《抛物线变换》专题学案

合集下载

抛物线平移、对称变换

抛物线平移、对称变换

抛物线平移、对称变换专题一:抛物线平移、对称变换学习目标: 1.抛物线平移顶点,与坐标系交点关系2. 利用对称性求点的坐标知识框架:【1】抛物线的平移变换只改变抛物线的顶点位置,而不改变抛物线的开口方向与开口大小。

【2】求抛物线2=++(0a≠)沿坐标轴平y ax bx c移后的解析式,一般可先将其配方成顶点式()2=-+(0a≠),然后利用抛物线平移变换的有y a x h k关规律将原顶点坐标改变成平移后的新顶点坐标即可。

抛物线平移变换的规律是:左加右减(在括号),上加下减(在末梢)。

【3】抛物线绕其顶点旋转180°只改变抛物线的开口方向,而不改变抛物线的开口大小及顶点位置。

【4】求抛物线2=++(0a≠)绕其顶点旋转y ax bx c180°后的解析式,同样可先将其配方成顶点式()2=-+(0a≠),然后将二次项系数直接改变成y a x h k其相反数即可。

【5】⑴抛物线沿y轴翻折只改变抛物线的顶点位置,而不改变抛物线的开口方向及开口大小。

⑵抛物线沿x轴翻折将同时改变抛物线的开口方向及顶点位置,但抛物线的开口大小不变。

【6】求抛物线2=++(0a≠)沿某条坐标轴y ax bx c翻折后的解析式,首先仍应将其配方成顶点式()2=-+(0a≠),然后再根据翻折的方向来确定y a x h k新抛物线的解析式——若是沿y轴翻折,则只需将其顶点坐标改变成翻折后的新顶点坐标即可;若是沿x轴翻折,则除了要将顶点坐标改变成翻折后的新顶点坐标外,还需将二次系数改变成其相反数。

真 题 汇 编:第一部分(选择题)(2013-2014海淀)二次函数22+1y x =-的图象如图所示,将其绕坐标原点O 旋转180,则旋转后的抛物线的解析式为( ) A .221y x =-- B .221y x =+ C .22y x = D .221y x =-【方法总结】(2015-2016北师大实验二龙路中学) 将抛物线22y x =向左平移1个单位长度,再向上平移3个单位长度得到的抛物线解 析式是( ).A .22(1)3y x =-- B .22(1)3y x =++C .22(1)3y x =-+ D .22(1)3y x =+-【方法总结】(2015-2016北京三中)将抛物线 224=+y x绕顶点旋转180°,则旋转后的抛物线的解析式为( ). A . 224=--y x B . 224=-+y xC .224=-y xD . 22=-y x【方法总结】(2015-2016北京市昌平第三中学)把抛物线y =2x 2-3沿x 轴翻折,所得的抛物线是( )A.y =-2x 2-3B. y =2x 2-3C. y =2x 2+3D. y =-2x 2+3【方法总结】(2015-2016北京三帆中学)二次函数23+1y x =-的图象如图所示, 将其沿x 轴翻折后得到的抛物线的解析式为 A .231y x=-- B .23y x =C .231y x=+ D .231y x=-【方法总结】丰台区2017-2018中,抛物线221x y =x x y 2212-=,的阴影部分的面积是( )A .2 B. 4 C. 8 D. 16【方法总结】第二部分(填空题)海淀区2017-201822y x =平移后经过点(0,3)A,(2,3)B ,求平移后的抛物线的表达式.【方法总结】(2013-2014海淀)已知点P(-1,m)在二次函数21y x=-的图象上,则m的值为;平移此二次函数的图象,使点P与坐标原点重合,则平移后的函数图象所对应的解析式为 .【方法总结】(2015-2016年北京市第三十一中学)抛物线图像22x=xx-y,平=经过平移得到抛物线图像5y-422--移方法是______【方法总结】朝阳区2015-2016如图,抛物线y=4-x2通过9平移得到抛物线m,抛物线m经过点B(6,0)和O (0,0),它的顶点为A ,以O 为圆心,OA 为半径作圆,在第四象限内与抛物线y=4-9x2交于点C ,连接AC ,则图中阴影部分的面积为 .【方法总结】丰台区2014-2015如图,⊙O 的半径为2, 1C 是函数的221x y =的图象,2C 是函数的221x y -=的图象,3C 是函数的x y =的图象,则阴影部分的面积是______【方法总结】第三部分(解答题)(2013-2014东城)二次函数2y axbx c=++的图象与x轴交于点A (-1, 0),与y 轴交于点C (0,-5),且经过点D (3,-8). (1)求此二次函数的解析式和顶点坐标; (2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.【方法总结】(2016-2017北京四十四中初三上期中)抛物线22y x =向上平移后经过点(0,3)A ,求平移后的抛物线的表达式.【方法总结】(2016-2017北京西城铁路第二中学初三上期中) 如图,一段抛物线:(2)y x x =-(0≤x ≤2),记为1C ,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2 ,交x 轴于点A 2 ;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;… ,如此进行下去,直至得C 10.(1)请写出抛物线C 2的解析式: ;(2)若P (19,a )在第10段抛物线C 10上,则a =_________.【方法总结】西城区2014-2015已知:抛物线1C :2y axbx c=++经过点()10A -,、()30B ,、()03C -,.⑴ 求抛物线1C 的解析式;⑵ 将抛物线1C 向左平移几个单位长度,可使所得的抛物线2C 经过坐标原点,并写出2C 的解析式;⑶ 把抛物线1C 绕点()10A -,旋转180︒,写出所得抛物线3C 顶点D 的坐标.【方法总结】【纠错回顾】。

抛物线教案完整篇

抛物线教案完整篇

抛物线教案完整篇引言本教案旨在帮助学生理解和掌握抛物线的基本概念和性质。

通过本教案的研究,学生将能够解决与抛物线相关的问题,并应用抛物线的知识进行实际推理和分析。

教学目标- 理解抛物线的定义和特点- 掌握抛物线的标准方程和顶点形式- 能够绘制给定抛物线的图像- 了解抛物线在实际生活中的应用,并能够应用抛物线解决相关问题教学内容1. 抛物线的定义和特点- 抛物线的定义- 抛物线的焦点和准线- 抛物线的对称性和轴线2. 抛物线的表示形式- 抛物线的标准方程- 抛物线的顶点形式3. 绘制抛物线的图像- 根据给定的方程绘制抛物线的图像- 理解抛物线图像的特点和形状4. 抛物线的应用- 抛物线在物体运动中的应用- 抛物线在桥梁和建筑设计中的应用- 解决与抛物线相关的实际问题教学方法- 讲解:通过课堂讲解介绍抛物线的定义、特点和相关概念。

