模拟CMOS集成电路设计(拉扎维)第十章稳定性与频率补偿
模拟CMOS集成电路设计 第1章 模拟集成电路设计绪论
模拟设计困难的原因是什么?
E. 模拟电路许多效应的建模和仿真仍然存在问题 ,模拟设计需要设计者利用经验和直觉来分析 仿真结果。 F. 现代集成电路制造的主流技术是为数字电路开 发的,它不易被模拟电路设计所利用(如特征 尺寸减小导致器件迁移率下降、沟道调制效应 增大;电源电压的下降使以前的一些电路设计 技术受到限制等),为了设计高性能的模拟电 路,需不停开发新的电路和结构。
A. 模拟设计涉及到在速度、功耗、增益、精度、电 源电压等多种因素间进行折衷,而数字电路只需 在速度和功耗之间折衷。 B. 模拟电路对噪声、串扰和其它干扰比数字电路要 敏感得多。 C. 器件的二级效应对模拟电路的影响比数字电路要 严重得多。
模拟设计困难的原因是什么(1) ?
D. 高性能模拟电路的设计很少能自动完成,而许多 数字电路都是自动综合和布局的。
模拟集成电路设计绪论 Ch.1# 9
光接收机
转换为一个小电流 高速电流处理器
激光二极管
光敏二极管
光纤系统
模拟集成电路设计绪论 Ch.1# 10
传感器
(a) 简单的加速度表
(b) 差动加速度表
汽车触发气囊的加速度检测原理图
模拟集成电路设计绪论 Ch.1# 11
为什么要学模拟CMOS集成电路设计?
组合二进制数据 DAC
传送端
多电平信号
ADC
接收端
确定所传送电平
模拟集成电路设计绪论 Ch.1# 7
磁盘驱动电子学的数据
模拟集成电路设计绪论 Ch.1# 8
无线接受机
无线接收天线接收到的信号(幅度只有几微伏)和噪声频谱
接收机放大低电平信号时必须具有极小噪 声、工作在高频并能抑制大的有害成分。
【书】模拟CMOS集成电路设计 毕查德.拉扎维著
【简介】模拟集成电路的设计与其说是一门技术,还不如说是一门艺术。
它比数字集成电路设计需要更严格的分析和更丰富的直觉。
严谨坚实的理论无疑是严格分析能力的基石,而设计者的实践经验无疑是诞生丰富直觉的源泉。
这也正足初学者对学习模拟集成电路设计感到困惑并难以驾驭的根本原因。
.美国加州大学洛杉机分校(UCLA)Razavi教授凭借着他在美国多所著名大学执教多年的丰富教学经验和在世界知名顶级公司(AT&T,Bell Lab,HP)卓著的研究经历为我们提供了这本优秀的教材。
本书自2000午出版以来得到了国内外读者的好评和青睐,被许多国际知名大学选为教科书。
同时,由于原著者在世界知名顶级公司的丰富研究经历,使本书也非常适合作为CMOS模拟集成电路设计或相关领域的研究人员和工程技术人员的参考书。
...本书介绍模拟CMOS集成电路的分析与设计。
从直观和严密的角度阐述了各种模拟电路的基本原理和概念,同时还阐述了在SOC中模拟电路设计遇到的新问题及电路技术的新发展。
本书由浅入深,理论与实际结合,提供了大量现代工业中的设计实例。
全书共18章。
前10章介绍各种基本模块和运放及其频率响应和噪声。
第11章至第13章介绍带隙基准、开关电容电路以及电路的非线性和失配的影响,第14、15章介绍振荡器和锁相环。
第16章至18章介绍MOS器件的高阶效应及其模型、CMOS制造工艺和混合信号电路的版图与封装。
模拟CMOS集成电路设计.part1.rar 模拟CMOS集成电路设计.part2.rar 模拟CMOS集成电路设计.part3.rar 模拟CMOS集成电路设计.part4.rar 模拟CMOS集成电路设计.part5.rar。
模拟cmos集成电路设计拉扎维MOS器件物理基础PPT课件
第23页/共61页
跨导gm
VGS对IDS的控制能力 IDS对VGS变化的灵敏度
gm ID VGS VDS cons tant
• 直流关系式-I/V特性 • 交流关系式-小信号电路中的参数
第6页/共61页
MOS管简化模型
简化模型——开关 由VG控制的一个开关
第7页/共61页
MOS管的结构
Bulk(body)
源漏在物理结构上是完全对称的,靠什么区分开?
提供载流子的端口为源,收集载流子的端口为漏
最重要的工作区域?
