大学物理学第版版北京邮电大学出版社下册习题答案
大学物理第二版答案(北京邮电大学出版社)
习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m /s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s t l h l lts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v +=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0c o s παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333m in=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222m in 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm)(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos m ax m in =-f F θ y 向:0sin m in =--Mg F N θ 还有 N f s m ax μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF习题2-1图在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为θμθμsin cos k k min -=MgF(2)在上面m in F 的表示式中,如果0sin cos s →-θμθ,则∞→m in F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cosy 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mg T ma T ==θθsin ,cos由此二式可解得2m/s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。
大学物理课后习题答案北京邮电大学出版社
习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动?答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a13-4 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小?答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin Λ=+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin n k λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由λϕk a =sin 知,衍射角ϕ变大,条纹变稀;(2)λ变大,保持a ,k 不变,则衍射角ϕ亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时λϕk a =sin ;斜入射时,λθϕk a '=-)sin (sin ,保持a ,λ不变,则应有k k >'或k k <'.即原来的k 级条纹现为k '级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样说明?答:不矛盾.单缝衍射暗纹条件为k k a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即 可知,当k a b a k '+=时明纹缺级.(1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;(2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关?解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强.(2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞. 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为当6000=λoA 时,2=k x λλ=时,3=k重合时ϕ角相同,所以有得 4286600075=⨯=x λoA 13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少?解:中央明纹的宽度为f na x λ2=∆ 半角宽度为na λθ1sin -=(1)空气中,1=n ,所以(2)浸入水中,33.1=n ,所以有13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k 由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ 当 3=k ,得60003=λoA 4=k ,得47004=λoA (2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带;当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 解:5001=+b a mm 3100.2-⨯=mm 4100.2-⨯=o A由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=, 所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成 30°斜入射时,中央明条纹的位移为多少? 解:3100.52001-⨯==+b a mm 6100.5-⨯m(1)由光栅衍射明纹公式λϕk b a =+sin )(,因1=k ,又f x ==ϕϕtan sin所以有λ=+f x b a 1)(即 62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ (2)对应中央明纹,有0=k正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ因︒=30θ,∴21tan sin ±==≈f x ϕϕ故22103010602121--⨯=⨯⨯==f x m 30=cm这就是中央明条纹的位移值.13-16 波长6000=λo A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:得 6100.6-⨯=+b a m(2)因第四级缺级,故此须同时满足解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m (3)由λϕk b a =+sin )( 当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λba k因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800oA 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1)中央明纹宽度为(2)由缺级条件知即⋅⋅⋅=,15,10,5k 缺级.中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径. 解:由爱里斑的半角宽度∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星? 解:由最小分辨角公式∴86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm 13-20 已知入射的X 射线束含有从0.95~1.30oA 范围内的各种波长,晶体的晶格常数为2.75oA ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射? 解:由布喇格公式 λϕk d =sin 2 得k d ϕλsin 2=时满足干涉相长当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA 2=k 时,91.1245sin 75.22=⨯⨯=︒λo A3=k 时,30.1389.3==λo A4=k 时, 97.0489.3==λo A故只有30.13=λo A 和97.04=λo A 的X 射线能产生强反射.。
大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第十一章_习题11_答案
