系知M 的坐标x =
3
2
L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=0
32L
v
在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯o =0
37120L
v π 从M 运动到N ,a =qE m =2
89v L
则t 3=
v a =0
158L v 则一个周期的时间T =2(t 1+t 2+t 3)=
()0
4053760L
v π+.
9.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为
q
m
=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。
(1)求粒子打到荧光屏上的位置到A 点的距离;
(2)若撤去磁场在荧光屏左侧某区域加竖直向上匀强电场,电场左右宽度为2r ,场强大小E=1.0×103V/m ,粒子仍打在荧光屏的同一位置,求电场右边界到屏幕MN 的距离。
【答案】(1)0.267m (2)0.867m 【解析】 【详解】
(1)粒子射入O 点时的速度v ,由动能定理得到:2
12
qU m v =
进入磁场后做匀速圆周运动,2
qvB m R
v =
设圆周运动的速度偏向角为α,则联立以上方程可以得到:1
tan
2
2
r R α
=
=,故4tan 3
α=
由几何关系可知纵坐标为y ,则tan y r
α= 解得:4
0.26715
y m m =
=;
(2)粒子在电场中做类平抛运动,Eq ma =,2r vt =,2
112
y at =,y v at = 射出电场时的偏向角为β,tan y v v
β=
磁场右边界到荧光屏的距离为x ,由几何关系1
tan y y x
β-=
,解得:0.867x m =。
10.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.
求:(1)电场强度的大小.
(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.
【答案】22
B qL
E m
=;2B E t t π= 【解析】 【分析】 【详解】
(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,
则有2
0v qv B m R
= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为1
4
圆周,故有2
R =
以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212
E R at =
竖直方向上:0E R v t =
由以上各式,得 22
B qL E m
=且E m
t qB =
(2)因粒子在磁场中由P点运动到Q点的轨迹为1 4
圆周,即
1
42
B
t T
m
qB
π
==所以2
B
E
t
t
π
=
11.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。
a、b两带正电粒子从O点同时分别沿y轴正向、负向运动,已知粒子a质量为m、电量为q、速度大小为v,粒子b质量为2m、电量为2q、速度大小为v/2,粒子b恰好不穿出1区域,粒子a不穿出大圆区域,不计粒子重力,不计粒子间相互作用力。
求:
(1)小圆半径R1;
(2)大圆半径最小值
(3)a、b两粒子从O点出发到在x轴相遇所经过的最短时间t(不考虑a、b在其它位置相遇)。
【答案】(1)1
mv
R
qB
= (2)
2min
(31)mv
R
+
= (3)
14m
qB
π
【解析】
【详解】
解:(1)粒子b在Ⅰ区域做匀速圆周运动,设其半径为
b
r
根据洛伦磁力提供向心力有:
2
2()
2
2
2
b
v
m
v
q B
r
=
由粒子b恰好不穿出Ⅰ区域:12b
R r
=
解得:1
mv
R
qB
=
(2)设a在Ⅰ区域做匀速圆周运动的半径为1a r,
根据洛伦磁力提供向心力有:
2
1a
mv
qvB
r
=
解得: 11a mv
r R qB
=
= 设a 在Ⅱ区域做匀速圆周运动的半径为2a r ,
根据洛伦磁力提供向心力有:2
2
2a mv qv B r •=
解得: 211
22
a mv r R qB =
= 设大圆半径为2R
,由几何关系得:12112
R R R ≥+ 所以,大圆半径最小值为:
2min R ≥
(3)粒子a 在Ⅰ区域的周期为12a m T qB π=
,Ⅱ区域的周期为2a m
T qB
π=
粒子a 从O 点出发回到O 点所经过的最短时间为:1121
13
2
a a a t T T =+ 解得:176a m
t qB
π=
粒子b 在Ⅰ区域的周期为:2b m
T qB
π=
讨论:①如果a 、b 两粒子在O 点相遇,粒子a 经过时间:176a a n m
t nt qB
π== n=1,2,3… 粒子b 经过时间:2b b k m
t kT qB
π==
k=1,2,3… a b t t =时,解得:
726
n
k = 当7k =,12n =时,有最短时间:114m
t qB
π=
②设粒子b 轨迹与小圆相切于P 点,如果a 粒子在射出小圆时与b 粒子在P 点相遇
则有:121
5(218)663a a a a n m t T T n t qB
π+=++= n=1,2,3… 粒子b 经过时间: (21)(21)2b b k T k m
t qB π--=
= k=1,2,3… a b t t =时,解得:218
213
n k +-=
ab 不能相遇
③如果a 粒子在射入小圆时与b 粒子在P 点相遇
则有:1217(2113)2663a a a a n m t T T n t qB
π+=
++= n=1,2,3… 粒子b 经过时间:(21)(21)2b b k T k m
t qB
π--=
= k=1,2,3… a b t t =时,解得:2113
213
n k +-=
ab 不能相遇
a 、
b 两粒子从O 点出发到在x 轴相遇所经过的最短时间为14m
qB
π
12.如图,空间某个半径为R 的区域内存在磁感应强度为B 的匀强磁场,与它相邻的是一对间距为d ,足够大的平行金属板,板间电压为U 。
一群质量为m ,带电量为q 的带正电的粒子从磁场的左侧以与极板平行的相同速度射入磁场。
不计重力,则
(1)离极板AB 距离为
2
R
的粒子能从极板上的小孔P 射入电场,求粒子的速度? (2)极板CD 上多长的区域上可能会有带电粒子击中?
