新华区第二高级中学2018-2019学年高三上学期12月月考数学试卷(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新华区第二高级中学2018-2019学年高三上学期12月月考数学试卷班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )
A .“∀a ∈R ,函数y=π”是减函数
B .“∀a ∈R ,函数y=π”不是增函数
C .“∃a ∈R ,函数y=π”不是增函数
D .“∃a ∈R ,函数y=π”是减函数
2. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是(

A .∅
B .{1,4}
C .M
D .{2,7}
3. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( )
A .垂直
B .平行
C .重合
D .相交但不垂直
4. 在ABC ∆中,2
2
2
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]
A .(0,
]6
π
B .[
,)6
π
π C. (0,
]3
π
D .[,)
3
π
π5. 已知定义在R 上的奇函数f (x )满足f (x )=2x ﹣4(x >0),则{x|f (x ﹣1)>0}等于( )
A .{x|x >3}
B .{x|﹣1<x <1}
C .{x|﹣1<x <1或x >3}
D .{x|x <﹣1}
6. 已知集合,,则( )
{2,1,1,2,4}A =--2{|log ||1,}B y y x x A ==-∈A B = A .
B .
C .
D .{2,1,1}--{1,1,2}-{1,1}-{2,1}
--【命题意图】本题考查集合的交集运算,意在考查计算能力.
7. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为(

A .M >N >P
B .P <M <N
C .N >P >M
8. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为(

A .560m 3
B .540m 3
C .520m 3
D .500m 3
9. 设是等差数列的前项和,若,则( )n S {}n a 5359a a =95
S
S =
A .1
B .2
C . 3
D .4
10.函数f (x )=lnx ﹣+1的图象大致为( )
A .
B .
C .
D .
二、填空题
11.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .
12.若点p (1,1)为圆(x ﹣
3)2+y
2=9的弦MN 的中点,则弦MN 所在直线方程为 13.S n =
+
+…+
= .
14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx - (m ∈R )在区间[1,e]上取得m
x
最小值4,则m =________.
15.若展开式中的系数为,则__________.
6
()mx y +3
3
x y 160-m =【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.16.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .
三、解答题
17.在平面直角坐标系中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.已知直线l 过点P (1,0),斜率为
,曲线C :ρ=ρcos2θ+8cos θ.
(Ⅰ)写出直线l 的一个参数方程及曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,求|PA|•|PB|的值. 
18.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.
19.已知数列{a n }和{b n }满足a 1•a 2•a 3…a n =2(n ∈N *),若{a n }为等比数列,且a 1=2,b 3=3+b 2.
(1)求a n 和b n ;
(2)设c n =(n ∈N *),记数列{c n }的前n 项和为S n ,求S n .
20.在平面直角坐标系中,矩阵M 对应的变换将平面上的任意一点P (x ,y )变换为点P ′(x ﹣2y ,x+y ).(Ⅰ)求矩阵M 的逆矩阵M ﹣1;
(Ⅱ)求圆x 2+y 2=1在矩阵M 对应的变换作用后得到的曲线C 的方程.
21.(本小题满分12分)
如图,四棱锥中,底面为矩形,平面,是的中点.P ABCD -ABCD PA ⊥ABCD E PD (1)证明:平面;
//PB AEC
(2)设,的体积,求到平面的距离.1AP =AD =P ABD -V =
A PBC
111]
22.如图,三棱柱ABC ﹣A 1B 1C 1中,侧面AA 1C 1C ⊥底面ABC ,AA 1=A 1C=AC=2,AB=BC ,且AB ⊥BC ,O 为AC 中点.
(Ⅰ)证明:A 1O ⊥平面ABC ;
(Ⅱ)求直线A 1C 与平面A 1AB 所成角的正弦值;
(Ⅲ)在BC 1上是否存在一点E ,使得OE ∥平面A 1AB ,若不存在,说明理由;若存在,确定点E 的位置.
新华区第二高级中学2018-2019学年高三上学期12月月考数学试卷(参考答案)
一、选择题
1.【答案】C
【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.
故选:C.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.
2.【答案】D
【解析】解:∵M∪N=M,∴N⊆M,
∴集合N不可能是{2,7},
故选:D
【点评】本题主要考查集合的关系的判断,比较基础.
3.【答案】A
【解析】解:由题意可得直线l1的斜率k1==1,
又∵直线l2的倾斜角为135°,∴其斜率k2=tan135°=﹣1,
显然满足k1•k2=﹣1,∴l1与l2垂直
故选A
4.【答案】C
【解析】
考点:三角形中正余弦定理的运用.
5.【答案】C
【解析】解:当x>0时,由f(x)>0得2x﹣4>0,得x>2,
∵函数f(x)是奇函数,
当x <0时,﹣x >0,则f (﹣x )=2﹣x ﹣4=﹣f (x ),即f (x )=4﹣2﹣x ,x <0,
当x <0时,由f (x )>0得4﹣2﹣x >0,得﹣2<x <0,即f (x )>0得解为x >2或﹣2<x <0,由x ﹣1>2或﹣2<x ﹣1<0,得x >3或﹣1<x <1,
即{x|f (x ﹣1)>0}的解集为{x|﹣1<x <1或x >3},故选:C .
【点评】本题主要考查不等式的求解,根据函数奇偶性的性质先求出f (x )>0的解集是解决本题的关键. 
6. 【答案】C
【解析】当时,,所以,故选C .{2,1,1,2,4}x ∈--2log ||1{1,1,0}y x =-∈-A B = {1,1}-7. 【答案】A
【解析】解:∵0<a <b <c <1,∴1<2a <2,<5﹣b <1,
<()c <1,
5﹣b =()b >(
)c >(
)c ,
即M >N >P ,
故选:A
【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键. 
8. 【答案】A
【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y 轴建立直角坐标系,易得抛物线过点(3,﹣1
),其方程为y=﹣
,那么正(主)视图上部分抛物线与矩形围成的部分面积S 1==2
=4,
下部分矩形面积S 2=24,
故挖掘的总土方数为V=(S 1+S 2)h=28×20=560m 3.故选:A .
【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题. 
9. 【答案】A 【解析】1111]
试题分析:.故选A .111]19951553
9()9215()52
a a S a a a S a +===+考点:等差数列的前项和.10.【答案】A
【解析】解:∵f
(x )=lnx ﹣+1,
∴f ′(x )=﹣
=