习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。
[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。
[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j 夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图 11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)(2)解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r I ab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s-1d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=ADIvbvBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=t abd d 2ΦεtBR B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示(1)ab(2)cd解: 由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E与ab 垂直 ∴ ⎰=⋅ll 0d旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N(1)(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ==∴ abhN IL ln π220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ。
大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十七章 习题17答案
习题1717.1选择题(1) 由实验得知,原子核的半径R近似地与质量数A的立方根成正比,R=R0A1/3(R0是常数),由此得出:[ ]A.各原子核的密度是相同的B.在各种不同元素的原子核内,核子间隔不同C.质子和中子的质量,体积近似相等D.质子数和中子数的比例在各种不同元素的原子核内近似相等[答案:A ](2) 放射性同位素有天然的和人工的两类,其中[ ]A.天然的轻、重核都有,人工的多为轻核B.天然的多为重核,人工的轻、重核皆有C.天然的多为轻核,人工的可任意选择;D.人工的多为重核,天然的可任意选择[答案:B ](3) 下述说法不正确的是:[ ]A.核力具有饱和性;B.核力与电荷有关;C.核力是短程力;D.核力是强作用力。
[答案:B ](4) 原子核自旋角动量的确切含义应该是:[ ]A.核子自旋角动量和电子自旋角动量的矢量和;B.由于核于没有轨道角动量,故核自旋角动量意义与电子的相同;C.核子自旋角动量和轨道角动量的矢量和;D.原子总自旋角动量扣除电子自旋角动量的结果。
[答案:C ](5) 欲使238U发生裂变,入射中子应为[ ]A.热中子;B.快中子;C.热中子和快中子;D.任意速度的中子。
[答案:B ]17.2填空题(1) 原子核发生 衰变时,其电子是从转化为时放出的。
[答案:中子; 质子](2) 基本粒子之间主要存在着下列三种相互作用:__________、__________、__________.[答案:强相互作用; 电磁相互作用; 弱相互作用](3) 基本粒子之间的强相互作用只是发生在__________________________之间,强相互作用是通过交换_____________________来实现的.[答案:强子与强子; 介子;](4) 基本粒子的电磁相互作用是在________________________________________之间发生的,电磁相互作用是通过交换___________________来实现的.[答案:带电粒子及具有磁矩的粒子; 光子;](5) 除重子与轻子以外,所有实物粒子之间都存在弱相互作用,其强度极弱,相对其它作用是微不足道的,它只是在________________和_____________过程中才起作用.[答案: 衰变; 俘获 ]17.3按照原子核的质子—中子模型,组成原子核X AZ 的质子数和中子数各是多少?核内共有多少个核子?这种原子核的质量数和电荷数各是多少?答:组成原子核X AZ 的质子数是Z,中子数是A-Z.核内共有A 个核子.原子核的质量数是A ,核电荷数是Z .17.4原子核的体积与质量数之间有何关系?这关系说明什么?答:实验表明,把原子核看成球体,其半径R 与质量数A 的关系为1/30R R A=,说明原子核的体积与质量数A 成正比关系.这一关系说明一切原子核中核物质的密度是一个常数.即单位体积内核子数近似相等,并由此推知核的平均结合能相等.结合能正比于核子数,就表明核力是短程力.如果核力象库仑力那样,按照静电能的公式,结合能与核子数A 的平方成正比,而不是与A 成正比.17.5什么叫原子核的质量亏损?如果原子核X AZ 的质量亏损是Δm ,其平均结合能是多少? 答:原子核的质量小于组成原子核的核子的质量之和,它们的差额称为原子核的质量亏损.设原子核的质量为x M ,原子核X AZ 的质量亏损为:x n p M m Z A Zm m --+=∆])([平均结合能为 Amc A E E 20ΔΔ== 17.6已知23290Th 的原子质量为232.03821u ,计算其原子核的平均结合能.解:结合能为 MeV 5.931])([ΔH ⨯--+=M m Z A Zm E nTh 23290原子 M =232.03821u, Z =90, A =232.氢原子质量 m H =1.007825u ,m n =1.008665u.MeV1.766.56MeV5.931]03821.232008665.1)90232(007825.190[Δ=⨯-⨯-+⨯=∴E∴平均结合能为 MeV 614.723256.1766Δ0===A E E17.7什么叫核磁矩?什么叫核磁子(N μ)? 核磁子N μ和玻尔磁子B μ有何相似之处?有何区别?质子的磁矩等于多少核磁子?平常用来衡量核磁矩大小的核磁矩Iμ'的物理意义是什么?它和核的g 因子、核自旋量子数的关系是什么?答:原子核自旋运动的磁矩叫核磁矩,核磁子是原子核磁矩的单位,定义为:227m A 10.05.51.18361π4⋅⨯===-B p N m eh μμ式中p m 是质子的质量.核磁子与玻尔磁子形式上相似,玻尔磁子定义为eB m ehπμ4=,式中e m 是电子的质量. 质子的磁矩不等于N μ.质子的磁矩N P μμ79273.2=.平常用来衡量核磁矩大小的是核磁矩在外磁场方向分量的最大值I μ',它和原子核g 因子、自旋量子数的关系是N I I I g μμ='.17.8核自旋量子数等于整数或半奇整数是由核的什么性质决定?核磁矩与核自旋角动量有什么关系?核磁矩的正负是如何规定的?答:原子核是由质子和中子组成.质子和中子的自旋均为21.因此组成原子核的质子和中子数的奇、偶数决定了核自旋量子数为零或21的奇、偶倍数. 核磁矩与自旋角动量的关系是: I pII P m eg 2=μ I μ的正负取决于I g 的正负.当I μ与I P平行时I μ 为正,当I μ与I P反平行时,I μ为负.17.9什么叫核磁共振?怎样利用核磁共振来测量核磁矩?答:原子核置于磁场中,磁场和核磁矩相互作用的附加能量使原子核能级发生分裂.当核在电磁辐射场中时,辐射场是光子组成的,当光子的能量hv 等于核能级间隔时,原子核便吸收电磁场的能量,称为共振吸收,这一现象称为核磁共振.在磁场中核能级间隔为:B g E N I μ=∆共振吸收时,B g E h N I μυ=∆=通常用核磁矩在磁场方向分量的最大值I μ'来衡量磁矩的大小,N I I I g μμ=',则有B Ih Iμυ'=∴ Bh II υμ=',已测出I ,υ,现测得B 就可以算出I μ'.17.10什么叫核力?核力具有哪些主要性质?答:组成原子核的核子之间的强相互作用力称为核力.核力的主要性质:(1)是强相互作用力,主要是引力.(2)是短程力,作用距离小于m 1015-,(3)核力与核子的带电状况无关.(4)具有饱和性.17.11什么叫放射性衰变?α,β,γ射线是什么粒子流?写出23892U的α衰变和23490Th 的β衰变的表示式.写出α衰变和β衰变的位移定则. 答:不稳定的原子核都会自发地转变成另一种核而同时放出射线,这种变化叫放射性衰变.