受VG控制的沟道区
• 小信号模型 • 信号相对于偏置工作点而言比较小、不会显著影响偏置工作点时用该模型简化计算 • 由gm、 gmb、rO等构成低频小信号模型,高频时还需加上 CGS等寄生电容、寄生电阻(接触孔电阻、 导电层电阻等)
沟道电荷的产生
当VG大到一定 程度时,表面势 使电子从源流向 沟道区 VTH定义为表面电 子浓度等于衬底 多子浓度时的VG
第12页/共61页
阈值电压
0 栅与衬底功函数差
COX
OX
TOX
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH0就固定了,设计者无法改变
第13页/共61页
I/V特性-沟道随VDS的变化
第3页/共61页
掌握器件物理知识的必要性
• 数字电路设计师一般不需要进入器件内部,只把它当开关用即可 • AIC设计师必须进入器件内部,具备器件物理知识
• MOS管是AIC的基本元件 • MOS管的电特性与器件内部的物理机制密切相关,设计时需将两者结
模拟CMOS集成电路设计:稳定度与频率补偿
Y (s) H (s)
X 1 H (s)
如果 βH(s=jω1)=-1,增益將會趨近於無限大,而電路會 放大自身所產生的雜訊直到其開始振盪為止。
巴克豪森條件:
H ( j1) 1 H ( j1) 180o
類比CMOS積體電路設計 第十章 穩定度與頻率補償
482
不穩定和穩定系統
不穩定系統和穩定系統迴路增益之波德圖。
單端輸出伸縮運算放大器之迴路增益波德圖。
類比CMOS積體電路設計 第十章 穩定度與頻率補償
501
移動主要極點
將主要極點往原點移動將會影響強度圖形而不會影 響相位圖形中的重要部份。
1
exp(
j175o
)
1 0.9962 j0.0872
0.0038 j0.0872
Y X
(
j1)
1
1 0.0872
11.5
相位安全邊限定義為 PM 180o H ( 1)
類比CMOS積體電路設計 第十章 穩定度與頻率補償
493
例題 10.3
設計一雙極點系統使得 |βH (ωp2)|=1 且 |ωp1|<<|ωp2| (圖10.10),其相位安 全邊限為何? 答:
類比CMOS積體電路設計 第十章 穩定度與頻率補償
484
時域響應
系統的時域響應 vs. 極點位置,(a)強度大小增加造成之不 穩定狀態;(b)固定強度振盪造成之不穩定狀態;(c)穩定 狀態。
類比CMOS積體電路設計 第十章 穩定度與頻率補償
485
單極點前授放大器之回授系統
單極點系統之迴路增益波德圖。
類比CMOS積體電路設計 第十章 穩定度與頻率補償
491
相位安全邊限
CMOS模拟集成电路设计_ch10稳定性和频率补偿.
gm6
I6 (6 7 )
GB gm1 / Cc p2 gm6 / CL
z1 gm6 / Cc
60deg PM要求p2>2.2GB ,else>10GB
VinCM ,max VDD VGS3 VTHN
VOD
2ID
,
KW L
COX
W L
VinCM ,min VSS VOD5 VGS1 VSS VOD5 VOD1 VTHN1
CMOS模拟集成电路设计
稳定性和频率补偿
王永生 Harbin Institute of Technology Microelectronics Center
2019/8/9
提纲
提纲
1、概述 2、多极点系统 3、相位裕度 4、频率补偿 5、两级运放的补偿
HIT Microelectronics
王永生
2019/8/9
相位裕度
相位裕度对反馈系统稳定性的影响
当PM=45°时,
Y X
(
j1)
1.3
当PM=60°时,
Y X
( j1)
1
当PM=90°时,
Y X
(
j1)
0.7
HIT Microelectronics
11
王永生
2019/8/9
频率补偿
12
4、频率补偿
增大PM的方法
2
王永生
2019/8/9
概述
3
1、概述
反馈系统存在潜在不稳定性
H (s j1) 1
振荡条件(巴克豪森判据)
CMOS模拟集成电路设计 拉扎维课件
.endHIT Microelectronics
26
王永生
2009-1-16
27
Байду номын сангаас
小结
用简单的模型设计(design),用复杂的模型验证 (verification);
种类
1st 代:MOS1,MOS2,MOS3; 2nd代:BSIM,HSPICE level=28,BSIM2 3rd代:BSIM3,MOS model9,EKV(Enz-Krummenacher-Vittoz)
目前工艺厂家最常提供的MOS SPICE模型为BSIM3v3 (UC Berkeley)
*model .MODEL MNMOS NMOS VTO=0.7 KP=110U +LAMBDA=0.04 GAMMA=0.4 PHI=0.7
.end
HIT Microelectronics
23
王永生
2009-1-16
MOS SPICE模型
例:采样spice进行DC分析
* DC analysis for AMP M1 2 1 0 0 MOSN w=5u l=1.0u M2 2 3 4 5 MOSP w=5u l=1.0u M3 3 3 4 4 MOSP w=5u l=1.0u R1 3 0 100K
.MODEL MOSP PMOS VTO=-0.7 KP=50U +LAMBDA=0.05 GAMMA=0.57 PHI=0.8
.endHIT Microelectronics
25
王永生
2009-1-16
模拟CMOS集成电路设计频率响应PPT课件
2 πC G S
1
CSBRS ||
gm
1 gmb
第13页/共66页
单级放大器的频率响应 Ch. 6 # 13
关于放大器高频分析的说明
本章我们研究放大器的高频特性,所谓“高频”, 这里主要是指在比低频略高一些的频率,这一频率相 当与波特图中的第一转折频率(即第一主极点频率, 该频率几乎反映了放大器的单位增益带宽),因此密 勒定理中的AV(f)可以用低频增益AV近似,虽然由此得 到的第二主极点频率可能与实际值因此相差较大一点 (第二主极点频率时AV(f)与低频增益AV相差较大), 但这并不影响我们对电路的定性理解,至于精确定量 分析,当然只能借助计算机了!