∴f (x )在(0,4)上单调递增,在(4,+∞)上单调递减;且f (4)=ln4﹣2+1=ln4﹣1>0;故选A .
【点评】本题考查了导数的综合应用及函数的图象的应用. 
二、填空题
11.【答案】 (﹣4,) .
【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2.设抛物线上点P (m ,n )到焦点F 的距离等于6,
根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n 2=8m=32,可得n=±4,
因此,点P 的坐标为(﹣4,).
故答案为:(﹣4,
).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题. 
12.【答案】:2x ﹣y ﹣1=0
解:∵P (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,∴圆心与点P 确定的直线斜率为=﹣,
∴弦MN 所在直线的斜率为2,
则弦MN 所在直线的方程为y ﹣1=2(x ﹣1),即2x ﹣y ﹣1=0.故答案为:2x ﹣y ﹣1=0
13.【答案】
【解析】解:∵ =
=(

),
∴S n =
+
+…+
= [(1﹣)+(﹣)+(﹣)+…+(﹣
)=(1﹣

=

故答案为:

【点评】本题主要考查利用裂项法进行数列求和,属于中档题. 
14.【答案】-3e 【解析】f ′(x )=+=,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递1x 2m x 2
x m x +减,
当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;
若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3 (-e ,-
1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-,令1-=4,得m =-3e ,符合题意.综上所述,m e m
e
m =-3e.
15.【答案】2
-【解析】由题意,得,即,所以.3
3
6160C m =-3
8m =-2m =-16.【答案】 ﹣21 .
【解析】解:∵等比数列{a n }的公比q=﹣,a 6=1,
∴a 1(﹣)5=1,解得a 1=﹣32,
∴S 6==﹣21
故答案为:﹣21
三、解答题
17.【答案】
【解析】解:(Ⅰ)∵直线l过点P(1,0),斜率为,
∴直线l的一个参数方程为(t为参数);
∵ρ=ρcos2θ+8cosθ,∴ρ(1﹣cos2θ)=8cosθ,即得(ρsinθ)2=4ρcosθ,
∴y2=4x,∴曲线C的直角坐标方程为y2=4x.
(Ⅱ)把代入y2=4x整理得:3t2﹣8t﹣16=0,
设点A,B对应的参数分别为t1,t2,则,
∴.
【点评】本题考查了直线参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.
18.【答案】
【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),
∵最大角是最小角的2倍,∴C=2A,
由正弦定理得,则,
∴,得cosA=,
由余弦定理得,cosA==,
∴=,
化简得,n=4,
∴a=4、b=5、c=6,cosA=,
又0<A<π,∴sinA==,
∴△ABC的面积S===.
【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.
19.【答案】
【解析】解:(1)设等比数列{a n}的公比为q,∵数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),a1=2,
∴,,,
∴b1=1,=2q>0,=2q2,
又b3=3+b2.∴23=2q2,解得q=2.
∴a n=2n.
∴=a1•a2•a3…a n=2×22×…×2n=,
∴.
(2)c n===﹣=

∴数列{c n}的前n项和为S n=﹣
+…+
=﹣2
=﹣2+
=﹣﹣1.
【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.
20.【答案】
【解析】解:设P′(x′,y′),依题意得:,
∴,∴ ;
(Ⅱ)∵点P (x ,y )在圆x 2+y 2=1上,又
,∴

即得2x ′2+2x ′y ′+5y ′2=9,
∴变换作用后得到的曲线C 的方程为2x 2+2xy+5y 2=9.
【点评】本题考查逆矩阵与逆变换,注意解题方法的积累,属于中档题. 
21.【答案】(1)证明见解析;(2【解析】

题解析:(1)设和交于点,连接,因为为矩形,所以为的中点,又为的BD AC O EO ABCD O BD E PD 中点,所以,且平面,平面,所以平面.
//EO PB EO ⊂AEC PB ⊄AEC //PB AEC
(2),由,可得,作交于.由题设知16V PA AB AD AB =
=A A V =3
2
AB =AH PB ⊥PB H BC ⊥
平面,所以,故平面,又,所以到平面的距离PAB BC AH ⊥AH ⊥PBC PA AB AH PB ==A A PBC
考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.22.【答案】
【解析】解:(Ⅰ)证明:因为A 1A=A 1C ,且O 为AC 的中点,所以A 1O ⊥AC .
又由题意可知,平面AA 1C 1C ⊥平面ABC ,
交线为AC,且A1O⊂平面AA1C1C,
所以A1O⊥平面ABC.
(Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系.由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴,
所以得:
则有:.
设平面AA1B的一个法向量为n=(x,y,z),则有,
令y=1,得所以.

因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.(Ⅲ)设,
即,得
所以,得,
令OE∥平面A1AB,得,
即﹣1+λ+2λ﹣λ=0,得,
即存在这样的点E,E为BC1的中点.
【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力。

相关文档
最新文档