α射线是带正电的氦核He 42粒子流,β射线是高速运动的正、负电子流,γ射线是光子流.ee υ~Pa Th HeTh 012349123490422349023892++→+→- α衰变和β衰变的位移定则为:α衰变 He Y X 4242+→--A z A z β衰变 e A z A z υ~e Y X 0++→-+e A z Azυ++→+-e Y X 01117.12什么叫原子核的稳定性?哪些经验规则可以预测核的稳定性? 答:原子核的稳定性是指原子核不会自发地从核中发出射线而转变成另一种原子核的性质.以下经验规则可预测核的稳定性:(1)原子序数大于84的核是不稳定的.(2)原子序数小于84的核中质子数和中子数都是偶数的核稳定.(3)质子或中子数等于幻数2、8、20、28、50、82、126的原子核特别稳定. (4)质子数和中子数之比1=pn的核稳定.比值越大,稳定性越差.17.13写出放射性衰变定律的公式.衰变常数λ的物理意义是什么?什么叫半衰期1/2T ? 1/2T 和λ有什么关系?什么叫平均寿命τ?它和半衰期1/2T 、和λ有什么关系? 答:tN N λ-0e=,衰变常数NtN d /d -=λ的物理意义是:表示在某时刻,单位时间内衰变的原子数与该时刻原子核数的比值.是表征衰变快慢的物理常数. 原子核每衰变一半所需的时间叫半衰期.1/2ln 2T λ=平均寿命τ是每个原子核衰变前存在时间的平均值.λτ1=1/2ln 2T τ=.17.14测得地壳中铀元素23592U只占0.72%,其余为23892U ,已知23892U的半衰期为4.468×910y ,23592U的半衰期为7.038×810y ,设地球形成时地壳中的23592U和23892U是同样多,试估计地球的年龄.解:按半衰期 λλ693.02ln ==T对U 23592: 1011810.6930.6939.847101/7.03810T λ-===⨯⨯y 对U 23892: 102920.6930.693 1.551101/4.46810T λ-===⨯⨯y 按衰变定律tN N λ-=e0,可得17.15放射性同位素主要应用有哪些?答:放射性同位素主要在以下几个方面应用较广泛:医学上用于放射性治疗和诊断;工业上用于无损检测;农业上用放射性育种;考古学、地质学中用于计算生物或地质年代;生物学中作示踪原子等等.17.16为什么重核裂变或轻核聚变能够放出原子核能?答:轻核和重核的平均结合能较小,而中等质量)60~40(=A 的核平均结合能较大,因此将重核裂变成两个中等质量的核或轻核聚变成质量数较大的核时平均结合能升高,从而放出核能.17.17原子核裂变的热中子反应堆主要由哪几部分组成?它们各起什么作用?答:热中子反应堆的主要组成部份有堆芯、中子反射层、冷却系统、控制系统、防护层. 堆芯是放置核燃料和中子减速剂的核心部份,维持可控链式反应,释放原子核能.冷却系统与换能系统合二为一,再通过冷却系统将堆芯释放出的核能输送到堆芯以外. 控制系统是通过控制棒插入堆芯的长度,控制参加反应的中子数,使反应堆保持稳定的功率. 中子反射层是阻挡中子从反应堆中逸出. 防护层是反应堆的安全屏障.17.18试举出在自然界中存在负能态的例子.这些状态与狄拉克的负能态有什么区别?答:例如物体在引力场中所具有的引力势能;正电荷在负电荷电场中的静电能,都是自然界中的负能态.这些负能态是能够观测到的,具有可观测效应.狄拉克的负能态是观测不到的,没有可观测效应.17.19将3MeV 能量的γ光子引入狄拉克真空,结果产生1MeV 的电子,此时还将产生什么?它的能量是多少?答:把能量大于电子静能两倍MeV 022.1220=>c m E 的γ光子引入真空,它有可能被负能量电子的一个电子所吸收,吸收了这么多能量的电子有可能越过禁区而跃迁到正能量区,并表现为一个正能量的负电子-e ;同时,留下的空穴表现为一个正能量的正电子+e .这一过程称为电子偶的产生,可写为-++→e e γ按题意,根据能量守恒,正电子的能量为MeV 217.20试证明任何能量的γ光子在真空中都不可能产生正、负电子对.证明:设由γ光子转化成的一对正负电子其动量分别为1p 和2p,在电子的质心系中应有120p p +=并且正负电子的总能量应大于22c m e .按照相对论,光子动量与能量的关系为pc E =,动量等于零而能量不等于零的光子是不存在的.显然γ光子转换成正负电子,同时满足能量守恒和动量守恒是不可能的,即在真空中无论γ光子能量多大,都不可能产生正负电子对.但是γ光子与重原子核作用时便可转化为正负电子对.。
大学物理学第版版北京邮电大学出版社下册习题答案
9.1选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q 的关系为:()3/2 3/2(A)Q=-23/2q (B) Q=2 3/2q (C) Q=-2q (D) Q=2q[ 答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[ 答案:D](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R 处的电场强度()(A)σ / ε0 (B)σ /2 ε0 (C)σ /4 ε 0 (D)σ /8 ε0 [ 答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[ 答案:C]9.2填空题(1)在静电场中,电势不变的区域,场强必定为[ 答案:相同](2)一个点电荷q 放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[ 答案:q/6 ε 0, 将为零](3)电介质在电容器中作用( a)——( b)——。
[ 答案:(a) 提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R 的球体内,则球内球外的静电能之比。
[ 答案:5:6]9.3电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1) 在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡( 即每个电荷受其他三个电荷的库仑力之和都为零)?(2) 这种平衡与三角形的边长有无关系?解: 如题9.3 图示(1) 以 A 处点电荷为研究对象,由力平衡知:q 为负电荷解得q 3 q3(2) 与三角形边长无关.题9.3 图题9.4 图9.4两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为 2 , 如题9.4 图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4 图示解得q 2lsin 4 0mg tan9.5根据点电荷场强公式 E q2,当被考察的场点距源点电荷很近(r → 0)时, 4 0r则场强→∞,这是没有物理意义的,对此应如何理解?解: E q 2 r0 仅对点电荷成立,当r 0时,带电体不能再视为点电荷,再用上4π0r式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6在真空中有 A ,B两平行板,相对距离为 d ,板面积为S ,其带电量分别为+q2和- q.则这两板之间有相互作用力 f ,有人说 f = q2, 又有人说,因为d 242f =qE, E q,所以 f = q.试问这两种说法对吗?为什么? f 到底应等于多少? 0S 0S解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强 E q看成是一个带电板在另一带电板处的场强也是不对S的.正确解答应为一个板的电场为 E q,另一板受它的作用力2f q q q,这是两板间相互作用的电场力.2 0S 2 0S9.7长l =15.0cm 的直导线AB上均匀地分布着线密度=5.0x10 -9C·m-1的正电荷.试求:(1) 在导线的延长线上与导线B端相距a1 =5.0cm处P点的场强;(2) 在导线的垂直平分上与导线中点相距 d 2 =5.0cm 处Q点的场强.解:如题9.7 图所示(1) 在带电直线上取线元dx ,其上电量dq在P点2 0S用 l 15cm , 5.0 10 9C m 1, a 12.5 cm 代入得E P 6.74 102N C 1方向水平向右(2) 同理 dE Q 12 dx2 方向如题 9.7 图所示 4π0 x d 2由于对称性 l dE Qx 0,即 E Q 只有 y 分量,1 dx d 24π 0 x 2 d 22 x 2 d 225.0 10 9C cm 1, l 15 cm , d 2 5 cm 代入得E Q E Qy 14.96 102N C 1,方向沿 y 轴正向9.8 一个半径为 R 的均匀带电半圆环,电荷线密度为 解 : 如 9.8 图在圆上取 dl Rd题 9.8 图dq dl R d ,它在 O 点产生场强大小为 dE Rd 2 方向沿半径向外4π0R 2则 dE x dEsin sin d4π0R积分 E x sin d4π 0R 2π 0R∴ E E x ,方向沿 x 轴正向.2π0R9.9 均匀带电的细线弯成正方形,边长为 l ,总电量为 q .