A(S) =
Z(S) P(S)
=
(1
A +
0(1±ωSZ1 S )(1 +
) S
)
ωP1
ωP2
•放大器极点越多且这些极点相互靠得较近时(也就是这 些极点的数值大小差不多),放大器的带宽越窄。
拉扎维模拟CMOS集成电路设计
Introduction to Analog Design
Why analog? (8)
Since the electrical current converted by a photodiode is very small, the receiver after the photodiode must process a low-level signal at a very high speed, which requires a low noise, broadband circuit design.
Natural signals are analog, while many signals we used are digital So we need ADC to convert an analog signal to digital signal and then use DSP to process the digital signal.
Introduction to Analog Design
Why analog? (5) 3. Disk Drive Electronics
The signal received from the magnetic head is really weak and the noise is quite high. Just like Fig. 1.1b, there needs amplification, filtering and ADC for further processing.
Fig. 1.5 Signal and interferers received by the antenna of a wireless receiver.
拉扎维_模拟CMOS集成电路设计课后答案
CORRECTIONS TO SOLUTIONS MANUALIn the new edition, some chapter problems have been reordered and equations and figure refer-ences have changed. The solutions manual is based on the preview edition and therefore must be corrected to apply to the new edition. Below is a list reflecting those changes.The “NEW” column contains the problem numbers in the new edition. If that problem was origi-nally under another number in the preview edition,that number will be listed in the“PREVIEW”column on the same line.In addition,if a reference used in that problem has changed,that change will be noted under the problem number in quotes. Chapters and problems not listed are unchanged.For example:NEW PREVIEW--------------4.18 4.5“Fig. 4.38” “Fig. 4.35”“Fig. 4.39” “Fig. 4.36”The above means that problem4.18in the new edition was problem4.5in the preview edition.To find its solution, look up problem 4.5 in the solutions manual. Also, the problem 4.5 solution referred to “Fig. 4.35” and “Fig. 4.36” and should now be “Fig. 4.38” and “Fig. 4.39,” respec-tively._____________________________________________________________________________ CHAPTER 3NEW PREVIEW--------------3.1 3.83.2 3.93.3 3.113.4 3.123.5 3.133.6 3.143.7 3.15“From 3.6” “From 3.14”3.8 3.163.9 3.173.10 3.183.11 3.193.12 3.203.13 3.213.14 3.223.15 3.13.16 3.23.17 3.2’3.18 3.33.19 3.43.20 3.53.21 3.63.22 3.73.23 3.103.24 3.233.25 3.243.26 3.253.27 3.263.28 3.273.29 3.28 