章贡区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章贡区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为(

A .
B
.15+
C .
D
.15+
15
+
【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.2. 若圆心坐标为的圆在直线上截得的弦长为,则这个圆的方程是( )
()2,1-10x y --
=A . B . ()()2
2
210x y -++=()()22
214x y -++=C . D .()()2
2
218x y -++=()()2
2
2116
x y -++=3. 复数z=
(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于(

A .第一象限
B .第二象限
C .第三象限
D .第四象限
4. 已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( )
A .A ⊆
B B .
C ⊆B C .
D ⊆C D .A ⊆D 5. 已知集合
表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( )
A .
B .
C .
D .
6. 集合,是的一个子集,当时,若有,则称为的一个“孤立{}5,4,3,2,1,0=S A S A x ∈A x A x ∉+∉-11且x A 元素”.集合是的一个子集, 中含4个元素且中无“孤立元素”,这样的集合共有个B S B B B A.4 B. 5 C.6 D.77. 设集合A={x|x 2+x ﹣6≤0},集合B 为函数的定义域,则A ∩B=(

A .(1,2)
B .[1,2]
C .[1,2)
D .(1,2]
8. 把“二进制”数101101(2)化为“八进制”数是(

班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .40(8)
B .45(8)
C .50(8)
D .55(8)
9. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( )
A .M=P
B .P ⊊M
C .M ⊊P
D .M ∪P=R
10.若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣
”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
11.若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( )
A .[﹣,+∞)
B .(﹣∞,﹣]
C .[,+∞)
D .(﹣∞,]
12.年月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20163名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为,,,按分
20350500150层抽样的方法,应从青年职工中抽取的人数为( )A. B. C. D.56710【命题意图】本题主要考查分层抽样的方法的运用,属容易题.
二、填空题
13.抛物线y=4x 2的焦点坐标是 .
14.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 . 
15.已知一个算法,其流程图如图,则输出结果是 .
16.如图是一个正方体的展开图,在原正方体中直线AB 与CD
的位置关系是 .
17.若x ,y 满足约束条件,若z =2x +by (b >0)的最小值为3,则b =________.
{
x +y -5≤0
2x -y -1≥0x -2y +1≤0
)
18.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= . 
三、解答题
19.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.
(1)求B;
(2)若b=2,求△ABC面积的最大值.
20.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG .
(Ⅰ)求证:C是劣弧的中点;
(Ⅱ)求证:BF=FG.
21.求点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标.
22.函数f(x)=sin2x+sinxcosx.
(1)求函数f(x)的递增区间;
(2)当x∈[0,]时,求f(x)的值域.
23.已知函数f(x)=log a(x2+2),若f(5)=3;
(1)求a的值;
(2)求的值;
(3)解不等式f(x)<f(x+2).
24.数列{a n}的前n项和为S n,a1=1,a n+1=2S n+1,等差数列{b n}满足b3=3,b5=9,(1)分别求数列{a n},{b n}的通项公式;
(2)若对任意的n∈N*,恒成立,求实数k的取值范围.
章贡区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1. 【答案】C
【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,且平面
62VE ^,如图所示,所以此四棱锥表面积为
ABCD 1S =262´
´
´1123+22622
´´´´´,故选C

15=+46
46
10
10
1
1
32
6
E V
D C
B
A
2. 【答案】B 【解析】

点:圆的方程.1111]3.
【答案】C 【解析】解:z=
=
=
=
+
i ,
当1+m >0且1﹣m >0时,有解:﹣1<m <1;当1+m >0且1﹣m <0时,有解:m >1;当1+m <0且1﹣m >0时,有解:m <﹣1;当1+m <0且1﹣m <0时,无解;故选:C .
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题. 
4. 【答案】B
【解析】解:因为菱形是平行四边形的特殊情形,所以D ⊂A ,矩形与正方形是平行四边形的特殊情形,所以B ⊂A ,C ⊂A ,
正方形是矩形,所以C⊆B.
故选B.
5.【答案】D
【解析】解:作出不等式组对应的平面区域如图,
则对应的区域为△AOB,
由,解得,即B(4,﹣4),
由,解得,即A(,),
直线2x+y﹣4=0与x轴的交点坐标为(2,0),
则△OAB的面积S==,
点P的坐标满足不等式x2+y2≤2区域面积S=,
则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,
故选:D
【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据几何概型的概率公式进行求解. 
6.【答案】C
【解析】
试题分析:根据题中“孤立元素”定义可知,若集合B中不含孤立元素,则必须没有三个连续的自然数存在,
所有B 的可能情况为:,,,,,共6个。