(1) 求这正方形轴线上产生场强为 dE P dx4π0 (a x) 2E PdE P2dx4π 0 2 (a x)题 9.7 图dEQy , 求环心处 O 点的场强.l22 l3 4 r2dEPlPπ r2l 2r2 l 24 π 0 r r04 2题9.9 图由于对称性,P点场强沿OP 方向,大小为q4l方向沿OP方体的一个面的电通量;(2) 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少解: (1) 由高斯定理 E dS q立方体六个面,当sq在立方体中心时,每个面上电通量相等∴ 各面电通量q.e60.(2) 电荷在顶点时,将立方体延伸为边长2a的立方体,使q处于边长2a的立方体中qr24π0(r29.10 (1) 点电荷q 位于一边长为a的立方体中心,试求在该点电荷电场中穿过立离中心为r 处的场强E;(2) 证明:在rl 处,它相当于点电荷q产生的场强 E .解: 如9.9 图示,正方形一条边上电荷q4在P点产生物强dE P方向如图,大小为cos 1dE P 在垂直于平面上的分量dE dE P cosdE4πl2 l 2 2rr4r2r2E P l42)r心,则边长 2a 的正方形上电通量如果它包含 q 所在顶点则 e 0.9.11 均匀带电球壳内半径 6cm ,外半径 10cm ,电荷体密度为 2×10 5C · m -3求距球心5cm , 8cm ,12cm 各点的场强.9.12 半径为 R 1和 R 2( R 2 > R 1)的两无限长同轴圆柱面,单位长度上分别带有电R 1< r < R 2 ;(3) r > R 2处各点的场强.对于边长 a 的正方形,如果它不包含 q 所在的顶点,则24 0如题 9.10 图所示. 题 9.10 图解 : 高斯定理 E dSs, E4πr2q当 r 5 cm 时, q 0, Er 8 cm 时,4π 3 q p 3(r 3 r 内3) 4 π3 23 r 3r 内2 4π0r3.48 104N C 1, 方向沿半径向外.r 12cm 时 , q43π(r 外3r内3)E34 π 3 3 r 外 r内24π r4.10 104N C 1沿半径向外 .量 和- , 试求:(1) r < R 1 ;(2)取同轴圆柱形高斯面,侧面积S 2πrlE dS S E2πrl解: 高斯定理 E dS qs(2)R 1 r R 2ql∴E2π0r沿径向向外(3)r R 2 q∴E0题 9.13 图9.13 两个无限大的平行平面都均匀带电, 电荷的面密度分别为 1和 2 ,试求空间各处场强.解 : 如题 9.13 图示, 两带电平面均匀带电,电荷面密度分别为1与 2 ,1 两面间, E 1 ( 122)n11 面外, E 1(201 2)n12 面外, E 1( 122)nn :垂直于两平面由 1面指为 2 面.9.14 半径为 R 的均匀带电球体内的电荷体密度为 , 若在球内挖去一块半径为 r< R 的小球体,如题 9.14 图所示.试求:两球心 O 与 O 点的场强,并证明小球空 腔内的电场是均匀的.解 : 将此带电体看作带正电 的均匀球与带电 的均匀小球的组合,见题9.14 图 (a) .(1) 球在 O 点产生电场 E 10 0,3 O 点电场 E 0 3r0d3 OO';(3) 设空腔任一点 P 相对 O 的位矢为 r ,相对 O 点位矢为 r ( 如题 8-13(b) 图)大力矩.解: ∵ 电偶极子 p 在外场 E 中受力矩 ∴ M max pE qlE 代入数字9.16 两点电荷 q 1 =1.5 × 10-8C , q 2 =3.0 ×10-8C ,相距 r 1=42cm ,要把它们之间的距 离变为 r 2 =25cm ,需作多少功 ?球在 O 点产生电场 E 20 43πr 33 OO'(2) 在 O 产生电场 E 104 3 4d 30d 3OO' 球在 O 产生电场 E20∴ O 点电场 E 0OO' 30题 9.14 图 (a)题 9.14 图 (b)EPOr30,EPOr30EPEPOEPO3(r)3 0 OO'd 30∴腔内场强是均匀的.9.15 一电偶极子由 q =1.0 ×10-6C 的两个异号点电荷组成, 两电荷距离 d=0.2cm , 把这电偶极子放在 1.0 × 105N ·C -1的外电场中,求外电场作用于电偶极子上的最解: Ar2F drr2q 1q 2dr 2 q 1q 2 (1 1) r1 r2 4π 0r 44π 0 r 1 r 2外力需作的功 A A 6.55 10 6 J题 9.17 图9.17 如题 9.17 图所示,在 A , B 两点处放有电量分别为 +q ,- q 的点电荷, AB 间 距离为2 R ,现将另一正试验点电荷 q 0从O 点经过半圆弧移到 C 点,求移动过程中 电场力作的功. 解 : 如题 9.17 图示9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为 的正电荷 ,两直导线的长度和半圆环的半径都等于 R .试求环中心 O 点处的场强和电势. 解: (1) 由于电荷均匀分布与对称性, AB 和 CD 段电荷在 O 点产生的场强互相抵 消,取 dl Rd则dq Rd 产生 O 点dE 如图,由于对称性, O 点场强沿 y 轴负方向题 9.18 图[ sin( ) sin ]4π 0R2 24 AB 电荷在 O 点产生电势,以 U 0A q 0(U O U C )q o q 6π 0R同理 CD 产生U 2ln 2 4πU 3πR 4π0R 4 0U O U 1 U 2 U 32πln 29.19一电子绕一带均匀电荷的长直导线以2×104m·s-1的匀速率作圆周运动.求带电直线上的线电荷密度.( 电子质量m0=9.1 ×10-31kg,电子电量e=1.60×10-19C) 解: 设均匀带电直线电荷密度为,在电子轨道处场强电子受力大小F e eE2π 0r2 ev∴m2π0r r22 π0mv13 10 12.5 10 13 C m 1e9.20空气可以承受的场强的最大值为 E =30kV· cm-1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为 d =0.5cm,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场9.21证明:对于两个无限大的平行平面带电导体板(题9.21 图)来说,(1) 相向的两面上,电荷的面密度总是大小相等而符号相反;(2) 相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题9.21 图所示,设两导体A、B的四个平面均匀带电的电荷面密度依次得34题9.21 图(1)则取与平面垂直且底面分别在 A 、 B 内部的闭合柱面为高斯面时,有说明相向两面上电荷面密度大小相等、符号相反;(2) 在A内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即又∵ 2 3 014 说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A,B和C的面积都是200cm2,A和B相距4.0mm,A与C相距2.0 mm. B ,C都接地,如题9.22图所示.如果使A板带正电 3.0×10-7C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少?解: 如题9.22 图示,令 A 板左侧面电荷面密度为1,右侧面电荷面密度为2(1) ∵题9.22图U AC U AB ,即E AC d AC E AB d AB1EACdAB2 E AB d ACqA ,12q A22 3S 3SqC 1S2qA210 7Cq B 2S 1107 C21+qAS3U A E AC d AC 1 d AC 2.3 103V(2 )9.23 两个半径分别为 R 1和R 2( R 1< R 2 )的同心薄金属球壳,现给内球壳带电 +q ,试计算: (1) 外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3) 再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1) 内球带电 q ;球壳内表面带电则为 q , 外表面带电为 q ,且均匀分布,其电势qdrq4π 0R R 2R24π 0r2题 9.23 图(2) 外壳接地时, 外表面电荷 q 入地,外表面不带电,内表面电荷仍为q .所以 球壳电势由内球 q 与内表面 q 产生:(3) 设此时内球壳带电量为 q ;则外壳内表面带电量为 q ,外壳外表面带电量为q q ( 电荷守恒 ) ,此时内球壳电势为零,且R1qR 2外球壳上电势9.24 半径为 R 的金属球离地面很远,并用导线与地相联,在与球心相距为d 3R 处有一点电荷 +q ,试求:金属球上的感应电荷的电量.