- 案例分析:通过分析实际案例,引导学生理解抛物线的应用场景。

- 问题解答:提供一系列与抛物线相关的问题,让学生进行思考和解答。

- 实践操作:通过绘制抛物线的图像和解决实际问题,加深学生对抛物线的理解和掌握。

教学评估- 完成课堂练:检查学生对抛物线定义、特点和方程的掌握情况。

- 解决实际问题:要求学生应用抛物线知识解决一些实际问题。

- 课堂讨论:鼓励学生在课堂上主动参与讨论,分享自己的思考和理解。

教学资源- 抛物线的相关课件和教学PPT- 抛物线的绘图工具和实际应用案例教学扩展- 进一步探索抛物线的性质和变形,如离心率和焦点运动轨迹等。

- 探究其他曲线的性质和应用,如椭圆、双曲线等。

总结通过本节课的学习,学生将能够全面理解抛物线的定义、特点和表示形式,掌握绘制和解决抛物线相关问题的方法,并了解抛物线在实际生活中的应用。

这将为他们进一步学习数学和应用数学打下坚实的基础。

变换中的抛物线导学稿

变换中的抛物线导学稿

二次函数专题复习——变换中的抛物线一、〖回顾旧知〗点的平移、对称、(1)把点P(1,2)向右平移2个单位,得点.(2)把点P(1,2)向上平移3个单位,得点.(3)把点P(1,2)向右平移2个单位再向上平移3个单位,得点. (4)把点P(-1,4) 关于x轴对称的点为;P(-1,4) 关于y轴对称的点为;P(-1,4) 关于原点对称的点为.(5)点P(-1,4)关于直线x=2对称点.(6)点P(-1,4)关于直线y=2对称的点为.(7)点P(-1,4)关于点(0,3)对称的点为.二、〖合作探究〗抛物线的平移、对称、旋转变换1.将抛物线y=2(x+2)²-1向右平移5个单位所得抛物线解析式.2.将抛物线y=2(x+2)²-1关于x轴对称所得抛物线解析;关于y轴对称所得抛物线解析.3.将抛物线y=2(x+2)²-1绕顶点旋转180°所得抛物线解析;绕原点旋转180°所得抛物线解析.三、〖归纳总结〗抛物线在平移过程中什么在变?什么不变?你发现了什么?抛物线在旋转、对称过程中你又发现了什么?四、〖应用训练〗练习1:已知抛物线y=x²-2x+3. 将该抛物线向右平移2个单位,向上平移3个单位,所得抛物线的解析式为.练习2:已知抛物线y=-(x+1)²+4. 将该抛物线关于x轴对称,所得抛物线的解析式为.变式1:将该抛物线关于直线x=2对称,所得抛物线的解析式为.变式2:将该抛物线关于直线y=2对称,所得抛物线的解析式为. 练习3:已知抛物线y=-(x+1)²+4. 将该抛物线绕顶点旋转180°,所得抛物线的解析式为.变式1:将该抛物线绕原点旋转180°,所得抛物线的解析式为.变式2:将该抛物线绕与y轴交点旋转180°,所得抛物线的解析式为.练习4:求抛物线y= x²+5x+4关于x轴对称的抛物线解析式.,变式1:关于y轴对称的抛物线解析.变式2:关于原点对称的抛物线解析式.中考链接(2012年陕西中考)如果一条抛物线与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)如图,△OAB是抛物线C1: y=-x²+bx(b>0)的“抛物线三角形”,将抛物线C1绕原点旋转180°,记旋转后的抛物线为C2,A的对应点为C, B的对应点为D,是否存在以A,B,C,D为顶点的矩形?若存在,求出抛物线C2的表达式;若不存在,说明理由.。

抛物线学案-2023届高三数学一轮复习

抛物线学案-2023届高三数学一轮复习

第7节 抛物线考试要求 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质. 知识梳理 1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的 .(2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离). 2.抛物线的标准方程与几何性质图形标准方程y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py(p >0)p 的几何意义:焦点F 到准线l 的距离性质顶点对称轴焦点离心率准线方程 y =p2 范围 开口方向向左3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点). 自主检测1.顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________.2. 抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.3.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( ) A.2 B.3 C.4 D.84.已知F 是抛物线y 2=x 的焦点,A ,B 是抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34B.1C.54D.745.已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________. 典型例题考点一 抛物线的定义、标准方程及其性质【例1】 (1)已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( ) A.y 2=±22x B.y 2=±2x C.y 2=±4x D.y 2=±42x(2)设抛物线y 2=4x 的焦点为F ,准线为l ,P 为该抛物线上一点,P A ⊥l ,A 为垂足,若直线AF 的斜率为-3,则△P AF 的面积为( ) A.2 3 B.4 3 C.8 D.8 3(3)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.【训练1】 (1)设抛物线y 2=2px 的焦点在直线2x +3y -8=0上,则该抛物线的准线方程为( ) A.x =-4 B.x =-3 C.x =-2 D.x =-1(2)已知抛物线x 2=2py (p >0)的焦点为F ,准线为l ,点P (4,y 0)在抛物线上,K 为l 与y 轴的交点,且|PK |=2|PF |,则y 0=________.考点二 与抛物线有关的最值问题 角度1 到焦点与定点距离之和(差)最值问题【例2-1】 点P 为抛物线y 2=4x 上的动点,点A (2,1)为平面内定点,F 为抛物线焦点,则: (1)|P A |+|PF |的最小值为________;(2)(多填题)|P A |-|PF |的最小值为________,最大值为________. 角度2 到点与准线的距离之和最值问题【例2-2】 设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________.角度3 动弦中点到坐标轴距离最短问题【例2-3】 已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A.34 B.32 C.1 D.2角度4 焦点弦中距离之和最小问题【例2-4】 已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.角度5 到定直线的距离最小问题【例2-5】 抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________.【训练2】 (1)若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为( ) A.⎝⎛⎭⎫-14,1 B.⎝⎛⎭⎫14,1 C.(-2,-22) D.(-2,22)(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆C :x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线准线的距离之和的最小值是________. 考点三 直线与抛物线的综合问题【例3】 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求直线l 的方程; (2)若AP →=3PB →,求|AB |.【训练3】 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.当堂检测1.已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( ) A.y 2=4x B.y 2=-4x C.y 2=8x D.y 2=-8x2.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|F A |=3,则直线F A 的倾斜角为( ) A.π3 B.π4 C.π3或2π3 D.π4或3π43.设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|F A →|+|FB →|+|FC →|的值为________.4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.5.已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x 轴、 y 轴交于M ,N 两点,点A (2,-4)且AP →=λAM →+μAN →,则λ+μ的最小值为________.6.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.7.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.。

抛物线复习数学教案教学设计

抛物线复习数学教案教学设计

抛物线复习数学教案教学设计【标准格式文本】教案教学设计:抛物线复习数学一、教学目标1. 知识目标:复习抛物线的基本概念、性质和相关公式,巩固学生对抛物线的理解。

2. 能力目标:培养学生观察、分析和解决抛物线相关问题的能力,提高其数学思维和解题能力。

3. 情感目标:激发学生对数学的兴趣,培养学生的数学学习兴趣和自信心。

二、教学重点与难点1. 重点:抛物线的基本概念、性质和相关公式的复习。

2. 难点:运用抛物线的相关知识解决实际问题。

三、教学准备1. 教学工具:投影仪、电脑、教学PPT。

2. 教学素材:抛物线的相关例题和练习题。

四、教学过程1. 导入(5分钟)通过展示一张抛物线的图片,引导学生回顾抛物线的基本形状和特点,并与学生进行简要的讨论。

2. 复习抛物线的基本概念(15分钟)通过教学PPT,复习抛物线的定义、顶点、对称轴、焦点和准线等基本概念,并与学生一起解析相关概念的含义和特点。

3. 复习抛物线的性质(20分钟)a. 复习抛物线的对称性:通过教学PPT,引导学生回顾抛物线的对称性,并通过具体例题进行巩固。

b. 复习抛物线的焦点和准线:通过教学PPT,讲解焦点和准线的定义和性质,并通过实例演示焦点和准线的求解方法。

4. 复习抛物线的相关公式(20分钟)a. 复习抛物线的顶点坐标:通过教学PPT,复习抛物线顶点坐标的计算方法,并通过例题进行巩固。

b. 复习抛物线的焦点坐标:通过教学PPT,讲解焦点坐标的计算方法,并通过实例演示焦点坐标的求解过程。

c. 复习抛物线的准线方程:通过教学PPT,复习准线方程的推导和计算方法,并通过例题进行巩固。

5. 运用抛物线解决实际问题(25分钟)通过教学PPT,给出一些实际问题,引导学生运用抛物线的相关知识进行分析和解决。

教师可以提供一些具体实例,如抛物线的应用于建造设计、物理运动等领域,激发学生的学习兴趣和思量能力。

6. 小结与反思(10分钟)对本节课的内容进行小结,并与学生进行互动交流。

高中数学抛物线教案

高中数学抛物线教案

高中数学抛物线教案教案标题:高中数学抛物线教案教案目标:1. 了解抛物线的定义和性质;2. 掌握抛物线的标准方程和顶点坐标的求解方法;3. 理解抛物线的平移、缩放和翻转变换;4. 能够应用抛物线解决实际问题。