故{}0,1,3,4{}0,1,3,5{}0,1,4,5{}0,2,3,5{}0,2,4,5{}1,2,4,5选C 。

考点:1.集合间关系;2.新定义问题。

7. 【答案】D
【解析】解:A={x|x 2+x ﹣6≤0}={x|﹣3≤x ≤2}=[﹣3,2],要使函数y=
有意义,则x ﹣1>0,即x >1,
∴函数的定义域B=(1,+∞),则A ∩B=(1,2],故选:D .
【点评】本题主要考查集合的基本运算,利用函数成立的条件求出函数的定义域y 以及利用不等式的解法求出集合A 是解决本题的关键,比较基础 
8. 【答案】D
【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D .
9. 【答案】B
【解析】解:P={x|x=3},M={x|x >1};∴P ⊊M .故选B . 
10.【答案】B
【解析】解:若f (x )的图象关于x=对称,
则2×
+θ=
+k π,
解得θ=﹣+k π,k ∈Z ,此时θ=﹣
不一定成立,
反之成立,
即“f (x )的图象关于x=对称”是“θ=﹣”的必要不充分条件,
故选:B
【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键. 
11.【答案】B
【解析】解:∵函数y=x2+(2a﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,
故2≤
解得a≤﹣
故选B.
12.【答案】C
二、填空题
13.【答案】 .
【解析】解:由题意可知∴p=
∴焦点坐标为
故答案为
【点评】本题主要考查抛物线的性质.属基础题.
14.【答案】 存在x∈R,x3﹣x2+1>0 .
【解析】解:因为全称命题的否定是特称命题,
所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.
故答案为:存在x∈R,x3﹣x2+1>0.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系.
15.【答案】 5 .
【解析】解:模拟执行程序框图,可得
a=1,a=2
不满足条件a2>4a+1,a=3
不满足条件a2>4a+1,a=4
不满足条件a2>4a+1,a=5
满足条件a2>4a+1,退出循环,输出a的值为5.
故答案为:5.
【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.
16.【答案】 异面 .
【解析】解:把展开图还原原正方体如图,
在原正方体中直线AB与CD的位置关系是异面.
故答案为:异面.
17.【答案】
【解析】
约束条件表示的区域如图,
当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.
答案:1
18.【答案】 4 .
【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1
所以f(1)+f′(1)=3+1=4.
故答案为4.
【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).
三、解答题
19.【答案】
【解析】(本小题满分12分)
解:(1)∵bsinA=,
由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,
∴B=…
(2)△ABC的面积.
由已知及余弦定理,得.
又a2+c2≥2ac,
故ac≤4,当且仅当a=c时,等号成立.
因此△ABC面积的最大值为…
20.【答案】
【解析】解:(I)∵CF=FG
∴∠CGF=∠FCG
∴AB圆O的直径

∵CE⊥AB


∴∠CBA=∠ACE
∵∠CGF=∠DGA

∴∠CAB=∠DAC
∴C为劣弧BD的中点
(II)∵
∴∠GBC=∠FCB
∴CF=FB
同理可证:CF=GF
∴BF=FG
【点评】本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB是圆O的直径,CE⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.
21.【答案】
【解析】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),
则线段A′A的中点B(,),
由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0 ①.
再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1 ②,
解①②做成的方程组可得:
m=﹣,n=,
故点A′的坐标为(﹣,).
【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.
22.【答案】
【解析】解:(1)…(2分)令解得…
f(x)的递增区间为…(6分)
(2)∵,∴…(8分)
∴,∴…(10分)
∴f(x)的值域是…(12分)
【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.
23.【答案】
【解析】解:(1)∵f(5)=3,
∴,
即log a27=3
解锝:a=3…
(2)由(1)得函数,
则=…
(3)不等式f(x)<f(x+2),
即为
化简不等式得…
∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.
∴x2+2<x2+4x+6…
即4x>﹣4,
解得x>﹣1,
所以不等式的解集为:(﹣1,+∞)…
24.【答案】
【解析】解:(1)由a n+1=2S n+1①
得a n=2S n﹣1+1②,
①﹣②得a n+1﹣a n=2(S n﹣S n﹣1),
∴a n+1=3a n(n≥2)
又a2=3,a1=1也满足上式,
∴a n=3n﹣1;
b5﹣b3=2d=6∴d=3
∴b n=3+(n﹣3)×3=3n﹣6;
(2),
∴对n∈N*恒成立,
∴对n∈N*恒成立,
令,,
当n≤3时,c n>c n﹣1,当n≥4时,c n<c n﹣1,

所以实数k的取值范围是
【点评】已知数列的项与前n项和间的递推关系求数列的通项,一般通过仿写作差的方法得到数列的递推关系,再据递推关系选择合适的求通项方法.。

相关文档
最新文档