解 : 如题 9.24 图所示,设金属球感应电荷为 q ,则球接地时电势 U O 0题 9.24 图由电势叠加原理有:qq39.25有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为F0 .试求:(1) 用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2) 小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知F2q2(1) 小球 3 接触小球1后,小球3和小球1均带电小球3再与小球2接触后,小球2与小球3均带电∴ 此时小球1与小球 2 间相互作用力(2) 小球3依次交替接触小球1、2很多次后,每个小球带电量均为2q.322q q9.26 在半径为R1的金属球之外包有一层外半径为R2 的均匀电介质球壳,介质相对介电常数为r ,金属球带电Q .试求:(2) 电介质层内、外的电势;(3) 金属球的电势.解: 利用有介质时的高斯定理 D dS qS(1) 介质内(R r R) 场强Qr 4πQr3 4π 0 r r介质外(r R2 )场强(2) 介质外(r R2) 电势介质内 (R 1 r R 2) 电势(3)金属球的电势9.27 如题9.27 图所示,在平行板电容器的一半容积内充入相对介电常数为 r 的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题 9.27 图所示,充满电介质部分场强为 E 2 ,真空部分场强为 E 1,自由电荷 面密度分别为2与 1由D dS q 0 得D1 1,D2 2而D 10E 1 , D 2 0 r E22 0 r E2r10E1题 9.27图 题 9.28 图 9.28 两个同轴的圆柱面, 长度均为 l ,半径分别为 R 1和 R 2( R 2> R 1),且l >>R 2- R 1, 两柱面之间充有介电常数 的均匀电介质 . 当两圆柱面分别带等量异号电荷 Q 和 - Q 时,求:(1)在半径 r 处( R 1< r < R 2 =,厚度为 dr ,长为 l 的圆柱薄壳中任一点的电场能量 密度和整个薄壳中的电场能量;(2)电介质中的总电场能量;(3)圆柱形电容器的电容. 解 : 取半径为 r 的同轴圆柱面 则当 (R 1 r R 2) 时, q QD2Qπrl(S) D dS 2 πrlD (S)起来后等值电容是多少 ?如果两端加上 1000 V 的电压,是否会击穿 解: (1) C 1与C 2串联后电容(2) 串联后电压比U U 21 C C12 23 ,而U 1 U 2 1000U 1 600 V , U 2 400 V即电容 C 1电压超过耐压值会击穿,然后 C 2 也击穿.(1) 电场能量密度 w D2Q 2 8 π2r 2l 2薄壳中 dW wdQ 28π22 22πrdrlQ 2dr 4π rl(2) 电介质中总电场能量 (3) 电容:∵Q 22CQ22πl2W ln(R 2 /R 1)题 9.29 图9.29 如题 9.29 图所示, C 1 =0.25 F , C 2 =0.15 F ,C 3 =0.20 F .C 1上电压为 50V .求: U AB解: 电容 C 1上电量 电容 C 2与C 3并联 C 23 C 2 C3其上电荷 Q 23 Q 1U 2Q 23C23C 1U 1C2325 50359.30 C 1和 C 2两电容器分别标明 200 pF 、500 V ”和“300 pF 、900 V ”把它们串联9.31 半径为 R 1 =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别-8为 R 2 =4.0cm 和 R 3 =5.0cm ,当内球带电荷 Q =3.0 ×10-8C 时,求: (1) 整个电场储存的能量;(2) 如果将导体壳接地,计算储存的能量;(3) 此电容器的电容值. 题 9.31 图在 r R 3 区域W W 1 Q 2 ( 1 8π 0 R 1 14R 12) 1.01 10 4J总能量 W W 1 W 2 Q 2 8π0 (R 11 1 R 2 1)R 3 (2) 导体壳接地时,只有 R 1 r R 2 时 E Qr 3 , W 2 0 4π0r(3) 电容器电容 C 2W Q 112 4π 0 /( R 11 R 12 )解 : 如图,内球带电 Q ,外球壳内表面带电 Q ,外表面带电Q (1) 在 r R 1 和 R 2 r R 3区域 在 R 1 r R 2 时 E 1 Qr4π0r 3r R 3 时 E 2 Qr 4π0r 3∴在 R 1 r R 2 区域。
大学物理答案(北京邮电大学出版社)
6-10 题6-10图(a)是氢和氧在同一温度下的两条麦克斯韦速率分布曲线,哪一条代表氢?题6-10图(b)是某种气体在不同温度下的两条麦克斯韦速率分布曲线,哪一条的温度较高?答:图(a)中(1)表示氧,(2)表示氢;图(b)中(2)温度高.题6-10图6-16 如果氢和氦的摩尔数和温度相同,则下列各量是否相等,为什么?(1)分子的平均平动动能;(2)分子的平动动能;(3)内能.解:(1)相等,分子的平均平动动能都为kT 23. (2)不相等,因为氢分子的平均动能kT 25,氦分子的平均动能kT 23. (3)不相等,因为氢分子的内能RT 25υ,氦分子的内能RT 23υ. 6-21 1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少? 解:理想气体分子的能量 RT i E 2υ= 平动动能 3=t 5.373930031.823=⨯⨯=t E J 转动动能 2=r 249330031.822=⨯⨯=r E J 内能5=i 5.623230031.825=⨯⨯=i E J 6-24 (1)求氮气在标准状态下的平均碰撞频率;(2)若温度不变,气压降到1.33×10-4Pa ,平均碰撞频率又为多少(设分子有效直径10-10 m)?解:(1)碰撞频率公式v n d z 22π=对于理想气体有nkT p =,即kTp n = 所以有 kT pv d z 22π= 而 mol60.1M RT v ≈ 43.4552827331.860.1=⨯≈v 1s m -⋅ 氮气在标准状态下的平均碰撞频率805201044.52731038.110013.143.455102⨯=⨯⨯⨯⨯⨯⨯=-πz 1s - 气压下降后的平均碰撞频率123420s 714.02731038.11033.143.455102----=⨯⨯⨯⨯⨯⨯=πz。
大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第九章_习题9_答案
习题9之阳早格格创做(1)正圆形的二对付角线处各搁置电荷Q,另二对付角线各搁置电荷q,若Q所受到合力为整,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[问案:A](2)底下道法精确的是:()(A)若下斯里上的电场强度到处为整,则该里内肯定不电荷;(B)若下斯里内不电荷,则该里上的电场强度肯定到处为整;(C)若下斯里上的电场强度到处不为整,则该里内肯定有电荷;(D)若下斯里内有电荷,则该里上的电场强度肯定到处不为整.[问案:D](3)一半径为R的导体球表面的里面荷稀度为σ,则正在距球里R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [问案:C](4)正在电场中的导体里里的()(A)电场战电势均为整;(B)电场不为整,电势均为整;(C)电势战表面电势相等;(D)电势矮于表面电势.[问案:C](1)正在静电场中,电势稳定的天区,场强肯定为 .[问案:相共](2)一个面电荷q搁正在坐圆体核心,则脱过某一致况的电通量为,若将面电荷由核心背中移动至无限近,则总通量将 .[问案:q/6ε0, 将为整](3)电介量正在电容器中效率(a)——(b)——.[问案:(a)普及电容器的容量;(b) 延少电容器的使用寿命](4)电量Q匀称分散正在半径为R的球体内,则球内球中的静电能之比 .[问案:5:6]9.3 电量皆是q的三个面电荷,分别搁正在正三角形的三个顶面.试问:(1)正在那三角形的核心搁一个什么样的电荷,便不妨使那四个电荷皆达到仄稳(即每个电荷受其余三个电荷的库仑力之战皆为整)?(2)那种仄稳与三角形的边少有无关系?(1) 以A处面电荷为钻研对付象,由力仄稳知:q 为背电荷解得 q q 33-=' (2)与三角形边少无关.9.4 二小球的品量皆是m ,皆用少为l 的细绳挂正在共一面,它们戴有相共电量,停止时二线夹角为2θ,如题9.4图所示.设小球的半径战线的品量皆不妨忽略不计,供每个小球所戴的电量.