(3)如果改变极板的极性而不改变板间电压,发现有粒子会再次进入磁场,并离开磁场区域。
计算这种粒子在磁场和电场中运动的总时间。
【答案】(1)入射粒子的速度qBR
v m
=
;(2)带电粒子击中的长度为222222
B R d q x mU
=;(3)总时间122m dBR t t t qB U π=+=+ 【解析】 【详解】
(1)洛伦兹力提供向心力,2
mv qvB r
=,解得
mv r qB = 根据作图可解得,能从极板上的小孔P 射入电场,r R = 所以,入射粒子的速度qBR
v m
=
(2)所有进入磁场的粒子都能从P 点射入电场,从最上边和最下边进入磁场的粒子将平行极板进入电场,这些粒子在垂直于电场方向做匀加速直线运动,F qU a m md
=
= 212
d at =
解得2
2md t qU
=
沿极板运动的距离2222B R d q x vt mU ==
有带电粒子击中的长度为222222B R d q x mU
=
(3)能再次进入磁场的粒子应垂直于极板进入电场,在电场中运动的时间
122
v dBR t a U
== 在磁场中运动的时间为22
T
t =,22R m T v qB ππ== 所以2m
t qB
π=
总时间122m
dBR t t t qB
U
π=+=
+
13.如图所示,在x 轴上方有垂直xOy 平面向里的匀强磁场,磁感应强度为B 1=B 0,在x 轴下方有交替分布的匀强电场和匀强磁场,匀强电场平行于y 轴,匀强磁场B 2=2B 0垂直于xOy 平面,图象如图所示.一质量为m ,电量为-q 的粒子在02
3
t t =
时刻沿着与y 轴正方向成60°角方向从A 点射入磁场,20t t =时第一次到达x 轴,并且速度垂直于x 轴经过C 点,C 与原点O 的距离为3L .第二次到达x 轴时经过x 轴上的D 点,D 与原点O 的距离为4L .(不计粒子重力,电场和磁场互不影响,结果用B 0、m 、q 、L 表示)
(1)求此粒子从A 点射出时的速度υ0; (2)求电场强度E 0的大小和方向;
(3)粒子在09t t =时到达M 点,求M 点坐标.
【答案】(1)002qB L v m = (2)202πqB L
E m
= (3)(9L ,3π2-L ) 【解析】
试题分析:(1)设粒子在磁场中做圆周运动的半径为R 1,由牛顿第二定律得
①
根据题意由几何关系可得
②
联立①②得
③
(2)粒子在第一象限磁场中运动的周期设为T 1,可得
④
粒子在第四象限磁场中运动的周期设为T 2,可得
⑤
根据题意由几何关系可得⑥ 由④⑤⑥可得
⑦
⑧
综上可以判断3t 0—4 t 0粒子在第四象限的磁场中刚好运动半个周期,半径为
⑨
由牛顿第二定律得
⑩
2 t 0—
3 t 0,粒子做匀减速直线运动, qE=ma 11
12
综上解得
13
(3)由题意知,粒子在8 t 0时刚在第四象限做完半个圆周运动, x=9L 14
粒子在电场中减速运动的时间为t 0,由运动学公式可得
15
联立③ ⑨⑩1112可解得
16
联立可得M 点的坐标为 (9L ,
) 17
考点:带电粒子在电场及在磁场中的运动.