教学重点:1. 抛物线的标准方程和顶点坐标的求解方法;2. 抛物线的平移、缩放和翻转变换。

教学难点:1. 抛物线的平移、缩放和翻转变换的理解和应用。

教学准备:1. 教师准备:投影仪、计算器、教学课件;2. 学生准备:课本、笔记本、铅笔、直尺、计算器。

教学过程:一、导入(5分钟)1. 教师通过提问引导学生回顾之前学过的二次函数的知识,如二次函数的图像、性质等。

二、知识讲解(15分钟)1. 教师通过投影仪展示抛物线的定义和性质,包括焦点、准线、顶点等。

2. 教师详细讲解抛物线的标准方程和顶点坐标的求解方法,并通过示例演示。

三、示范与练习(20分钟)1. 教师通过投影仪展示几个抛物线的图像,并引导学生观察和分析。

2. 学生根据教师的示范,自主完成几道标准方程和顶点坐标的求解练习题。

四、拓展与应用(15分钟)1. 教师通过投影仪展示抛物线的平移、缩放和翻转变换的概念和公式,并通过示例演示。

2. 学生根据教师的示范,自主完成几道抛物线的平移、缩放和翻转变换练习题。

五、实际问题解决(15分钟)1. 教师提供一些实际问题,要求学生运用抛物线的知识解决,并引导学生分析问题、建立方程、求解等步骤。

六、总结与反思(5分钟)1. 教师与学生共同总结本节课所学的抛物线知识点,并回答学生提出的问题。

2. 学生进行自我反思,总结学习中的困难和收获。

教学延伸:1. 学生可以通过课后作业进一步巩固抛物线的相关知识;2. 学生可以通过实际生活中的例子,观察和分析抛物线的应用。

教学评价:1. 教师观察学生在课堂上的表现,包括参与度、理解程度等;2. 教师布置课后作业,检查学生对抛物线知识的掌握程度;3. 教师可以通过小测验或者期中考试等形式对学生的学习效果进行评价。

抛物线教学设计抛物线教案

抛物线教学设计抛物线教案

抛物线教学设计抛物线教案一、教学内容本节课选自高中数学必修二第三章第四节“抛物线及其性质”。

具体内容包括:抛物线的定义、标准方程、图形及其性质;抛物线焦点、准线的概念及计算;抛物线在实际问题中的应用。

二、教学目标1. 理解并掌握抛物线的定义、标准方程、图形及其性质。

2. 掌握抛物线的焦点、准线概念及其计算方法。

3. 能够运用抛物线知识解决实际问题,提高数学应用能力。

三、教学难点与重点教学难点:抛物线的焦点、准线概念及其计算方法。

教学重点:抛物线的定义、标准方程、图形及其性质。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、量角器。

五、教学过程1. 导入新课通过展示生活中的抛物线实例(如拱桥、篮球抛物线等),引导学生观察并思考抛物线的特点,激发学习兴趣。

2. 基本概念(1)抛物线的定义:平面内到一个定点(焦点)距离等于到一条定直线(准线)距离的点的轨迹。

(2)抛物线的标准方程:y^2=2px(p>0)。

3. 图形及其性质(1)图形:以焦点为顶点,准线为对称轴的开口图形。

(2)性质:① 对称性:抛物线关于准线对称。

② 顶点:抛物线的最低点(或最高点),即焦点所在点。

③ 焦半径:从焦点到任意一点的线段长度。

④ 准线方程:x=p/2。

4. 焦点、准线计算(1)已知抛物线方程,求焦点、准线。

例如:y^2=8x,求焦点和准线。

解:由y^2=2px,得p=4。

故焦点为(2,0),准线为x=2。

(2)已知焦点、准线,求抛物线方程。

例如:已知焦点为(2,0),准线为x=2,求抛物线方程。

解:由焦点到准线的距离为p/2=2,得p=4。

故抛物线方程为y^2=8x。

5. 实际应用(1)篮球运动员投篮时,篮球的轨迹为抛物线,已知篮球筐距离地面3米,求运动员投篮时篮球的最大高度。

(2)已知抛物线y^2=4x,求该抛物线与直线y=x+2的交点坐标。

6. 随堂练习(1)求抛物线y^2=12x的焦点和准线。

3.3.1 抛物线及其标准方程 导学案正文

3.3.1 抛物线及其标准方程  导学案正文

3.3抛物线3.3.1抛物线及其标准方程【学习目标】1.会识别抛物线的定义和相关概念,知道二次函数的图象符合抛物线的定义,能初步应用抛物线定义解决一些简单问题.2.能根据抛物线的几何特征选择适当的平面直角坐标系,根据抛物线定义的代数表达类比导出抛物线的标准方程.3.能识别焦点在不同坐标轴上的抛物线的四种标准方程,能说出标准方程中一次项系数的意义.4.能初步应用抛物线定义和标准方程解决一些关联问题.◆知识点一抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离的点的轨迹叫作抛物线.点F叫作抛物线的,直线l叫作抛物线的.【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)抛物线的焦点到准线的距离是p(p>0).( )(2)抛物线上一点到焦点的距离与到准线的距离的比值为1.( )(3)抛物线的焦点可以在准线上.( )(4)平面内与定点F和一条定直线l距离相等的点的轨迹是抛物线.( )◆知识点二抛物线的标准方程标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形焦点坐标准线方程p的几何意义焦点到准线的距离【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)抛物线的方程都是二次函数.( )(2)抛物线的原点到准线的距离是p(p>0).( )(3)抛物线的开口方向由方程中的一次项确定.( )(4)方程y=ax2(a≠0)是抛物线的标准方程.( )◆探究点一抛物线的定义及应用例1 (1)一动圆过点A(1,0)且与直线:x=-1相切,则该动圆圆心的轨迹为( )A.抛物线B.椭圆C.直线D.圆(2)抛物线x2=4y上的点P到焦点的距离是10,则点P的坐标为.变式 (1)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=5x0,则x0=( )4A.1B.2C.4D.8(2)已知P为抛物线y2=4x上一个动点,直线l1:x=-1,l2:x+y+3=0,则P到直线l1,l2的距离之和的最小值为( )A.2√2B.4+1C.√2D.3√22[素养小结]利用抛物线的定义可以解决以下两类问题:(1)点的轨迹问题:利用抛物线的定义求解点的轨迹方程,关键是找到满足动点到定点的距离等于到定直线的距离且定点不在定直线上的条件.(2)抛物线的焦半径问题:利用抛物线的定义,对抛物线上的点到焦点的距离与到准线的距离相互转化,解决与抛物线有关的最大(小)值问题,解题时要注意平面几何知识的应用,如两点之间线段最短、三角形中三边间的不等关系、点与直线上点的连线垂线段最短等.拓展 (1)已知点P是抛物线y2=-4x上的一个动点,则点P到点M(0,2)的距离与到该抛物线准线的距离之和的最小值为 ( )A.3B.√172C.√5D.92(2)已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,点A(3,2),则|PA|+|PF|的最小值为,取得最小值时点P的坐标为.◆探究点二求抛物线的标准方程例2分别求满足下列条件的抛物线的标准方程.(1)焦点到准线的距离是4;(2)焦点在y轴上,且经过点(-1,-3);(3)抛物线的焦点是双曲线16x2-9y2=144的左顶点.变式 (1)焦点在直线2x+5y-10=0上的抛物线的标准方程为( )A.y2=10x或x2=4yB.y2=-10x或x2=-4yC.y2=20x或x2=8yD.y2=-20x或x2=-8y(2)已知抛物线C:y2=2px(p>0)的焦点为F,C上一点M(x0,x0)(x0≠0)满足|MF|=5,则抛物线C的方程为.[素养小结](1)求抛物线的标准方程要注意确定焦点在哪条坐标轴上,进而求方程的有关参数.(2)求抛物线的标准方程的方法:①直接法,建立恰当的坐标系,利用抛物线的定义列出动点满足的条件,列出对应方程,化简方程;②直接根据定义求p,然后写出标准方程;③利用待定系数法设标准方程,找有关的方程(组)求系数.◆探究点三抛物线的实际应用问题例3如图,某河道上有一抛物线形拱桥,在正常水位时,拱圈最高点距水面9 m,拱圈内水面宽30 m,一条船在水面以上部分高7 m,船顶部宽6 m.(1)试建立适当的平面直角坐标系,求拱桥所在的抛物线的标准方程.(2)近日水位暴涨了2.46 m,为此,必须加重船载,降低船身,才能安全通过桥洞,则船身至少应降低多少(精确到0.1 m)?变式青花瓷盖碗是中国传统茶文化的器物载体,具有“温润”“淡远”“清新”的特征.如图,已知碗体和碗盖内部的轴截面均近似为抛物线的一部分,碗盖深为3 cm,碗盖口直径为8 cm,碗体口直径为10 cm,碗体深6.25 cm,则盖上碗盖后,碗盖内部的最高点到碗底的垂直距离为(碗和碗盖的厚度忽略不计)( )A.5 cmB.6 cmC.7 cmD.8.25 cm[素养小结]求解抛物线实际应用题的五个步骤(1)建系:建立适当的坐标系.(2)假设:设出合适的抛物线的标准方程.(3)计算:通过计算求出抛物线的标准方程.(4)求解:求出所要求出的量.(5)还原:还原到实际问题中,从而解决实际问题.。