CHAPTER 4NEW PREVIEW--------------4.1 4.124.2 4.134.3 4.144.4 4.154.5 4.164.6 4.174.7 4.18“p. 4.6” “p. 4.17”4.8 4.194.9 4.204.10 4.214.11 4.224.12 4.234.13 4.24“p. 4.9” “p. 4.20”4.14 4.1“(4.52)” “(4.51)”“(4.53)” “(4.52)”4.15 4.24.16 4.34.17 4.44.18 4.5“Fig. 4.38” “Fig. 4.35”“Fig. 4.39” “Fig. 4.36”4.19 4.6“Fig 4.39(c)” “Fig 4.36(c)”4.20 4.74.21 4.84.22 4.94.23 4.104.24 4.114.25 4.254.26 4.26“p. 4.9” “p. 4.20”CHAPTER 5NEW PREVIEW--------------5.1 5.165.2 5.175.3 5.185.4 5.195.5 5.205.6 5.215.7 5.225.8 5.235.9 5.15.10 5.25.11 5.35.12 5.45.13 5.55.14 5.65.15 5.75.16 5.85.17 5.95.18 5.10“Similar to 5.18(a)” “Similar to 5.10(a)”5.19 5.115.20 5.125.21 5.135.22 5.145.23 5.15CHAPTER 6NEW PREVIEW--------------6.1 6.76.2 6.86.3 6.9“from eq(6.23)” “from eq(6.20)”6.4 6.106.5 6.11“eq (6.52)” “eq (6.49)”6.6 6.16.7 6.26.8 6.36.9 6.46.10 6.56.11 6.66.13 6.13“eq (6.56)” “eq (6.53)”“problem 3” “problem 9”6.16 6.16“to (6.23) & (6.80)” “to (6.20) & (6.76)”6.17 6.17“equation (6.23)” “equation (6.20)”CHAPTER 7NEW PREVIEW--------------7.27.2“eqn. (7.59)” “eqn. (7.57)”7.177.17“eqn. (7.59)” “eqn. (7.57)7.197.19“eqns 7.66 and 7.67” “eqns 7.60 and 7.61”7.217.21“eqn. 7.66” “eqn. 7.60”7.227.22“eqns 7.70 and 7.71” “eqns. 7.64 and 7.65”7.237.23“eqn. 7.71” “eqn. 7.65”7.247.24“eqn 7.79” “eqn 7.73”CHAPTER 8NEW PREVIEW--------------8.18.58.28.68.38.78.48.88.58.98.68.108.78.118.88.18.98.28.108.38.118.48.138.13“problem 8.5” “problem 8.9”CHAPTER 13NEW PREVIEW--------------3.17 3.17“Eq. (3.123)” “Eq. (3.119)”CHAPTER 14 - New Chapter, “Oscillators”CHAPTER 15 - New Chapter, “Phase-Locked Loops”CHAPTER 16 - Was Chapter 14 in Preview Ed.Change all chapter references in solutions manual from 14 to 16. CHAPTER 17 - Was Chapter 15 in Preview Ed.Change all chapter references in solutions manual from 15 to 17. CHAPTER 18 - Was Chapter 16 in Preview Ed.NEW PREVIEW--------------18.316.3“Fig. 18.12(c)” “Fig. 16.13(c)”18.816.8“Fig. 18.33(a,b,c,d)” “Fig. 16.34(a,b,c,d)”Also, change all chapter references from 16 to 18.。
模拟CMOS集成电路设计 10 运放频率补偿
判断系统是否稳定的有力工具是波特图!
运放的稳定性与频率补偿 Ch. 10 # 4
波特图的画法 1. 幅频曲线中,每经过一个极点ωP(零点ωZ), 曲线斜率以-20dB/dec (+20dB/dec )变化。 2. 相频曲线中,相位在0.1ωP(0.1ωZ)处开始变 化,每经过一个极点ωP(零点ωZ),相位变化45° (±45°),相位在10ωP(10ωZ)处变化90° (±90°) 3. 一般来讲,极点 (零点)对相位的影响比对幅 频的影响要大一些。
运放的稳定性与频率补偿 Ch. 10 # 20
运放的频率补偿(例1)
假定在单位增益带宽GB(f0dB)内只有一个主极 点fP1 ,求低频增益A0、 f0dB 与fP1的关系。