14.
如图所示,在0≤x ≤a 、0≤y ≤
2
a
范围内有垂直于xy 平面向外的匀强磁场,磁感应强度大小为B .坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xy 平面内,与y 轴正方向的夹角分布在0~90o 范围内.己知粒子在磁场中做圆周运动的半径介于
2
a
到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的: (1)速度的大小;
(2)速度方向与y 轴正方向夹角的正弦.
【答案】(1)6(2)
2aqB
v m
=-;(2)66sin α-= 【解析】 【分析】
(1)根据题意,粒子运动时间最长时,其回旋的角度最大,画出运动轨迹,根据几何关系列出方程求解出轨道半径,再根据洛伦兹力提供向心力得出速度大小;(2)最后离开磁场的粒子,其运动时间最长,即为第一问中轨迹,故可以根据几何关系列出方程求解出其速度方向与y 轴正方向夹角的正弦. 【详解】
设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R ,根据洛伦兹力提供向心力,得
2
v qvB m R
=
解得
mv R qB
=
当
2
a
<R <a 时,在磁场中运动的时间最长的粒子,其轨迹是圆心为C 的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t ,依题意t =4
T
,回旋角度为∠OCA =
π
2
,设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系得 sin 2
a R R α=-
sin cos R a R αα=-
sin 2α+cos 2α=1
解得
62 2R a ⎛⎫=- ⎪ ⎪⎝⎭
62aqB v m ⎛⎫=- ⎪ ⎪⎝⎭ 66
sin 10
α-=
故最后离开磁场的粒子从粒子源射出时的速度大小为622aqB
v m
⎛⎫=-
⎪ ⎪⎝⎭. (2)由第一问可知,最后离开磁场的粒子从粒子源射出时的速度方向与y 轴正方向夹角的正弦为66
sin α-=
.
【点评】
本题关键是画出运动时间最长的粒子的运动轨迹,然后根据几何关系得到轨道半径,再根据洛仑兹力提供向心力得到速度大小.
15.现代科学仪器常利用电场磁场控制带电粒子的运动,如图所示,真空中存在着多层紧密
相邻的匀强电场和匀强磁场,宽度均为d 电场强度为E ,方向水平向左;垂直纸面向里磁
场的磁感应强度为B1,垂直纸面向外磁场的磁感应强度为B2,电场磁场的边界互相平行且与电场方向垂直.一个质量为、电荷量为的带正电粒子在第层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.
(1)求粒子在第2层磁场中运动时速度2v的大小与轨迹半径2r;
(2)粒子从第n层磁场右侧边界穿出时,速度的方向与水平方向的夹角为nθ,试求sin nθ;(3)若粒子恰好不能从第n层磁场右侧边界穿出,试问在其他条件不变的情况下,也进入第n层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之
【答案】(1);(2);(3)见解析;
【解析】
(1)粒子在进入第2层磁场时,经两次电场加速,中间穿过磁场时洛伦兹力不做功,由动能定理,有:
解得:
粒子在第2层磁场中受到的洛伦兹力充当向心力,有:
联立解得:
(2)设粒子在第n层磁场中运动的速度为v n,轨迹半径为r n(下标表示粒子所在层数),
粒子进入到第n层磁场时,速度的方向与水平方向的夹角为,从第n层磁场右侧边界突出时速度方向与水平方向的夹角为,粒子在电场中运动时,垂直于电场线方向的速度分量不变,有:
由图根据几何关系可以得到:
联立可得:
由此可看出,,…,为一等差数列,公差为d,可得:
当n=1时,由下图可看出:
联立可解得:
(3)若粒子恰好不能从第n层磁场右侧边界穿出,则:
,
在其他条件不变的情况下,打印服务比荷更大的粒子,设其比荷为,假设通穿出第n 层磁场右侧边界,粒子穿出时速度方向与水平方向的夹角为,由于,则导致:
说明不存在,即原假设不成立,所以比荷较该粒子大的粒子不能穿出该层磁场右侧边界.
考点:带电粒子在电磁场中的运动。