高中数学抛物线教案6篇

高中数学抛物线教案6篇

高中数学抛物线教案6篇本文题目:空间几何体的三视图和直观图高一数学教案第一课时1.2.1中心投影与平行投影 1.2.2空间几何体的三视图教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体. 教学重点:画出三视图、识别三视图.教学难点:识别三视图所表示的空间几何体.教学过程:一、新课导入:1. 讨论:能否熟练画出上节所学习的几何体工程师如何制作工程设计图纸2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

对于我们所学几何体,常用三视图和直观图来画在纸上.三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形; 直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.用途:工程建设、机械制造、日常生活.二、讲授新课:1. 教学中心投影与平行投影:① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。

人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。

② 中心投影:光由一点向外散射形成的投影。

其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.讨论:点、线、三角形在平行投影后的结果.2. 教学柱、锥、台、球的三视图:定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图讨论:三视图与平面图形的关系画出长方体的三视图,并讨论所反应的长、宽、高结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图.③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)哪些数量(长、宽、高)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

抛物线 复习学案 人教B版

抛物线  复习学案  人教B版

《抛物线》复习学案【自主学习】 考点集结1. 抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线 定点F 叫做抛物线的________,定直线l 叫做抛物线的________ 2、抛物线的标准方程、类型及其几何性质 (0>p ):(1))0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;(2)过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.(3)AB 为抛物线px y 22=的焦点弦,则①=B A x x 42p ,=B A y y 2p -,|AB|=θ221sin 2pp x x =++(θ为直线AB 的倾斜角)③θsin 22p S AOB =∆(θ为直线AB 的倾斜角)【基础自测】1、抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1617 B .1615 C .87D .02、抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .-81C .8D .-83、设a ≠0,a ∈R ,则抛物线y=4ax 2的焦点坐标为 .4、若抛物线y 2=2px 的焦点与椭圆62x +22y =1的右焦点重合,则p 的值为 .5、抛物线y 2=24ax(a >0)上有一点M ,它的横坐标是3,它到焦点的距离是5,则抛物线的方程为 .【考点精讲】考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换 例1、已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为 变式训练1.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+B . 321y y y =+C .2312x x x =+ D. 2312y y y =+2. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时,M 点坐标是 ( ) A. )0,0( B. )62,3( C. )4,2( D. )62,3(- 考点2 抛物线的标准方程 题型:求抛物线的标准方程例2、求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线240x y --=上变式训练3.若抛物线22y px =的焦点与双曲线的右焦点2213x y -=重合,则p 的值4. 对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号) 小结:考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证例3 、设A 、B 为抛物线px y 22=上的点,且 90=∠AOB (O 为原点),则直线AB必过的定点坐标为__________.变式训练6、若直线10ax y -+=经过抛物线24y x =的焦点,则实数a =7、过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A A. 45 B. 60 C. 90 D. 1208、如图,已知O 是坐标原点,过点)0,5(P 且斜率为k 的直线l 交 抛物线x y 52=于),(11y x M 、),(22y x N 两点. (1)求21x x 和21y y 的值; (2)求证:ON OM ⊥.小结:考点4 综合问题题型:有关于直线与抛物线问题例4、已知抛物线C:22(0)=>过点A (1 , -2).y px p(I)求抛物线C 的方程,并求其准线方程;(II)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L L的方程;若不存在,说明理由.小结:【深化提高】1、过抛物线x y =2的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于3,则这样的直线 ( )A .有且只有一条B .有且只有两条C .有无穷多条D .不存在 2、过抛物线y 2 = 4x 的焦点作直线交抛物线于P(x 1,y 1)、Q(x 2,y 2)两点,若x 1+x 2=6,则︱PQ ︱的值为( )A. 10B. 8C. 5D. 6 3、过已知点A(0,1)且与抛物线y 2 =2x 只有一个公共点的直线有( )条 A. 1 B. 2 C. 3 D. 4 4、如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为( )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0)5、圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( )A .x 2+ y 2-x -2 y -41=0 B .x 2+ y 2+x -2 y +1=0 C .x 2+ y 2-x -2 y +1=0 D .x 2+ y 2-x -2 y +41=06、抛物线2x y =上一点到直线042=--y x 的距离最短的点的坐标( )A .(1,1)B .(41,21) C .)49,23( D .(2,4)7、一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( )A .6mB . 26mC .4.5mD .9m8、平面内过点A (-2,0),且与直线x =2相切的动圆圆心的轨迹方程是( ) A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x9、抛物线的顶点在原点,对称轴是x 轴,抛物线上点(-5,m )到焦点距离是6,则抛物线的方程是( )A . y 2=-2xB . y 2=-4xC . y 2=2xD . y 2=-4x 或y 2=-36x10、过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=( )A .8B .10C .6D .411、抛物线的焦点为椭圆14922=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 .12、抛物线x y 22=上的两点B A ,到焦点的距离和是5,则线段AB 的中点到y 轴的距离是 。

高二数学《抛物线的习题课》学案

高二数学《抛物线的习题课》学案

高二数学《抛物线的习题课》学案一、课前检测1、已知抛物线的顶点是双曲线的中心,而焦点是双曲线的左顶点,则抛物线的方程为、2、已知抛物线上点P到直线的距离最小值等于、3、已知定点,F为抛物线的焦点,P为抛物线上动点,则|PF|+|PA|的最小值等于,此时P点坐标为、二、例题讲解例1、已知抛物线的焦点坐标为,求过点且与抛物线有且只有一个公共点的直线方程。

例2、已知抛物线的准线方程为,直线y=2x+m与抛物线交于点A、B,若线段AB中点E到准线的距离为,求线段AB的长。

总第69页(第18课时第1页)例3、若抛物线的顶点是在抛物线上距离点A(0,a)最近的点,求a的取值范围?(选修1-1课本P52第14题、选修2-1课本P66第15题)【选讲】例4、过抛物线焦点的一条直线与它交于两点A、B,经过点A和抛物线顶点的直线交准线于点M,求证:直线MB平行于抛物的对称轴。

三、课堂总结总第70页(第18课时第2页)作业班级学号姓名等第1、圆心在曲线上,并且与的准线及y轴都相切的圆的一般方程方程为2、过抛物线的焦点F的直线与抛物线次于点A、B,自A、B两点向准线作垂线,垂足分别为A1、B1,则3、已知A、B是抛物线上的两点,O为坐标原点,若|OA|=|OB|,且抛物线的焦点恰好为AOB的垂心,则直线AB方程为(用表示)4、抛物线的顶点在原点,对称轴为x轴,点()到焦点的距离为6,则此抛物的方程为5、正三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,则这个正三角形的三边长为。

6、已知抛物线的焦点在y轴上,点M(m,-3)是抛物线上的一点,M到焦点的距离是5,求m的值及抛物线标准方程、准线方程。

7、已知点M到椭圆的右焦点的距离与到直线x=6的距离相等,求点M的轨迹方程。

8、已知直线过抛物线的焦点,与抛物线交于点A、B,若线段AB中点的横坐标为2,求线段AB的长。

总第71页(第18课时第3页)9、在抛物线上求一点P,使其到焦点与它到点的距离之和最小、10、已知定点,P为抛物线上动点,求|PA|的最小值的表达式(用表示)、【附加题】11、已知顶点在原点,焦点在坐标轴上的抛物线,被直线y=2x+1截得弦长为,求此抛物线方程。

抛物线教案

抛物线教案

教案抛物线教学设计与实施一、教学目标1.让学生理解抛物线的定义、标准方程和基本性质,能够画出简单的抛物线图形。

2.培养学生运用数学语言表达、分析和解决实际问题的能力。

3.培养学生的空间想象能力和抽象思维能力。

二、教学内容1.抛物线的定义和标准方程2.抛物线的焦点、准线和对称轴3.抛物线的图形和性质4.抛物线在实际问题中的应用三、教学重点与难点1.教学重点:抛物线的定义、标准方程和基本性质。

