(易错题精选)初中数学命题与证明的基础测试题及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(易错题精选)初中数学命题与证明的基础测试题及答案解析
一、选择题
1.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12
l l P ,直线23l l P ,那 么13
l l P .其中真命题的序号是( ) A .①②
B .①③
C .②③
D .①②③
【答案】B
【解析】
【分析】
利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.
【详解】
解:①直角三角形的两个锐角互余,正确,是真命题;
②两直线平行,同旁内角互补,故错误,是假命题; ③如果直线12
l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .
【点睛】
本题主要考查了命题与定理,掌握命题与定理是解题的关键.
2.下列命题中逆命题是假命题的是( )
A .如果两个三角形的三条边都对应相等,那么这两个三角形全等
B .如果a 2=9,那么a=3
C .对顶角相等
D .线段垂直平分线上的任意一点到这条线段两个端点的距离相等
【答案】C
【解析】
【分析】
首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.
【详解】
解:A 、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;
B 、逆命题为:如果a=3,那么a 2=9.是真命题;
C 、逆命题为:相等的角是对顶角.是假命题;
D 、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题. 故选C .
【点睛】
此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.
3.下列语句正确的个数是( )
①两个五次单项式的和是五次多项式
②两点之间,线段最短
③两点之间的距离是连接两点的线段
④延长射线AB,交直线CD于点P
⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.
【详解】
①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;
②两点之间,线段最短,正确;
③两点之间的距离是连接两点的线段的长度,错误;
④延长射线AB,交直线CD于点P,正确;
⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向,正确;故语句正确的个数有3个
故答案为:C.
【点睛】
本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.
4.下列命题中正确的是().
A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似【答案】D
【解析】
【分析】
根据相似三角形进行判断即可.
【详解】
解:A、所有等腰三角形不一定都相似,原命题是假命题;
B、两边成比例的两个等腰三角形不一定相似,原命题是假命题;
C、有一个角相等的两个等腰三角形不一定相似,原命题是假命题;
D、有一个角是100°的两个等腰三角形相似,是真命题;
故选:D.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
5.下列命题中,是真命题的是( )
A .若a b =,则a b =
B .若0a b +>,则a ,b 都是正数
C .两条直线被第三条直线所截,同位角相等
D .垂直于同一条直线的两条直线平行
【答案】D
【解析】
【分析】
正确的命题是真命题,根据定义依次判断即可得到答案.
【详解】
A. 若a b =,则a b =±,故A 错误;
B. 若0a b +>,则a ,b 中至少有一个数是正数,且正数绝对值大于负数的绝对值,故B 错误;
C. 两条平行线被第三条直线所截,同位角相等,故C 错误;
D. 垂直于同一条直线的两条直线平行正确,
故选:D.
【点睛】
此题考查判断真假命题,正确掌握命题的分类并理解事件的正确与否是解题的关键.
6.下列命题中是假命题的是( ).
A .同旁内角互补,两直线平行
B .直线a b ⊥r r ,则a 与b 相交所成的角为直角
C .如果两个角互补,那么这两个角是一个锐角,一个钝角
D .若a b ∥,a c ⊥,那么b c ⊥
【答案】C
【解析】
根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;
根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;
根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.
7.下列命题正确的是( )
A .矩形的对角线互相垂直平分
B .一组对角相等,一组对边平行的四边形一定是平行四边形
C .正八边形每个内角都是145o
D .三角形三边垂直平分线交点到三角形三边距离相等
【解析】
【分析】
根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.
【详解】
A.矩形的对角线相等且互相平分,故原命题错误;
B.已知如图:A C ∠=∠,//AB CD ,求证:四边形ABCD 是平行四边形.
证明:∵//AB CD ,
∴180A D +=︒∠∠,
∵A C ∠=∠,
∴180C D ∠+∠=︒,
∴//AD BC ,
又∵//AB CD ,
∴四边形ABCD 是平行四边形,
∴一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;
C.正八边形每个内角都是:()180821358
︒⨯-=︒,故原命题错误; D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误.
故选:B .
【点睛】
本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.
8.下列命题:
①两条直线被第三条直线所截,同位角相等;
②两点之间,线段最短;
③相等的角是对顶角;
④直角三角形的两个锐角互余;
⑤同角或等角的补角相等.
其中真命题的个数是( )
A .2个
B .3个
C .4个
D .5个
【答案】B
【解析】
【分析】
解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;
命题②两点之间,线段最短,正确,为真命题;
命题③相等的角是对顶角,错误,为假命题;
命题④直角三角形的两个锐角互余,正确,为真命题;
命题⑤同角或等角的补角相等,正确,为真命题,
故答案选B.
考点:命题与定理.
9.下列命题是真命题的是()
A.中位数就是一组数据中最中间的一个数
B.一组数据的众数可以不唯一
C.一组数据的标准差就是这组数据的方差的平方根
D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c2
【答案】B
【解析】
【分析】
正确的命题是真命题,根据定义判断即可.
【详解】
解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;
B、一组数据的众数可以不唯一,故正确;
C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;
D、已知a、b、c是Rt△ABC的三条边,当∠C=90°时,则a2+b2=c2,故此选项错误;故选:B.
【点睛】
此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键. 10.下列命题中,是真命题的是()
A.将函数y=1
2
x+1向右平移2个单位后所得函数的解析式为y=
1
2
x
B.若一个数的平方根等于其本身,则这个数是0和1
C.对函数y=2
x
,其函数值y随自变量x的增大而增大
D.直线y=3x+1与直线y=﹣3x+2一定互相平行
【解析】
【分析】
利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.