A0 A0 A(S)= A(jω)= S jω -1 -1 fP1 fP1
由单位增益的 定义可知:
jf0dB f0dB f0dB A0 = -1 ≈ fP1 fP1 fP1 A0
运放的稳定性与频率补偿 Ch. 10 # 23
全差动套筒式运放的频率特性
Zout =(1+ g m5r05 )ZN + r05
-1 ≈(1+ g m5r05 ) r07// C N S r07 ≈(1+ g m5r05 ) r07C N S +1
运放的稳定性与频率补偿 Ch. 10 # 24
运放的稳定性与频率补偿 Ch. 10 # 5
利用波特图判断运放稳定性的方法
1. 先求得反馈系数F(F一般是一个实数),在 幅频曲线上作直线-20logF,交幅频曲线 于点A。 2. 过A作垂线交相频曲线于点B,若B 点对应的相位ΦB>-180°,则系统 稳定, 反之不稳定。ΦB与-180 ° 的差值称为相位余度PM。 3. 也可以在相频曲线上作直线交 相频曲线于点D,过D作垂线交 幅频曲线于E,若E点对应的增 益AE<-20logF,则系统稳定, 反之系统不稳定,AE与-20logF的差值称为增益余度GM。
模拟CMOS集成电路设计(毕查德·拉扎维著,陈贵灿等译,西安交通大学出版社)绪论课件
模拟CMOS集成电路设计(毕查德·拉扎维著,陈贵灿等译,西安交通大学出版社)绪论课件模拟CMOS集成电路设计教材n模拟CMOS集成电路设计,毕查德.拉扎维著,陈贵灿等译,西安交通大学出版社参考资料n半导体集成电路,朱正涌,清华大学出版杜n CMOS模拟电路设计(英文),P.E.Allen,D.R.Holberg,电子工业出版社n模拟集成电路的分析与设计,P.R.Gray等著,高等教育出版社半导体集成电路发展历史n1947年BELL实验室发明了世界上第一个点接触式晶体管(Ge NPN)半导体集成电路发展历史n1948年BELL 实验室的肖克利发明结型晶体管n1956年肖克利、布拉顿和巴丁一起荣获诺贝尔物理学奖n50年代晶体管得到大发展(材料由Ge→Si)半导体集成电路发展历史n1958年TI公司基尔比发明第一块简单IC。
n在Ge晶片上集成了12个器件。
n基尔比也因此与赫伯特·克勒默和俄罗斯的泽罗斯·阿尔费罗夫一起荣获2000年度诺贝尔物理学奖。
半导体集成电路发展历史n19世纪60年代美国仙童公司的诺依斯开发出用于IC的平面工艺技术,从而推动了IC制造业的大发展。
半导体集成电路发展历史n60年代TTL、ECL出现并得到广泛应用n1966年MOS LSI发明(集成度高,功耗低)n70年代MOS LSI得到大发展(出现集成化微处理器,存储器)n80年代VLSI出现,使IC进入了崭新的阶段。
n90年代ASIC、ULSI和巨大规模集成GSI等代表更高技术水平的IC 不断涌现,并成为IC应用的主流产品。
n21世纪SOC、纳米器件与电路等领域的研究已展开n展望可望突破一些先前认为的IC发展极限,对集成电路IC的涵义也将有新的诠释。
集成电路用半导体工艺,或薄膜、厚膜工艺(或这些工艺的组合),把电路的有源器件、无源元件及互连布线以相互不可分离的状态制作在半导体或绝缘材料基片上,最后封装在一个管壳内,构成一个完整的、具有特定功能的电路、组件、子系统或系统。
拉扎维模拟CMOS集成电路设计(前十章全部课件)
Φ MS:多晶硅栅与硅衬底功函数之差 Qdep耗尽区的电荷,是衬源电压VBS的函数
模拟集成电路设计绪论 Ch. 1 # 23
重邮光电工程学院
MOS管的开启电压VT及体效应
VTH VTH0 2F VSB 2 F ,
2qsiNsub Cox
(a)自然界信号的数字化 ( b)增加放大器和滤波器以提高灵敏度
模拟集成电路设计绪论 Ch.1# 3
重邮光电工程学院
数字通信
数字信号通过有损电缆的衰减和失真
失真信号需放大、滤波和数字化后才再处理
模拟集成电路设计绪论 Ch.1# 4
重邮光电工程学院
数字通信
1 0
11
10 01
00
使用多电平信号以减小所需的带宽 组合二进制数据 DAC 多电平信号 ADC 确定所传送电平
模拟集成电路设计绪论 Ch. 1 # 4
重邮光电工程学院
MOS器件符号
MOS管等效于一个开关!
模拟集成电路设计绪论 Ch. 1 # 5
重邮光电工程学院
MOS器件的阈值电压VTN(P)
(a)栅压控制的MOSFET
(c)反型的开始
(b)耗尽区的形成
(d)反型层的形成
模拟集成电路设计绪论 Ch. 1 # 6
源极跟随器
无体效应
有体效应
模拟集成电路设计绪论 Ch. 1 # 24
重邮光电工程学院
MOSFET的沟道调制效应
模拟集成电路设计绪论 Ch. 1 # 25
重邮光电工程学院
MOSFET的沟道调制效应
L
L’
L' L L 1 1/ L' (1 L / L) L 1 1/ L' (1 V DS ), VDS L / L L nCox W ID (VGS VTH )2 (1 VDS) 2 L
拉扎维带隙基准模拟cmos集成电路设计
华大微电子:模拟集成电路原理
Bandgap Ref Ch. 11 # 17
第18页/共29页
Bandgap Ref Ch. 11 # 18
PTAT电流的产生
第19页/共29页
P TAT 电 流 的 产 生
华大微电子:模拟集成电路原理
第20页/共29页
VREF
VBE3
R2 R1
VT
ln n
Bandgap Ref Ch. 11 # 19
第4页/共29页
与电源无关的偏置
如何产生IREF?