解:解得 θπεθtan 4sin 20mg l q = 9.5 根据面电荷场强公式204r q E πε=,当被观察的场面距源面电荷很近(r →0)时,则场强→∞,那是不物理意思的,对付此应怎么样明白?解: 020π4r r q Eε=仅对付面电荷创造,当0→r 时,戴电体不克不迭再视为面电荷,再用上式供场强是过失的,本量戴电体有一定形状大小,思量电荷正在戴电体上的分散供出的场强不会是无限大.9.6 正在真空中有A ,B 二仄止板,相对付距离为d ,板里积为S ,其戴电量分别为+q 战-q .则那二板之间有相互效率力f,有人道f =2024dq πε,又有人道,果为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问那二种道法对付吗?为什么? f 到底应等于几?解: 题中的二种道法均分歧过失.第一种道法中把二戴电板视为面电荷是分歧过失的,第二种道法把合场强Sq E 0ε=瞅成是一个戴电板正在另一戴电板处的场强也是分歧过失的.精确解允许为一个板的电场为Sq E 02ε=,另一板受它的效率力Sq S qq f 02022εε==,那是二板间相互效率的电场力.9.7 少l =的曲导线AB 上匀称天分散着线稀度λx10-9C ·m -1的正电荷.试供:(1)正在导线的延少线上与导线B 端相距1a =处P 面的场强;(2)正在导线的笔曲仄分线上与导线中面相距2d = 处Q 面的场强.解:(1) 正在戴电曲线上与线元x d ,其上电量q d 正在P面爆收场强为20)(d π41d x a xE P-=λε用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代进得21074.6⨯=P E 1C N -⋅ 目标火仄背左(2)共理2220d d π41d +=x x E Qλε由于对付称性⎰=l Qx E 0d ,即Q E惟有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代进得21096.14⨯==Q y Q E E 1C N -⋅,目标沿y 轴正背一个半径为R 的匀称戴电半圆环,电荷线稀度为λ,供环心处O 面的场强.ϕλλd d d R l q ==,它正在O 面爆收场强盛小为20π4d d R R E εϕλ=目标沿半径背中则 ϕϕελϕd sin π4sin d d 0RE E x ==积分RR E x 000π2d sin π4ελϕϕελπ==⎰ ∴ RE E x0π2ελ==,目标沿x 轴正背.9.9 匀称戴电的细线直成正圆形,边少为l ,总电量为q .(1)供那正圆形轴线上离核心为r 处的场强E ;(2)道明:正在l r >>处,它相称于面电荷q 爆收的场强E .解: 如9.9图示,正圆形一条边上电荷4q 正在P 面爆收物强P Ed 目标如图,大小为∵ 22cos 221l r l +=θ∴ 24π4d 22220l r l l r E P++=ελP Ed 正在笔曲于仄里上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ由于对付称性,P 面场强沿OP 目标,大小为 ∵ lq4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 目标沿OP(1)面电荷q 位于一边少为a 的坐圆体核心,试供正在该面电荷电场中脱过坐圆体的一个里的电通量;(2)如果该场源面电荷移动到该坐圆体的一个顶面上,那时脱过坐圆体各里的电通量是几?解: (1)由下斯定理0d εqS E s⎰=⋅坐圆体六个里,当q 正在坐圆体核心时,每个里上电通量相等∴ 各里电通量06εq e =Φ.(2)电荷正在顶面时,将坐圆体蔓延为边少a 2的坐圆体,使q 处于边少a 2的坐圆体核心,则边少a 2的正圆形上电通量6εq e =Φ 对付于边少a 的正圆形,如果它不包罗q 天圆的顶面,则24εq e =Φ,如果它包罗q 天圆顶面则0=Φe .如题9.10图所示. 题9.10 图匀称戴电球壳内半径6cm ,中半径10cm ,电荷体稀度为2×510-C ·m -3供距球心5cm ,8cm ,12cm 各面的场强.解: 下斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 目标沿半径背中.12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径背中. 半径为1R 战2R (2R >1R )的二无限少共轴圆柱里,单位少度上分别戴有电量λ战-λ,试供:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各面的场强.解: 下斯定理0d ε∑⎰=⋅qS E s与共轴圆柱形下斯里,正里积rl S π2=则 rl E S E Sπ2d =⋅⎰对付(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径背背中(3) 2R r > 0=∑q∴ 0=E9.13 二个无限大的仄止仄里皆匀称戴电,电荷的里稀度分别为1σ战2σ,试供空间各处场强.解: 如题9.13图示,二戴电仄里匀称戴电,电荷里稀度分别为1σ与2σ, 二里间, n E)(21210σσε-=1σ里中, n E)(21210σσε+-=2σ里中, n E)(21210σσε+=n:笔曲于二仄里由1σ里指为2σ里.9.14 半径为R 的匀称戴电球体内的电荷体稀度为ρ,若正在球内掘去一齐半径为r <R 的小球体,如题图所示.试供:二球心O 与O '面的场强,并道明小球空腔内的电场是匀称的.解: 将此戴电体瞅做戴正电ρ的匀称球与戴电ρ-的匀称小球的拉拢,睹题9.14图(a).(1) ρ+球正在O 面爆收电场010=E,ρ-球正在O 面爆收电场'dπ4π3430320OO r E ερ=∴ O 面电场'd33030OO r E ερ= ;(2) ρ+正在O '爆收电场'dπ4d 3430301OO E ερπ='ρ-球正在O '爆收电场002='E∴ O ' 面电场 003ερ='E'OO 题9.14图(a) 题9.14图(b)(3)设空腔任一面P 相对付O '的位矢为r',相对付O 面位矢为r(如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+='∴腔内场强是匀称的. 9.15 一电奇极子由q ×10-6C的二个同号面电荷组成,二电荷距离d=,把那电奇极子搁正在×105N ·C -1的中电场中,供中电场效率于电奇极子上的最大举矩.解: ∵ 电奇极子p正在中场E 中受力矩∴ qlE pE M ==max 代进数字二面电荷1q ×10-8C ,2q ×10-8C ,相距1r =42cm ,要把它们之间的距离形成2r =25cm ,需做几功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εε )11(21r r -中力需做的功 61055.6-⨯-=-='A A J9.17 如题图所示,正在A ,B 二面处搁有电量分别为+q ,-q 的面电荷,AB 间距离为2R ,现将另一正考查面电荷0q 从O 面通过半圆弧移到C 面,供移动历程中电场力做的功.解:∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题图所示的绝缘细线上匀称分散着线稀度为λ的正电荷,二曲导线的少度战半圆环的半径皆等于R .试供环核心O 面处的场强战电势.解: (1)由于电荷匀称分散与对付称性,AB 战CD 段电荷正在O 面爆收的场强互相对消,与θd d R l =则θλd d R q =爆收O 面Ed 如图,由于对付称性,O 面场强沿y 轴背目标R0π4ελ=[)2sin(π-2sin π-](2) AB 电荷正在O 面爆收电势,以0=∞U 共理CD 爆收 2ln π402ελ=U 半圆环爆收 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 9.19 一电子绕一戴匀称电荷的少曲导线以2×104m ·s -1的匀速率做圆周疏通.供戴电曲线上的线电荷稀度.(电子品量0m ×10-31kg ,电子电量e ×10-19C)解: 设匀称戴电曲线电荷稀度为λ,正在电子轨讲处场强 电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 气氛不妨启受的场强的最大值为E =30kV ·cm -1,超出那个数值时气氛要爆收火花搁电.今有一下压仄止板电容器,极板间距离为d =,供此电容器可启受的最下电压.解: 仄止板电容器里里近似为匀称电场9.21 道明:对付于二个无限大的仄止仄里戴电导体板(题图)去道,(1)相背的二里上,电荷的里稀度经常大小相等而标记差同;(2)相背的二里上,电荷的里稀度经常大小相等而标记相共.