【详解】
解:A、将函数y=1
2
x+1向右平移2个单位后所得函数的解析式为y=
1
2
x,正确,符合题
意;
B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;
C、对函数y=2
x
,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命
题,不符合题意;
D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,
故选:A.
【点睛】
本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.
11.下列四个命题中,其正确命题的个数是()
①若ac>bc,则a>b;
②平分弦的直径垂直于弦;
③一组对角相等一组对边平行的四边形是平行四边形;
④反比例函数y=k
x
.当k<0时,y随x的增大而增大
A.1 B.2 C.3 D.4
【答案】A
【解析】
【分析】
根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.
【详解】
解:①若ac>bc,如果c>0,则a>b,故原题说法错误;
②平分弦(不是直径)的直径垂直于弦,故原题说法错误;
③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;
④反比例函数y=k
x
.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;
正确命题有1个,
【点睛】
本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.
12.下列各命题的逆命题成立的是( )
A .全等三角形的对应角相等
B .如果两个数相等,那么它们的绝对值相等
C .两直线平行,同位角相等
D .如果两个角都是45°,那么这两个角相等
【答案】C
【解析】
试题分析:首先写出各个命题的逆命题,再进一步判断真假.
解:A 、逆命题是三个角对应相等的两个三角形全等,错误;
B 、绝对值相等的两个数相等,错误;
C 、同位角相等,两条直线平行,正确;
D 、相等的两个角都是45°,错误.
故选C .
13.下列命题中是真命题的是( )
A .两个锐角的和是锐角
B .两条直线被第三条直线所截,同位角相等
C .点(3,2)-到x 轴的距离是2
D .若a b >,则a b ->-
【答案】C
【解析】
【分析】
根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.
【详解】
A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;
B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;
C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;
D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.
故选:C .
【点睛】
本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.
14.下列命题中:①;②在同一平面内,若a ⊥b ,a ⊥
c ,则b ∥c ;③若ab =0,则P(a ,b)表示原点;9.是真命题的有
( )
A .1 个
B .2 个
C .3 个
D .4 个
【答案】A
【解析】
【分析】
根据立方根、平行线的判定和算术平方根判断即可.
【详解】
解:①≥0≤0不一定成立,错误; ②在同一平面内,若a b ⊥r r ,a c ⊥,则//b c ,正确; ③若0ab =,则(,)P a b 表示原点或坐标轴,错误;
3,错误;
故选:A .
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
15.下列命题为真命题的是()
A .三角形的一个外角大于任何一个和它不相邻的内角
B .两直线被第三条直线所截,同位角相等
C .垂直于同一直线的两直线互相垂直
D .三角形的外角和为180o
【答案】A
【解析】
【分析】
根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.
【详解】
三角形的一个外角大于任何一个和它不相邻的内角,A 是真命题;
两条平行线被第三条直线所截,同位角相等,B 是假命题;
在同一平面内,垂直于同一直线的两直线互相平行,C 是假命题;
三角形的外角和为360°,D 是假命题;
故选A .
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
16.下列命题中正确的有( )个
①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③
在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.
A.1 B.2 C.3 D.4
【答案】B
【解析】
【分析】
根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.
【详解】
①平分弦(非直径)的直径垂直于弦,错误;
②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;
③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;
④平面内不共线的三点确定一个圆,错误;
⑤三角形的外心到三角形的各个顶点的距离相等,正确;
故正确的命题有2个
故答案为:B.
【点睛】
本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.
17.下列说法正确的是()
A.两锐角分别相等的两个直角三角形全等
B.两条直角边分别相等的两直角三角形全等
C.一个命题是真命题,它的逆命题一定也是真命题
D.经过旋转,对应线段平行且相等
【答案】B
【解析】
【分析】
A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;【详解】
A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;
B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;
C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;
D、经过旋转,对应线段相等,故D选项错误;
故选:B.
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是
由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
18.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是( )
A .1
B .2
C .3
D .4
【答案】A
【解析】
【分析】
根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.
【详解】
①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;
②两点之间线段最短;真命题;
③相等的圆心角所对的弧相等;假命题;
④平分弦的直径垂直于弦;假命题;
真命题的个数是1个;
故选:A .
【点睛】
考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
19.下列命题的逆命题成立的有( )
①勾股数是三个正整数 ②全等三角形的三条对应边分别相等
③如果两个实数相等,那么它们的平方相等 ④平行四边形的两组对角分别相等 A .1个
B .2个
C .3个
D .4个 【答案】B
【解析】
【分析】
先写出每个命题的逆命题,再分别根据勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定逐个判断即可.
【详解】
①逆命题:如果三个数是正整数,那么它们是勾股数
反例:正整数1,2,3,但222123+?,即它们不是勾股数,则此逆命题不成立 ②逆命题:三条对应边分别相等的两个三角形全等
由SSS 定理可知,此逆命题成立
③逆命题:如果两个实数的平方相等,那么这两个实数相等
反例:222(2)4=-=,但22≠-,则此逆命题不成立
④逆命题:两组对角分别相等的四边形是平行四边形
由平行四边形的判定可知,此逆命题成立
综上,逆命题成立的有2个
故选:B.
【点睛】
本题考查了命题的相关概念、勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定,正确写出各命题的逆命题是解题关键.
20.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设()
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
【答案】B
【解析】
【分析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
故选B.
【点睛】
.在假设结论不成立时要注意考虑结考查了反证法,解此题关键要懂得反证法的意义及步骤
论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.。