I out
VDD R1 1 g m1
W W
L1 L2
华大微电子:模拟集成电路原理
Bandgap Ref Ch. 11 # 4
第5页/共29页
与电源无关的偏置
华大微电子:模拟集成电路原理
2Iout
nCOX W
L
N
VTH 1
2I out nCOX K W
华大微电子:模拟集成电路原理
Bandgap Ref Ch. 11 # 10
第11页/共29页
与温度无关的偏置
华大微电子:模拟集成电路原理
Vout
VBE2
VT
ln n1
R2 R3
Bandgap Ref Ch. 11 # 11
第12页/共29页
与温度无关的偏置
华大微电子:模拟集成电路原理
Bandgap Ref Ch. 11 # 12
第27页/共29页
实例分析
华大微电子:模拟集成电路原理
Bandgap Ref Ch. 11 # 27
第28页/共29页
感谢您的观看。
华大微电子:模拟集成电路原理
模拟CMOS集成电路设计 拉扎维 ——复旦大学课件
( ) ③
加反偏电压
xn
=
2ε0ε si ΦB qND
+
VR
1
2
VR ↑⇒ x n ↑⇒ 宽度 ↑
1
P-N结耗尽区
耗尽区电荷和电容:
( )1
Qn
= Qp
=
qND xn
=
qN
D
2ε
0ε
si
ΦB qN D
+
VR
2
[ ( )] = 2ε 0ε siqND ΦB + VR
1 2
1
( ) C j
=
– 热激发形成自由载流子
– 载流子的分布由费米能级和费米函数表示
F(E)
=
1
+
1 e(E-EF
)/kT
– 本征载流子浓度:
ni = 3.9 ×1016 T e 3/2 -Eg0/2kT
室温下(300K) ni = 1.45 ×1010 cm-3
T↑,
n
↑。
i
T每升高11度,Ni
为原来的2倍。
掺杂半导体的费米势
模拟集成电路的一般概念
• 什么是模拟电路?
– 模拟信号 – 模拟信号的采样信号
一般概念(续)
• 什么是模拟集成电路设计?
特定模拟电路、或系 统的功能和性能
选择合适的集成电路 工艺
设计
成功的设计结果
集成和分立模拟电路的区别
• 器件制备在同一衬底上
– 器件具有相似的性能参数,易于匹配。 – 器件参数由几何尺寸决定。
EC
EC
Eg
EF=eφF
Ei
Ei
EF=eφF Eg
Ev
拉扎维的《AnalogCMOS集成电路设计》学习感受
拉扎维的《AnalogCMOS集成电路设计》学习感受从学校微电子专业毕业,工作已经五年了。
最近终于完完整整地看完一遍拉扎维的《Design of Analog CMOS integrated circuits》。
在此记一下学习本书的感受和心得。
1、《Analog CMOS集成电路设计》是一本很好的集成电路设计入门的书籍。
其中涉及到许多的背景知识,随着读者的水平不一,看到的层次不一。
有些第一次看没感受,多看几次会有感受;有些在经历相关工作前看没觉得,但有工作经验之后看有新的体会;还有一些,你看了之后会去查找相关的专业知识来进行补充。
第一章《绪论》讲述了模拟设计的应用场合,设计挑战及要求(如鲁棒性、PVT)。
第二章《MOS器件物理基础》是全书的基础,推导出器件的电流公式Id及跨导公式gm,后面的设计都紧紧围绕着两个公式展开。
后面的习题对了解MOS管的行为,提升设计的直觉有很大的帮助。
第三章《单级放大器》基于MOS的三个端子讲述了三种单级放大器:共源级、共栅极、共漏级(源跟随);和一种组合:共源共栅。
其中例3.10涉及到50ohm高速传输线知识和实际的相关设计比较。
第四章《差动放大器》,描述了差动对信号具有抗噪声的优点(还有EMI降低),及差动对的分析、共模抑制比、吉尔伯特单元等。
第五章《电流镜》,分析了电流镜的特点和在差动电路中的应用。
第六章《放大器的频率特性》,介绍了密勒效应,每一级的极点的计算和评估。
这章开始涉及频率响应。
第七章《噪声》,介绍了IC中的各种噪声:热噪声4kTR(4kTrgm)、闪烁噪声(1/f噪声)K/(CoxWLf).给出了多种电路的主要噪声的谱和RMS计算,相应的低噪声的要求和特征。
第八章《反馈》,系统地描叙了反馈的结构,种类(V-V,V-I,I-I,I-I),环路增益计算,负反馈对电路性能带来的改变(增益灵敏度降低、阻抗有益改变、带宽增加,非线性减少)。
第九章《运算放大器》介绍运放中的一系列技术,最主要的事套筒式和折叠式;单级和多级运放,共模反馈,Rail-Rail介绍,大信号的转换速率slewing rate响应,电源抑制,注意Vdd至Vout约为1。
模拟CMOS集成电路设计拉扎维第10章(部分)
第10章 稳定性与频率补偿
PM 45
H ( ) 135 1 H (1 ) 1
第10章 稳定性与频率补偿