证: 如题9.21图所示,设二导体A 、B 的四个仄里匀称戴电的电荷里稀度依次为1σ,2σ,3σ,4σ(1)则与与仄里笔曲且底里分别正在A 、B 里里的关合柱里为下斯里时,有∴ +2σ03=σ道明相背二里上电荷里稀度大小相等、标记差同;(2)正在A 里里任与一面P ,则其场强为整,而且它是由四个匀称戴电仄里爆收的场强叠加而成的,即 又∵ +2σ03=σ ∴ 1σ4σ=道明相背二里上电荷里稀度经常大小相等,标记相共. 9.22 三个仄止金属板A ,B 战C 的里积皆是200cm 2,A 战B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 皆接天,如题图所示.如果使A 板戴正电×10-7C ,略去边沿效力,问B 板战C 板上的感触电荷各是几?以天的电势为整,则A 板的电势是几? 解: 如题9.22图示,令A 板左正里电荷里稀度为1σ,左正里电荷里稀度为2σ(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV 二个半径分别为1R 战2R (1R <2R )的共心薄金属球壳,现给内球壳戴电+q ,试估计:(1)中球壳上的电荷分散及电势大小;(2)先把中球壳接天,而后断启接天线沉新绝缘,此时中球壳的电荷分散及电势;*(3)再使内球壳接天,此时内球壳上的电荷以及中球壳上的电势的改变量.解: (1)内球戴电q +;球壳内表面戴电则为q -,中表面戴电为q +,且匀称分散,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)中壳接天时,中表面电荷q +进天,中表面不戴电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -爆收: (3)设此时内球壳戴电量为q ';则中壳内表面戴电量为q '-,中壳中表面戴电量为+-q q ' (电荷守恒),此时内球壳电势为整,且得 q R R q 21=' 中球壳上电势半径为R 的金属球离大天很近,并用导线与天相联,正在与球心相距为R d 3=处有一面电荷+q ,试供:金属球上的感触电荷的电量.解: 如题9.24图所示,设金属球感触电荷为q ',则球接天时电势0=O U由电势叠加本理有: 得 -='q 3q 有三个大小相共的金属小球,小球1,2戴有等量共号电荷,相距甚近,其间的库仑力为0F .试供:(1)用戴绝缘柄的不戴电小球3先后分别交战1,2后移去,小球1,2之间的库仑力;(2)小球3依次接替交战小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3交战小球1后,小球3战小球1均戴电2q q =', 小球3再与小球2交战后,小球2与小球3均戴电 ∴ 此时小球1与小球2间相互效率力(2)小球3依次接替交战小球1、2很多次后,每个小球戴电量均为32q .∴ 小球1、2间的效率力00294π432322F r qq F ==ε正在半径为1R 的金属球除中包有一层中半径为2R 的匀称电介量球壳,介量相对付介电常数为r ε,金属球戴电Q .试供:(1)电介量内、中的场强; (2)电介量层内、中的电势; (3)金属球的电势.解: 利用有介量时的下斯定理∑⎰=⋅q S D Sd(1)介量内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介量中)(2R r <场强 (2)介量中)(2R r >电势 介量内)(21R r R <<电势 (3)金属球的电势9.27 如题图所示,正在仄止板电容器的一半容积内充进相对付介电常数为r ε的电介量.试供:正在有电介量部分战无电介量部分极板上自由电荷里稀度的比值. 解: 如题9.27图所示,充谦电介量部分场强为2E,真空部分场强为1E,自由电荷里稀度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε= ∴ r r E E εεεεσσ==102012二个共轴的圆柱里,少度均为l ,半径分别为1R 战2R (2R >1R ),且l >>2R -1R ,二柱里之间充有介电常数εQ 战-Q 时,供:(1)正在半径r 处(1R <r <2R =,薄度为dr ,少为l 的圆柱薄壳中任一面的电场能量稀度战所有薄壳中的电场能量; (2)电介量中的总电场能量; (3)圆柱形电容器的电容. 解: 与半径为r 的共轴圆柱里)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQD π2=(1)电场能量稀度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介量中总电场能量(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== 如题9.29 图所示,1C =μF ,2C =μF ,3C =μF .1C 上电压为50V .供:AB U . 解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 9.30 1C 战2C 二电容器分别标明“200 pF 、500 V”战“300 pF 、900 V”,把它们串联起去后等值电容是几?如果二端加上1000 V的电压,是可会打脱?解: (1) 1C 与2C 串联后电容 (2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超出耐压值会打脱,而后2C 也打脱.半径为1R = 的导体球,中套有一共心的导体球壳,壳的内、中半径分别为2R =战3R =,当内球戴电荷Q ×10-8C 时,供:(1)所有电场储藏的能量;(2)如果将导体壳接天,估计储藏的能量; (3)此电容器的电容值.解: 如图,内球戴电Q ,中球壳内表面戴电Q -,中表面戴电Q(1)正在1R r <战32R r R <<天区正在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε=∴正在21R r R <<天区正在3R r >天区∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε(2)导体壳接天时,惟奇尔21R r R <<30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε。
大学物理答案(下) 罗益民 北京邮电出版
第8章 机械振动8-1 解:取固定坐标xOy ,坐标原点O 在水面上(图题所示)设货轮静止不动时,货轮上的A 点恰在水面上,则浮力为S ρga .这时 ga s Mg ρ= 往下沉一点时,合力 )(y a g s Mg F +-=ρ gy s ρ-=.又 22d d t y M Ma F == 故0d d 22=+gy s ty M ρ022=+y M gs dtdy ρ 故作简谐振动M g s ρω=2)(35.68.910102101022223334s g s M T =⨯⨯⨯⨯⨯===πρπωπ8-2 解:取物体A 为研究对象,建立坐标Ox 轴沿斜面向下,原点取在平衡位置处,即在初始位置斜下方距离l 0处,此时:)(1.0sin 0m kmg l ==θ(1) (1) A 物体共受三力;重mg, 支持力N, 张力T.不计滑轮质量时,有 T =kx列出A 在任一位置x 处的牛顿方程式220d d )(sin sin txm x l k mg T mg =+-=-θθ将(1)式代入上式,整理后得0d d 22=+x m ktx 故物体A 的运动是简谐振动,且)rad/s (7==mkω 习题8-1图由初始条件,000⎩⎨⎧=-=v l x 求得,1.00⎩⎨⎧===πϕml A 故物体A 的运动方程为x =0.1cos(7t+π)m(2) 当考虑滑轮质量时,两段绳子中张力数值不等,如图所示,分别为T 1、T 2,则对A 列出任一位置x 处的牛顿方程式为:221d d sin txm T mg =-θ (2)对滑轮列出转动方程为:22221d d 2121t x Mr r a Mr J r T r T =⎪⎭⎫ ⎝⎛==-β (3)式中,T 2=k (l 0+x ) (4)由式(3)、(4)知2201d d 21)(t xM x l k T ++=代入(2)式知22021)(sin dtxd m M x l k mg ⎪⎭⎫ ⎝⎛+=+-θ又由(1)式知0sin kl mg =θ故0d d )21(22=++kx t xm M即0)2(d d 22=++x m M ktxm M k +=22ω可见,物体A 仍作简谐振动,此时圆频率为:rad/s)(7.52=+=m M k ω由于初始条件:0,000=-=v l x可知,A 、ϕ不变,故物体A 的运动方程为:m t x )7.5cos(1.0π+=由以上可知:弹簧在斜面上的运动,仍为简谐振动,但平衡位置发生了变化,滑轮的质量改变了系统的振动频率.