2.教学难点:抛物线的图形理解和应用。

四、教学过程1.导入新课:通过生活中的实例,如抛物线运动、抛物面天线等,引导学生了解抛物线在实际中的应用,激发学生的学习兴趣。

2.探究新知:(1)抛物线的定义:以一个点为焦点,到这个点的距离等于到一条直线的距离的点的轨迹。

(2)抛物线的标准方程:y^2=4ax(开口向右)、x^2=4ay(开口向上)。

(3)抛物线的焦点、准线和对称轴:焦点为(a,0),准线为x=-a,对称轴为y轴。

(4)抛物线的图形和性质:图形为U形或倒U形,性质包括对称性、顶点、焦点、准线等。

3.实践应用:(1)画出给定焦点的抛物线。

(2)已知抛物线上的点,求抛物线的标准方程。

(3)利用抛物线的性质解决实际问题,如求抛物线与直线的交点、抛物线上的切线等。

4.总结反馈:通过课堂小结,让学生回顾本节课所学内容,巩固知识点。

五、作业布置1.课后习题:完成教材中抛物线相关习题。

2.拓展练习:研究抛物线在实际问题中的应用,如抛物线运动、抛物面天线等。

六、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

同时,关注学生的学习兴趣,注重培养学生的数学思维能力和实际应用能力。

在教学过程中,注重启发式教学,引导学生主动探究,培养学生的自主学习能力。

同时,注重师生互动,鼓励学生提问,激发学生的思维活力。

在教学评价方面,采用多元化评价方式,关注学生的全面发展。

需要重点关注的细节是“实践应用”部分。

学案1:2.7.2 抛物线的几何性质

学案1:2.7.2 抛物线的几何性质

2.7.2抛物线的几何性质学习目标核心素养1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.(重点)2.会利用抛物线的性质解决一些简单的抛物线问题.(重点、难点)3.掌握直线与抛物线相交时与弦长相关的知识.通过抛物线的几何性质的学习,培养直观想象、数学运算素养.【情境导学】情境引入如果让抛物线绕其对称轴旋转,就得到一个旋转形成的抛物面曲面,旋转抛物面的轴上,有一个焦点,任何一条平行于抛物面轴的光(射)线由抛物面上反射出来之后,其反射光(射)线都通过该点,应用抛物面的这个几何性质,人们设计了很多非常有用的东西,如太阳灶、卫星电视天线、雷达等.当然这条性质本身也是抛物线的一条性质,今天我们就来具体研究一下构成抛物面的线——抛物线的几何性质.新知初探1.抛物线的几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形性质范围x≥0,y∈R x≤0,y∈R x∈R,y≥0x∈R,y≤0对称轴x轴y轴顶点离心率e=思考1:抛物线x2=2py(p>0)有几条对称轴?思考2:抛物线的范围是x∈R,这种说法正确吗?思考3:参数p对抛物线开口大小有何影响?2.焦点弦设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则初试身手1.思考辨析(正确的打“√”,错误的打“×”)(1)抛物线是中心对称图形.()(2)抛物线的范围为x∈R.()(3)抛物线关于顶点对称.()(4)抛物线的标准方程虽然各不相同,但离心率都相同.()2.设抛物线y2=8x上一点P到y轴的距离是6,则点P到该抛物线焦点F的距离是() A.8B.6C.4D.23.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=6,则|AB|=.4.顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6的抛物线方程是.【合作探究】【例1】(1)平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的标准方程是.(2)抛物线的顶点在原点,对称轴重合于椭圆9x2+4y2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程.[规律方法]用待定系数法求抛物线方程的步骤提醒:求抛物线的方程时要注意抛物线的焦点位置.不同的焦点设出不同的方程.[跟进训练]1.已知抛物线关于x轴对称,它的顶点在坐标原点,其上一点P到准线及对称轴距离分别为10和6,求抛物线方程.【例2】(1)抛物线y2=4x的焦点为F,准线为l,点A是抛物线上一点,且∠AFO=120°(O 为坐标原点),AK⊥l,垂足为K,则△AKF的面积是.(2)已知正三角形AOB的一个顶点O位于坐标原点,另外两个顶点A,B在抛物线y2=2px(p >0)上,求这个三角形的边长.[规律方法]利用抛物线的性质可以解决的问题(1)对称性:解决抛物线的内接三角形问题.(2)焦点、准线:解决与抛物线的定义有关的问题.(3)范围:解决与抛物线有关的最值问题.(4)焦点:解决焦点弦问题.提醒:解答本题时易忽略A,B关于x轴对称而出错.[跟进训练]2.已知双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点,若双曲线的离心率为2,△AOB的面积为3,求抛物线的标准方程.[探究问题]以抛物线y2=2px(p>0)为例,回答下列问题:(1)过焦点F的弦长|AB|如何表示?还能得到哪些结论?(2)以AB为直径的圆与直线l具有怎样的位置关系?(3)解决焦点弦问题需注意什么?【例3】已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A,B两点,且|AB|=52p,求AB所在直线的方程.[思路探究]根据弦长求出直线斜率,进而求得直线方程.[母题探究]1.(改变问法)本例条件不变,求弦AB的中点M到y轴的距离.2.(变换条件)本例中,若A 、B 在其准线上的射影分别为A 1,B 1,求∠A 1FB 1.[规律方法]解决过焦点的直线与抛物线相交有关的问题时,一是注意直线方程和抛物线方程联立得方程组,再结合根与系数的关系解题,二是注意焦点弦长、焦半径公式的应用.解题时注意整体代入思想的运用,简化运算.【课堂小结】1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.解决抛物线的轨迹问题,可以利用抛物线的标准方程,结合抛物线的定义.3.抛物线y 2=±2px (p >0)的过焦点的弦长|AB |=x 1+x 2+p ,其中x 1,x 2分别是点A ,B 横坐标的绝对值;抛物线x 2=±2py (p >0)的过焦点的弦长|AB |=y 1+y 2+p ,其中y 1,y 2分别是点A ,B 纵坐标的绝对值.4.求抛物线的方程常用待定系数法和定义法;直线和抛物线的弦长问题、中点弦问题及垂直、对称等可利用判别式、根与系数的关系解决;抛物线的综合问题要深刻分析条件和结论,灵活选择解题策略,对题目进行转化.【学以致用】1.若抛物线y 2=2x 上有两点A 、B 且AB 垂直于x 轴,若|AB |=22,则抛物线的焦点到直线AB 的距离为( )A .12B .14C .16D .182.在抛物线y 2=16x 上到顶点与到焦点距离相等的点的坐标为( ) A .(42,±2) B .(±42,2) C .(±2,42)D .(2,±42)3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是( ) A .(2,±22)B .(1,±2)C.(1,2) D.(2,22)4.已知AB是过抛物线2x2=y的焦点的弦,若|AB|=4,则AB的中点的纵坐标是.5.已知点P(1,m)是抛物线C:y2=2px上的点,F为抛物线的焦点,且|PF|=2,直线l:y =k(x-1)与抛物线C相交于不同的两点A,B.(1)求抛物线C的方程;(2)若|AB|=8,求k的值.【参考答案】【情境导学】新知初探2.抛物线的几何性质(0,0)1思考1:[提示]有一条对称轴.思考2:[提示]抛物线的方程不同,其范围就不一样,如y2=2px(p>0)的范围是x≥0,y∈R,故此说法错误.思考3:[提示]参数p(p>0)对抛物线开口大小有影响,因为过抛物线的焦点F且垂直于对称轴的弦的长度是2p,所以p越大,开口越大.初试身手1.[答案](1)×(2)×(3)×(4)√[提示](1)×在抛物线中,以-x代x,-y代y,方程发生了变化.(2)×抛物线的方程不同,其范围不同,y2=2px(p>0)中x≥0,y∈R.