对于图(b),GX超前PX有更大的间距。GX与PX间距越大(同时GX 保持小于PX),反馈系统越稳定。另一方面,在增益交点频率下的 H 的相位可以作为稳定性的度量:该处的 H 越小,系统越稳定。
PM 180o H ( 1 ), 1 是增益交点频率。
第10章 稳定性与频率补偿
PM 180o H ( 1 ), 1 是增益交点频率。
第10章 稳定性与频率补偿
第10章 稳定性与 H ( j1 ) 1 exp( j175o ) H ( j1 ) Y 11.5 ( j1 ) X 1 H ( j1 )
增益无穷大,噪声振荡。(巴克豪判据) o H ( jw1 ) 180
H ( jw1 ) 1
第10章 稳定性与频率补偿
不稳定系统和稳定系统的环路增益的波特图:
第10章 稳定性与频率补偿
增益交点用GX表示,相位交点用PX表示。
相位裕度:
phase margin,PM。电路设计中非常重要的指标,主要用来衡量负 反馈系统的稳定性。可以看作是系统进入不稳定状态之前可以增加的相位变 化,相位裕度越大,系统越稳定,但同时时间响应速度减慢了,因此必须要 有一个比较合适的相位裕度。
第10章 稳定性与频率补偿
10 稳定性与频率补偿
反馈: • 通过抑制开环性能的变化而精确地工作 • 不稳定,可能产生振荡 稳定性判别 相位裕度
第10章 稳定性与频率补偿
基本负反馈系统:
闭环传输函数:
Y H ( s) s X 1 H (s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tan1 f(u ) f p2
tan1 G(BW ) f p2
Stability Ch. 10 # 27
西电微电子:模拟集成电路设计
补偿的例子
问: 假设低频增益AV 0 = 5000V / V , f p1 = 2MHz, f p 2 = 25MHz, f p 3 = 50MHz 要求PM = 70°,应该将f p' 1的值减小到多少? 答: PM = 70°,修改后的单位增益带宽f p1 fu' f p 2 所以fu' AV 0 f p' 1
Stability Ch. 10 # 24
西电微电子:模拟集成电路设计
GBW与fp2的关系
环路:H ( j
)
= (1
+
)
p1
p2
若 p 2 >> >> p1
则H ( j ) = A0 j
A0 p1
j
p1
近似:在(
p1,
p 2)区间内, H ( j
A0 )
p1
为保证PM > 45,GX p 2,位于( p1, p 2)区间内
所以GX A0 p1补偿的方法:减小 p1,使GX A0 p1 p 2
最坏情况,=1,因此GBW = A0 f p1 f p 2
Stability Ch. 10 # 25
西电微电子:模拟集成电路设计
极点位置与相位裕度(1)
设单位增益频率fu 极点分别是f p1、f p 2、 f pn
则PM = 180° tan 1f(u ) tan 1 (f u ) tan 1f( u )
f p1
f p2
f pn
补偿后,fu >> f p1,所以 tan 1 ( fu ) 90° f p1
PM 90° tan1 (fu ) f p2
若f p 3、 f pn均远大于fu
tan ( )1 fu f pn
则PM 90° tan1 (fu ) f p2
Stability Ch. 10 # 26
Stability Ch. 10 # 11
西电微电子:模拟集成电路设计
三极点系统
稳定性:取决于增益交点GX与相位交点PX的相对位置 GX PX:稳定 p2 PX p3 若GX p2,则可保证稳定
Stability Ch. 10 # 12
本讲内容
西电微电子:模拟集成电路设计
• 稳定性概述 • 多极点系统 • 相位裕度 • 频率补偿 • 两级运放的补偿 • 其它补偿技术
Stability Ch. 10 # 30
本讲内容
西电微电子:模拟集成电路设计
• 稳定性概述 • 多极点系统 • 相位裕度 • 频率补偿 • 两级运放的补偿 • 其它补偿技术
Stability Ch. 10 # 31
西电微电子:模拟集成电路设计
两级运放的Miller补偿
Miller Effect Ceq = CE + (1 + Av 2 )CC
西电微电子:模拟集成电路设计
第十章 稳定性与频率补偿
董刚
Email: gdong@ 2007年9月
Stability Ch. 10 # 1
本讲内容
西电微电子:模拟集成电路设计
• 稳定性概述 • 多极点系统 • 相位裕度 • 频率补偿 • 两级运放的补偿 • 其它补偿技术
若 p 2 >> p1
则 p1
1
1
(当g m9 RL >> 1)
RS CE + RS CC + RL CL + RL CC + g m9 RL RS CC g m9 RL RS CC
p2
1
g C m9 C
(当g m 9 RL >> 1)
