深圳沙井中学八年级数学上册第十二章《全等三角形》阶段练习(专题培优)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图,在ABC 中,ABC 的面积为10,4AB =,BD 平分ABC ∠,E 、F 分别为BC 、BD 上的动点,则CF EF +的最小值是( )
A .2
B .3
C .4
D .5 2.如图,OM 、ON 、OP 分别是AOB ∠,BOC ∠,AOC ∠的角平分线,则下列选项
成立的( )
A .AOP MON ∠>∠
B .AOP MON ∠=∠
C .AOP MON ∠<∠
D .以上情况都有可能 3.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长
是8,则点O 到边BC 的距离是( )
A .1
B .2
C .3
D .4
4.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )
A .EF E
B = B .EA E
C = C .AF CB =
D .AF
E B ∠=∠ 5.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,
F ,下列结论错误的是( )
A .PC PD =
B .O
C O
D = C .CPO DPO ∠=∠ D .PC P
E =
6.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )
A .m =2n
B .2m =n
C .m =n
D .m =-n 7.下列四个命题中,真命题是( )
A .如果 ab =0,那么a =0
B .面积相等的三角形是全等三角形
C .直角三角形的两个锐角互余
D .不是对顶角的两个角不相等
8.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )
A .1组
B .2组
C .3组
D .4组
9.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )
A .甲和乙
B .乙和丙
C .只有丙
D .只有乙 10.已知如图,AC ⊥BC ,D
E ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )
A .BD +ED =BC
B .DE 平分∠ADB
C .A
D 平分∠EDC D .ED +AC >AD 11.下列说法正确的是( )
①近似数232.610⨯精确到十分位;
②在2,()2--,38-,2--中,最小的是38-;
③如图所示,在数轴上点P 所表示的数为15-+;
④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;
⑤如图,在ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点.
A .1
B .2
C .3
D .4
12.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:
①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )
A .①②③
B .①③④
C .①②④
D .①②③④ 13.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠
E ,则下列条件:①AB=DE ;②AC=D
F ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )
A .①②
B .①③
C .②③
D .③④ 14.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )
A .5:4
B .5:3
C .4:3
D .3:4
15.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条
件,其中能使ABC AED ≌
△△的条件有( )
A .2个
B .3个
C .4个
D .5个
二、填空题
16.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.
17.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____
18.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.
19.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.
20.如图,线段AB ,CD 相交于点O ,AO=BO ,添加一个条件, 能使AOC BOD ≅,所添加的条件的是___________________________.
21.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,若12AB =,4CD =,则ABD △ 的面积为__________.
22.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.
23.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.
24.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是_____.
25.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.
26.如图,ABC ∆的两条高AD 、CE 交于点H ,已知6EH EB ==,8AE =,则ACH ∆的面积为______.
三、解答题
27.如图,已知A ABC ∠=∠,D CBD ∠=∠,ABD CBD ∠=∠,点E 在BC 的延长线上.
求证:CD 平分ACE ∠.
28.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.
29.如图,在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒,点A 、E 、B 、D 在同一直线上,BC 、EF 交于点M ,AC DF =,AB DE =. 求证:(1)CBA FED ∠=∠;
(2)AM DM =.
30.如图,A 、D 、F 、B 在同一直线上,EF ∥CD ,AE ∥BC ,且AD =BF . 求证:AE =BC。

相关文档
最新文档