(3)×(4)√离心率都为1,正确.2.A[∵抛物线的方程为y2=8x,∴其准线l的方程为x=-2,设点P(x0,y0)到其准线的距离为d,则d=|PF|,即|PF|=d=x0-(-2)=x0+2,∵点P到y轴的距离是6,∴x0=6,∴|PF|=6+2=8.]3.8[∵y2=4x,∴2p=4,p=2.∵由抛物线定义知:|AF|=x1+1,|BF|=x2+1,∴|AB|=x1+x2+p=6+2=8.]4.y2=24x或y2=-24x[∵顶点与焦点距离为6,即p2=6,∴2p=24,又对称轴为x轴,∴抛物线方程为y2=24x或y2=-24x.]【合作探究】【例1】(1)y 2=5x [线段OA 的垂直平分线为4x +2y -5=0,与x 轴的交点为⎝⎛⎭⎫54,0, ∴抛物线的焦点为⎝⎛⎭⎫54,0,∴其标准方程是y 2=5x .] (2)解:椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上,∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px (p >0). ∵抛物线的焦点到顶点的距离为3,即p2=3,∴p =6,∴抛物线的标准方程为y 2=12x 或y 2=-12x , 其准线方程分别为x =-3和x =3. [跟进训练]1.[解] 设抛物线方程为y 2=2ax (a ≠0),点P (x 0,y 0). 因为点P 到对称轴距离为6,所以y 0=±6,因为点P 到准线距离为10,所以⎪⎪⎪⎪x 0+a2=10. ① 因为点P 在抛物线上,所以36=2ax 0. ②由①②,得⎩⎪⎨⎪⎧ a =2,x 0=9或⎩⎪⎨⎪⎧a =18,x 0=1 或⎩⎪⎨⎪⎧ a =-18,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=-9. 所以所求抛物线方程为y 2=±4x 或y 2=±36x .类型二抛物线性质的应用【例2】(1)43 [如图,设A (x 0,y 0),过A 作AH ⊥x 轴于H ,在Rt △AFH 中,|FH |=x 0-1,由∠AFO =120°,得∠AFH =60°,故y 0=|AH |=3(x 0-1),所以A 点的坐标为()x 0,3(x 0-1), 将点A 坐标代入抛物线方程可得3x 20-10x 0+3=0, 解得x 0=3或x 0=13(舍),故S △AKF =12×(3+1)×23=43.](2)解:如图所示,设正三角形OAB 的顶点A ,B 在抛物线上,且坐标分别为A (x 1,y 1),B (x 2,y 2),则y 21=2px 1,y 22=2px 2.又|OA |=|OB |,所以x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,整理得(x 1-x 2)(x 1+x 2+2p )=0.∵x 1>0,x 2>0,2p >0,∴x 1=x 2,由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称. 由此得∠AOx =30°,所以y 1=33x 1,与y 21=2px 1联立, 解得y 1=23p .∴|AB |=2y 1=43p . [跟进训练]2.[解] 由已知得c a =2,所以a 2+b 2a 2=4,解得ba =3.即渐近线方程为y =±3x ,而抛物线准线方程为x =-p2,于是A ⎝⎛⎭⎫-p 2,-32p ,B ⎝⎛⎭⎫-p 2,32p ,从而△AOB 的面积为12·3p ·p 2=3.可得p =2,因此抛物线开口向右,所以标准方程为y 2=4x .类型三焦点弦问题[探究问题](1) [提示] ①|AB |=2⎝⎛⎭⎫x 0+p2(焦点弦长与中点关系). ②|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).③A ,B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=p 24,y 1·y 2=-p 2.④S △AOB =p 22sin θ.⑤1|AF |+1|BF |=2p(定值). (2) [提示] 如图,AB 是过抛物线y 2=2px (p >0)焦点F 的一条弦,设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),相应的准线为l .所以以AB 为直径的圆必与准线l 相切.(3) [提示] 要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解.【例3】[解] ∵过焦点的弦长|AB |=52p , ∴弦所在的直线的斜率存在且不为零,设直线AB 的斜率为k ,且A (x 1,y 1),B (x 2,y 2).∵y 2=2px 的焦点为F ⎝⎛⎭⎫p 2,0.∴直线方程为y =k ⎝⎛⎭⎫x -p 2. 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px ,整理得k 2x 2-(k 2p +2p )x +14k 2p 2=0(k ≠0), ∴x 1+x 2=k 2p +2p k 2,∴|AB |=x 1+x 2+p =k 2p +2p k 2+p , 又|AB |=52p ,∴k 2p +2p k 2+p =52p ,∴k =±2. ∴所求直线方程为y =2⎝⎛⎭⎫x -p 2或y =-2⎝⎛⎭⎫x -p 2. [母题探究]1.[解] 设AB 中点为M (x 0,y 0),由例题解答可知2x 0=x 1+x 2=32p , 所以AB 的中点M 到y 轴的距离为34p . 2.[解] 由例题解析可知AB 的方程为y =k ⎝⎛⎭⎫x -p 2,即x =1k y +p 2,代入y 2=2px 消x 可得y 2=2p k y +p 2,即y 2-2p ky -p 2=0,∴y 1y 2=-p 2, 由A 1点的坐标为⎝⎛⎭⎫-p 2,y 1,B 1点的坐标为⎝⎛⎭⎫-p 2,y 2,得kA 1F =-y 1p ,kB 1F =-y 2p . ∴kA 1F ·kB 1F =y 1y 2p2=-1,∴∠A 1FB 1=90°. 【学以致用】1.A [线段AB 所在的直线方程为x =1,抛物线的焦点坐标为⎝⎛⎭⎫12,0,则焦点到直线AB的距离为1-12=12.] 2.D [抛物线y 2=16x 的顶点O (0,0),焦点F (4,0),设P (x ,y )符合题意,则有 ⎩⎪⎨⎪⎧ y 2=16x ,x 2+y 2=(x -4)2+y 2⇒⎩⎪⎨⎪⎧ y 2=16x ,x =2⇒⎩⎨⎧x =2,y =±4 2. 所以符合题意的点为(2,±42).]3.B [由题意知F (1,0),设A ⎝⎛⎭⎫y 204,y 0,则OA →=⎝⎛⎭⎫y 204,y 0,AF →=⎝⎛⎭⎫1-y 204,-y 0, 由OA →·AF →=-4得y 0=±2,∴点A 的坐标为(1,±2),故选B .] 4.158 [设A (x 1,y 1),B (x 2,y 2),由抛物线2x 2=y ,可得p =14. ∵|AB |=y 1+y 2+p =4,∴y 1+y 2=4-14=154,故AB 的中点的纵坐标是y 1+y 22=158.] 5.[解] (1)抛物线C :y 2=2px 的准线为x =-p 2, 由|PF |=2得:1+p 2=2,得p =2. 所以抛物线的方程为y 2=4x .(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,可得 k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0,∴x 1+x 2=2k 2+4k 2. ∵直线l 经过抛物线C 的焦点F ,∴|AB |=x 1+x 2+p =2k 2+4k 2+2=8,解得k =±1, 所以k 的值为1或-1.。

抛物线学案教案

抛物线学案教案

抛物线的简单几何性质课前预习学案一、 预习目标回顾抛物线的定义及抛物线的标准方程,预习抛物线的范围、对称性、顶点、离心率等几何性质 二、 预习内容 1、 复习回顾 (1) 抛物线定义叫作抛物线; 叫做抛物线的焦点。

叫做抛物线的准线①相同点; ②不同点 ; (3)回顾练习①已知抛物线y 2=2px 的焦点为F ,准线为l ,过焦点F 的弦与抛物线交于A 、B 两点,过A 、B 分别作AP ⊥l ,BQ ⊥l ,M 为PQ 的中点,求证:MF ⊥AB②在抛物线y 2=2x 上方有一点M (3,310),P 在抛物线上运动,|PM|=d 1,P 到准线的距离为d 2,求当d 1 +d 2最小时,P 的坐标。