RL RS (CE CL + CE CC + CC CL ) p1 (CE CL + CE CC + CC CL )
f pE =
1
1
2Rout [CE + (1 + Av 2 )CC ] 2Av 2 Rout CC
f pE为第一个极点
Stability Ch. 10 # 32
西电微电子:模拟集成电路设计
Miller补偿的推导(1)
为描述简便,下面推导中CC已包含CGD 9
Vin V1 = sCEV1 + sCC (V1 Vout )
( ) 极点:S p = j p + p , 系统响应中包括 exp ( j p + p )t 项
(a)右半平面:幅值增大的振荡 (b)Y轴:等幅振荡(c)左半平面:稳定状态
Stability Ch. 10 # 5
西电微电子:模拟集成电路设计
单极点系统的稳定性
设H (s) = A0 1+ s
0
Stability Ch. 10 # 19
西电微电子:模拟集成电路设计
极点的位置
节点A:寄生电容最大
节点N:寄生电容较大(PMOS)
节点Y:寄生电容较小(NMOS) 通常C A >> CN、C X
g
m 5
g m
7
、g
m
3
C A CN C X
主极点: 1 Rout CL
非主极点:g m 5 CA
其余高频极点忽略
X (s) 对于H (s): = p 2处,相位等于 -135o , 而后逐渐趋近 -180o (但总大于 -180o)
Stability Ch. 10 # 9
西电微电子:模拟集成电路设计
二极点系统:开环VS闭环(1)
开环:H (s) =
A0
(1 + s )(1 + s )
p1
p2
式中 p1、 p 2均大于0
西电微电子:模拟集成电路设计
不稳定系统VS稳定系统
(a)不稳定:相位 = 180o,增益 > 1;增益 = 1,相位 180o (b)稳定:相位 = 180o,增益 1;增益 = 1,相位 > 180o
Stability Ch. 10 # 4
西电微电子:模拟集成电路设计
复平面中的极点位置与稳定性
Stability Ch. 10 # 13
相位裕度
西电微电子:模拟集成电路设计
相位裕度 : PM = 180o + H ( = GX )
Stability Ch. 10 # 14
西电微电子:模拟集成电路设计
相位裕度(GX=ωp2)
-180
Phase Margin, m = 45°
Stability Ch. 10 # 15
s1, 2 = 2
( p1 + p 2 ) ± ( p1 p 2 ) 2 4A0 p1 p 2
= 2
Stability Ch. 10 # 10
西电微电子:模拟集成电路设计
二极点系统:开环VS闭环(2)
( p1 + p 2 ) ± ( p1 p 2 ) 2 s1, 2 =
2 = 0,闭环极点为 p1、 p 2 ;
70° 90 ta1n (fu' ) tan 1( fu' )
f p2
f p3
fu' 6MHz f p' 1 fu' 1.2KHz
AV 0
Stability Ch. 10 # 28
西电微电子:模拟集成电路设计
单端输出vs全差分输出
单端输出:存在镜像极点,极点频率较低 双端输出:极点频率很高
A0
则 Y (s) = 1 + A0
X (s) 1 + s
(1 + A0 ) 0
为分析其稳定性:
画出环路增益H (s)的幅频与相频图(波特图形式)
Stability Ch. 10 # 6
西电微电子:模拟集成电路设计
单极点系统的波特图
通过环路增益H ( )分析反馈系统的稳定性
单极点系统无条件稳定
Stability Ch. 10 # 7
Stability Ch. 10 # 33
西电微电子:模拟集成电路设计
Miller补偿的推导(2)
g m9 RL (1 sCC )
Vout =
g m9
Vin 1 + s( RS CE + RS CC + RL CL + RLCC + g m9 RL RS CC ) + s 2 RL RS (CE CL + CE CC + CC CL )
RL = (1 + sRS CE + sRS CC )
Vout
sCC g m9
sRS CC
g m 9 RL (1 Cs C )
Vout =
g m9
Vin 1 + s( RS CE + RS CC + RL CL + RLCC + g m9 RL RS CC ) + s 2 RL RS (CE CL + CE CC + CC CL )
Stability Ch. 10 # 29
西电微电子:模拟集成电路设计
共源共栅电流源的阻抗
(1+ gm 5 ro5 ) ro7
1
Zout
|| 1 sCL
= (1+ gm 5 ro5 )
1+ sro7CN sCL ro7 + 1
1+ sro7CN sCL
=
(1+ gm 5 ro5 )ro7
1+ s[(1+ gm 5 ro5 )ro7 CL + ro7CN ]