2、预习新知(1)根据抛物线图像探究抛物线的简单几何性质①范围 : ; ②对称性: ; ③顶点: ; ④离心率: ; (2)自我检测:1.已知点1(,0)4F -,直线l :41=x ,点B 是直线l 上的动点,若过B 垂直于y 轴的直线图①与线段BF 的垂直平分线交于点M ,则点M 所在曲线是( )()A 圆 ()B 椭圆 ()C 双曲线 ()D 抛物线2.设抛物线22y x =的焦点为F ,以9(,0)2P 为圆心,PF 长为半径作一圆,与抛物线在x 轴上方交于,M N ,则||||MF NF +的值为 ( )()A 8 ()B 18 ()C 22 ()D 43.过点(3,1)--的抛物线的标准方程是 . 焦点在10x y --=上的抛物线的标准方程是 .4.抛物线28y x =的焦点为F ,(4,2)A -为一定点,在抛物线上找一点M ,当||||MA MF +为最小时,则M 点的坐标 ,当||||||MA MF -为最大时,则M 点的坐标 . 三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化 二、学习过程1、定义 ;2、标准方程 ;3、几何性质①范围 : ; ②对称性: ; ③顶点: ; ④离心率: ;4、完成下表标准方程图形顶点 对称轴焦点准线离心率()022>=p pxy()0,02p x -= 1=exyO Fl()0,0x 轴⎪⎭⎫ ⎝⎛-0,2p1=e()022>=p pyx()0,02p y -= 1=e()0,0y 轴1=e5、分析例题例1 已知抛物线关于x 轴为对称,它的顶点在坐标原点,并且经过点)22,2(-M ,求它的标准方程,并用描点法画出图形.例2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm ,灯深为40cm ,求抛物线的标准方程和焦点位置.例3 过抛物线px y 22=的焦点F 任作一条直线m ,交这抛物线于A 、B 两点,求证:以AB 为直径的圆和这抛物线的准线相切.例4. 已知抛物线24x y =与圆2232x y +=相交于,A B 两点,圆与y 轴正半轴交于C 点,直线l 是圆的切线,交抛物线与,M N ,并且切点在ACB 上.(1)求,,A B C 三点的坐标.(2)当,M N 两点到抛物线焦点距离和最大时,求直线l 的方程.xyE OF B ADC H课后练习与提高1.过抛物线x y 42=的焦点作直线交抛物线于()11,y x A ,()22,y x B 两点,如果621=+x x ,那么||AB =( B )(A )10 (B )8 (C )6 (D )42.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( B )(A )3 (B )4 (C )5 (D )6 3.过抛物线()02>=a axy 的焦点F 作直线交抛物线于P 、Q 两点,若线段PF 、QF 的长分别是p 、q ,则qp 11+=( C ) (A )a 2 (B )a 21 (C )a 4 (D )a4 4.过抛物线x y 42=焦点F 的直线l 它交于A 、B 两点,则弦AB 的中点的轨迹方程是 ______ (答案:()122-=x y )5.定长为3的线段AB 的端点A 、B 在抛物线x y =2上移动,求AB 中点M 到y 轴距离的最小值,并求出此时AB 中点M 的坐标 (答案:⎪⎪⎭⎫⎝⎛±22,45M , M 到y 轴距离的最小值为45) 6.根据下列条件,求抛物线的方程,并画出草图.(1)顶点在原点,对称轴是x 轴,顶点到焦点的距离等于8. (2)顶点在原点,焦点在y 轴上,且过P (4,2)点.(3)顶点在原点,焦点在y 轴上,其上点P (m ,-3)到焦点距离为5.7.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在准线上的射影是A 2,B 2,则∠A 2FB 2等于8.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y 轴垂直的弦长为16,求抛物线方程.9.以椭圆1522=+y x 的右焦点,F 为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长.10.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?。

2024年抛物线教学设计抛物线教案

2024年抛物线教学设计抛物线教案

2024年抛物线教学设计抛物线教案一、教学内容二、教学目标1. 理解抛物线的定义,掌握抛物线的性质及其标准方程;2. 能够运用抛物线的性质解决实际问题,提高数学应用能力;3. 培养学生的空间想象能力和逻辑思维能力。

三、教学难点与重点教学难点:抛物线的标准方程及其推导过程,抛物线图形的变换。

教学重点:抛物线的定义、性质,抛物线标准方程的求解与应用。

四、教具与学具准备教具:黑板、粉笔、多媒体设备;学具:直尺、圆规、量角器、练习本。

五、教学过程1. 实践情景引入利用多媒体展示抛物线在实际生活中的应用,如抛物线形拱桥、抛物线形卫星天线等,引导学生思考抛物线的特点及其应用。

2. 例题讲解(1)抛物线的定义与性质(2)抛物线的标准方程以焦点在y轴上的抛物线为例,推导出标准方程y^2=4ax,并解释a的几何意义。

(3)抛物线的图形及其变换通过变换抛物线的参数a、b、c,观察抛物线图形的变化,让学生深刻理解抛物线方程的含义。

3. 随堂练习(1)求抛物线y^2=4x的焦点和准线;(2)已知抛物线的焦点和准线,求抛物线的标准方程;(3)分析抛物线图形的变换,如平移、伸缩等。

(2)拓展抛物线的应用,如抛物线型拱桥的优化设计等。

六、板书设计1. 抛物线的定义与性质2. 抛物线的标准方程y^2=4ax3. 抛物线的图形及其变换平移、伸缩、翻转等七、作业设计1. 作业题目(1)求抛物线x^2=8y的焦点、准线和对称轴;(2)已知抛物线的焦点为F(2,0),准线为x=2,求抛物线的标准方程;(3)抛物线y^2=8x的图形经过怎样的变换可以得到y^2=16x?2. 答案(1)焦点:(0,2),准线:y=2,对称轴:y轴;(2)y^2=8x;(3)抛物线y^2=8x沿x轴平移2个单位,得到y^2=16x。

八、课后反思及拓展延伸1. 反思:本节课学生对抛物线的定义、性质和标准方程掌握情况较好,但部分学生在求解实际问题时仍存在困难,需要在课后加强练习。

网络名师小班辅导教案-初中数学二次函数第3讲抛物线与几何变换学生版

网络名师小班辅导教案-初中数学二次函数第3讲抛物线与几何变换学生版

内容基本要求略高要求较高要求 二次函数1.能根据实际情境了解二次函数的意义;2.会利用描点法画出二次函数的图像;1.能通过对实际问题中的情境分析确定二次函数的表达式;2.能从函数图像上认识函数的性质;3.会确定图像的顶点、对称轴和开口方向;4.会利用二次函数的图像求出二次方程的近似解;1.能用二次函数解决简单的实际问题;2.能解决二次函数与其他知识结合的有关问题;一、二次函数图的平移(1)具体步骤:先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”.二、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;知识点睛中考要求第三讲抛物线与几何变换2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.1. 灵活应用二次函数的三种表达形式,求二次函数解析式。

《抛物线的几何性质》 导学案

《抛物线的几何性质》 导学案

《抛物线的几何性质》导学案一、学习目标1、掌握抛物线的定义、标准方程及其简单几何性质。

2、能够运用抛物线的几何性质解决相关的问题。

3、通过对抛物线几何性质的探究,提高观察、分析和解决问题的能力。

二、学习重点1、抛物线的几何性质,如开口方向、对称轴、顶点、焦点、准线等。

2、抛物线几何性质的应用。

三、学习难点1、抛物线几何性质的推导和理解。

2、运用抛物线的几何性质解决综合问题。

四、知识回顾1、抛物线的定义:平面内与一定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线。

点 F 叫做抛物线的焦点,直线 l 叫做抛物线的准线。

2、抛物线的标准方程:焦点在 x 轴正半轴上:\(y^2 = 2px (p > 0)\),焦点坐标\(F(\frac{p}{2}, 0)\),准线方程\(x =\frac{p}{2}\)。

焦点在 x 轴负半轴上:\(y^2 =-2px (p > 0)\),焦点坐标\(F(\frac{p}{2}, 0)\),准线方程\(x =\frac{p}{2}\)。

焦点在 y 轴正半轴上:\(x^2 = 2py (p > 0)\),焦点坐标\(F(0, \frac{p}{2})\),准线方程\(y =\frac{p}{2}\)。

焦点在 y 轴负半轴上:\(x^2 =-2py (p > 0)\),焦点坐标\(F(0, \frac{p}{2})\),准线方程\(y =\frac{p}{2}\)。

五、新课讲解(一)抛物线的范围以抛物线\(y^2 = 2px (p > 0)\)为例,因为\(y^2 \geq 0\),所以\(2px \geq 0\),又因为\(p > 0\),所以\(x \geq 0\),即抛物线在\(x\)轴的右侧。

同理,对于抛物线\(y^2 =-2px (p > 0)\),\(x \leq 0\),抛物线在\(x\)轴的左侧。

对于抛物线\(x^2 = 2py (p > 0)\),\(y \geq 0\),抛物线在\(y\)轴的上方。

用顶点式解决抛物线图形变换教学设计15

用顶点式解决抛物线图形变换教学设计15

《用顶点式解决抛物线图形变换》教学设计一、教材的地位和作用《用顶点式解决抛物线图形变换》时九年义务教育浙教版教材九年级上册第一张《二次函数》关于图像中的一节重要内容,中考中有做相应的要求。

在此之前学生已经学习了顶点式,以及点的平移和轴对称,为这节课的学习起了铺垫的作用。

本节内容是对抛物线图像的进一步深化,有利于对图像以及解析式的巩固,也是本章内容的重点内容。

二、教学目标(一)知识与技能1.认识得到具体完整的顶点式抛物线解析式具备条件,并且可以熟练写出。

2:理解每种变换对a和顶点的影响,以及会产生什么样的影响,学会不画图通过手势甚至是思想呈现变换过程,熟练得出变换后的a的值和变换后的顶点,从而得出变换后的顶点式抛物线解析式。

(二)情感态度提高学生对空间的想象能力,提高学生分析问题,解决问题的能力。

三、学情分析由于学生对几何类醒目的理解相对较弱,本班学生基础不是非常扎实。

学生学习积极性主动性不足,缺少独立思考能力,对数学的投入会做,但是需要监督和引导。

学生对新鲜课题或者有趣丰富的课堂比较感兴趣,然而抛物线内容难度较高,题型多变,融会贯通需要时间和方法,因此需要上一堂让学生动手动脑,丰富多彩,生动直观的课程,提高专注度和兴趣度。

四、教学重点与难点教学重点:抛物线平移、轴对称、旋转变换后对图形a的值以及顶点的确定。

教学难点:变换后的图像需要一定的空间想象能力,学生缺少这方面的能力,脱离开课件演示的变换过程难度较高。

五、教法与学法分析教法:比较教学法、形象教学法。

学法:比较、探究、形象化的学习方式六、教学过程1.回顾探究,引入新课从已学的顶点式出发。

师:顶点式抛物线解析式的公式是什么?(学生回答)问题:把抛物线y=2x2+8x+7改为y=a(x-h)2+k的形式为,抛物线开口,对称轴是,顶点坐标为__________ 二生:选用配方法求解(老师在黑板上演示配方法的步骤,并指出注意点)师:已知顶点为(-2, -1),你能写出具体完整的顶点式抛物线解析式么?如果不能,还需要什么条件?生:只能列出y=a (x+2)2-1 (a/0),还需要知道a的值。

抛物线导学案(第二课时)

抛物线导学案(第二课时)

一轮复习抛物线导学案(第二课时)班级姓名教学目标:1.了解抛物线的定义、几何图形和标准方程,以及它的简单几何性质2.了解抛物线的简单应用,通过抛物线的学习,进一步体会数形结合的思想.教学重点:抛物线的定义、几何图形和标准方程教学难点:双曲线简单几何性质,体会数形结合的思想及双曲线的应用教学过程一、知识回顾1.抛物线的定义一般地,设F是平面内的一个定点,l是不过点F的一条定直线,则平面上的点的轨迹称为抛物线.其中定点F称为抛物线的,定直线l称为抛物线的.2.抛物线的标准方程和几何性质3.直线与抛物线的位置关系1.求解直线与抛物线问题,一般利用方程法,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”“整体代入”“点差法”以及定义的灵活应用.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB|=x1+x2+p,若不过焦点,则可用弦长公式.3.注意直线是否垂直x轴,如果可以垂直直线可设为x=my+t,注意直线是否平行抛物线对称轴.二、例题讲解一、选择题1.已知点P(2,y)在抛物线y2=4x上,则点P到抛物线焦点F的距离为()A.2B.3C.3D.22.A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=() A.2 B.3 C.6 D.93.抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C上的点,若△OFM(O为坐标原点)的外接圆与抛物线C的准线相切,且该圆的面积为36π,则p=()A.2 B.4 C.6 D.84.抛物线y 2=2px (p >0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的方程为( ) A .y 2=4x B .y 2=36xC .y 2=4x 或y 2=36xD .y 2=8x 或y 2=32x5.设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |=( ) A .2 B .22 C .3D .326.(多选题)已知F 是抛物线C :y 2=16x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则( )A .C 的准线方程为x =-4B .F 点的坐标为(0,4)C .|FN |=12D .三角形ONF 的面积为162(O 为坐标原点)二、填空题7.若点P 到直线y =-1的距离比它到点(0,3)的距离小2,则点P 的轨迹方程是________.8.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=________. 9.已知点A 是抛物线y 2=2px (p >0)上一点,F 为其焦点,以点F 为圆心,|F A |为半径的圆交抛物线的准线于B ,C 两点.若△FBC 为等腰直角三角形,且△ABC 的面积是42,则抛物线的方程是________. 三、解答题10.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.11.已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《抛物线变换》专题
班级 姓名
一、选择
1、将抛物线y=5x 2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式
为( )
A .y=5(x+3)2+2
B .y=5(x+3)2-2
C .y=5(x-3)2+2
D .y=5(x-3)2-2
2、直角坐标平面上将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移
1个单位,则其顶点为( )
A.(0,0)
B.(1,-2)
C.(0,-1)
D.(-2,1)
3、把抛物线c bx x y ++=2的图像向右平移3个单位,在向下平移2个单位,所得图像的解析式是532+-=x x y ,则有( )
A .b =3,c =7
B .b =-9,c=-15
C .b =3,c =3
D .b=-9,c =21
4、在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )
A .22y x x =--+
B .22y x x =-+-
C .22y x x =-++
D .22y x x =++
二、填空
1、抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.
2、把抛物线y =-2x 2+4x +3沿x 轴翻折后,则所得的抛物线关系式为________.
3、与y= 21
2x -3x+2
5关于Y 轴对称的抛物线________________ 4、将抛物线21(3)52
y x =-
-+绕顶点旋转180°后的关系式为________. 5、将抛物线221x y -=先向右平移1个单位,再绕顶点旋转180°,所得抛物线的解析式 是
6、抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移 个单位.
三、解答
1、已知二次函数3x 2x y 2+--=。

(1)把它配方成
k )h x (a y 2+-=的形式。

(2)写出函数图象的开口方向、顶点坐标及对称轴。

(3)函数3x 2x y 2+--=的图象可由抛物线
4x y 2+-=向 平移 个单位长度得到。

(4)求出函数的图象与两坐标轴的交点坐标。

(5)抛物线3x 2x y 2
+--=在x 轴上截得的线段长度是 。

(6)画出此函数的图象,根据函数的图象回答:
①当x 时,二次函数3x 2x y 2+--=的函数值随x 增大而增大;当x 时,
二次函数
3x 2x y 2+--=的函数值随x 增大而减小; ②当x 时,二次函数3x 2x y 2+--=的值大于0;当x 时,二次函数3x 2x y 2+--=的值小于0;
③当x 时,二次函数3x 2x y 2+--=取得最 值,这个最值为 。

(7)求将二次函数3x 2x y 2+--=的顶点平移到点(1,-4)后得到的函数图象的解析
式。

(8)求将二次函数3x 2x y 2+--=的图象沿直线4y =折叠后得到的函数图象的解析式。

(9)求将二次函数3x 2x y 2+--=的图象沿y 轴翻折后得到的函数图象的解析式。

(10)求将二次函数3x 2x y 2+--=的图象绕着顶点旋转180°后得到的函数图象的解析
式。

(11)求抛物线3x 2x y 2+--=与直线1y -=的交点坐标,并求出两交点之间的距离。

(12)判断抛物线3x 2x y 2+--=与直线4x 2y +=的位置关系。

2、在平面直角坐标系xOy 中,二次函数C 1:y=ax 2+bx+c 的图象与C 2:y=2x 2-4x+3的图象关
于y 轴对称,且C 1与直线y=mx+2交与点A(n ,1).试确定m 的值.
3、直角坐标平面xOy 中,二次函数y=x 2+2(m+2)x+m-2图象与y 轴交于(0,-3)点.(1)求该
二次函数的解析式,并画出示意图;(2)将该二次函数图象向左平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.。

相关文档
最新文档