习题8-2图8-3 解:简谐振动的振动表达式:)cos(ϕω+=t A x由题图可知,m 1042-⨯=A ,当t=0时,将m 1022-⨯=x 代入简谐振动表达式,得:21cos =ϕ 由)sin(ϕωωυ+-=t A ,当t=0时,ϕωυsin A -= 由图可知,υ>0,即0sin <ϕ,故由21cos =ϕ,取3πϕ-= 又因:t=1s 时,,1022m x -⨯=将其入代简谐振动表达式,得213cos ,3cos 42=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=πωπω由t=1s 时,⎪⎭⎫⎝⎛--=3sin πωωυA <0知,03sin >⎪⎭⎫ ⎝⎛-πω,取33ππω=-,即 s 32πω= 质点作简谐振动的振动表达式为m t x ⎪⎭⎫ ⎝⎛-⨯=-332cos 1042ππ8-4 解:以该球的球心为原点,假设微粒在某一任意时刻位于遂道中的位矢为r,由高斯定理可知304RrQ E πε=,则微粒在此处受电场力为:r R Qq F 304πε-= 式中,负号表明电场F 的方向与r的正方向相反,指向球心.由上式及牛顿定律,得:04d d 04d d 043022302230=+⇒=+=+r mRQqt r r R Qq t r mr RQqF πεπεπε令 mR Qq3024πεω=则 0d d 222=+r tr ω习题8-3图故微粒作简谐振动,平衡点在球心处.由ωπ2=T知: QqmR T 3042πεπ=8-5 解:(1)取弹簧原长所在位置为O '点.当弹簧挂上物体A 时,处于静止位置P 点,有:P O k Mg '=将A 与B 粘合后,挂在弹簧下端,静止平衡所在位置O 点,取O 点为原坐标原点如图题8-5所示,则有:g m M O O k )(+='设当B 与A 粘在一起后,在其运动过程的任一位置,弹簧形变量x O O +',则A 、B 系统所受合力为:kx x O O k g m M F -=+'-+=)()(即 0d d )(22=++kx txm M可见A 与B 作简谐和振动. (2) 由上式知,rad/s)(10=+=mM kω以B 与A 相碰点为计时起点,此时A 与B 在P 点,由图题8-5可知kmgk Mg g k m M P O O O OP =-+='-'= 则t=0时,m 02.00-=-=-=kmgOP x (负号表P 点在O 点上方) 又B 与A 为非弹性碰撞,碰撞前B 的速度为:m/s 2220101=-='gh υυ 碰撞后,A 、B 的共同速度为:m/s 4.0010=+'=mM m υυ (方向向上)则t=0时,⎩⎨⎧=-=s m mx /4.002.000υ可求得:)m (0447.02220=+=ωυx Aπωυϕ65.0arctan 00=⎪⎪⎭⎫⎝⎛-=x 可知A 与B 振动系统的振动表达式为:m t x )65.010cos(0447.0π+=习题8.5图(3) 弹簧所受的最大拉力,应是弹簧最大形变时的弹力,最大形变为:m A g kmM A O O x 1447.0=++=+'=∆则最大拉力 N 4.72max ==x k F ∆ 8-6 解:(1) 已知A=0.24m, 22ππω==T ,如选x 轴向下为正方向. 已知初始条件0m,12.000<=υx 即 3,21c o s ,c o s24.012.0πϕϕϕ±=== 而 ,0sin ,0sin 0><-=ϕϕωυA 取3πϕ=,故:m t x ⎪⎭⎫ ⎝⎛+=32cos 24.0ππ(2) 如图题所示坐标中,在平衡位置上方0.12m, 即x=-0.12m 处,有32322132cos πππππ±=+-=⎪⎭⎫ ⎝⎛+t t因为所求时间为最短时间,故物体从初始位置向上运动,0<υ.故0)32sin(>+ππt则取3232πππ=+t 可得:s t 32min =(3) 物体在平衡位置上方0.12m 处所受合外力0.3N x m =-=ωF ,指向平衡位置.8-7 解:子弹射入木块为完全非弹性碰撞,设u 为子弹射入木块后二者共同速度,由动量定理可知:m/s)(0.2=+=υmM mu不计摩擦,弹簧压缩过程中系统机械能守恒,即:20221)(21kx u m M =+ (x 0为弹簧最大形变量) m u kmM x 20100.5-⨯=+=由此简谐振动的振幅 20100.5-⨯==x A 系统圆频率rad/s)(40=+=mM kω习题8-6图若取物体静止时的位置O (平衡位置)为坐标原点,Ox 轴水平向右为正,则初始条件为: t =0时,x =0,0m/s 0.20>==u υ由,sin ,cos 00ϕωυϕA A x -==得:2πϕ-=则木块与子弹二者作简谐振动,其振动表达式为:m t x )240cos(100.52π-⨯=-8-8 解:当物体m 1向右移动x 时,左方弹簧伸长x ,右方弹簧缩短x ,但它们物体的作用方向是相同的,均与物体的位移方向相反,即)(21x k x k F +-=令F =-kx ,有:N/m 421=+=k k k 由 kmT π2= 得)kg (1.0442212211≈==ππkT k T m则粘上油泥块后,新的振动系统质量为:kg 20.021=+m m新的周期 )s (4.12212=+=km m T π在平衡位置时,m 2与m 1发生完全非弹性碰撞. 碰撞前,m 1的速度m/s 10.0111πωυ==A 设碰撞后,m 1和m 2共同速度为υ. 根据动量守恒定律,υυ)(2111m m m +=则m/s 05.0)(2111πυυ=+=m m m新的振幅 m)(035.0222===πυωυTA 8-9 解:(1)由振动方程)25sin(60.0π-=t x 知,5(rad/s)m,6.0==ωA故振动周期: )s (26.1)s (256.1522≈===πωπT (2) t=0时,由振动方程得:)25cos(0.3|m60.0000=-==-==πυt dt dx x t (3) 由旋转矢量法知,此时的位相:3πϕ-=速度 m/s)(6.2m/s )23(560.0sin =-⨯⨯-=-=ϕωυA 加速度 )m /s (5.7m /s 21560.0cos 2222-=⨯⨯-=-=ϕωA a 所受力 N)(5.1N )5.7(2.0-=-⨯==ma F(4)设质点在x 处的动能与势能相等,由于简谐振动能量守恒,即:221kA E E E p k ==+ 故有: )21(21212kA E E E p k ===即 22212121kA kx ⨯=可得: m)(42.022±=±=A x 8-10 解:(1)砝码运动到最高点时,加速度最大,方向向下,由牛顿第二定律,有:N mg ma -=maxN 是平板对砝码的支持力.故N)(74.1)4()()(22max =-=-=-=vA g m A g m a g m N πω砝码对板的正压力与N 大小相等,方向相反.砝码运动到最低点时,加速度也是最大,但方向向上,由牛顿第二定律,有:mg N ma -'=max故 N)(1.8)4()(22max =+=+='A v g m a g m N π 砝码对板的正压力与板对砝码的支持力N '大小相等,方向相反. (2)当N=0时,砝码开始脱离平板,故此时的振幅应满足条件:m)(062.040)4(22max max 2===-=v g A vA g m N ππ(3) 由22max 4vg A π=,可知,2max v A 与成反比,当v v 2='时,m 0155.041max max=='A A 8-11 解:(1)设振子过平衡位置时的速度为υ,由机械能守恒,有:222121υm kA = A mk=υ 由水平方向动量定理: ⇒='+υm u m m )(υm m mu '+=此后,系统振幅为A ',由机械能守恒,有:22)(2121u m m A k '+=' 得: A m m mA '+='有: km m T '+='π2 (2)碰撞前后系统总能量变化为:)21()1(2121212222kA m m m m m m kA kA A k E '+'-=-'+=-'=∆ 式中,负号表示能量损耗,这是泥团与物体的非弹性碰撞所致.(3)当m 达到振幅A 时,m '竖直落在m 上,碰撞前后系统在水平方向的动量均为零,因而系统的振幅仍为A ,周期为km m '+π2,系统的振动总能量不变,为221kA (非弹性碰撞损耗的能量为源于碰撞前m '的动能). 物体系统过平衡位置时的速度υ'由:22)(2121υ''+=m m kA 得:A m m k'+±='υ8-12 解:(1)由放置矢量法可知,振子从2A 运动到2A -的位置处,角相位的最小变化为:3πϕ∆=则圆频率 rad/s 3π∆ϕ∆ω==t 周期 s T 62==ωπ由初始状态,在图示坐标中,初始条件为:m)(1.00m1.000=⇒⎩⎨⎧=-=A x υ则振幅 m 1.022020=+=ωυx A习题8-12图(2)因为E E p 41=又 2221,21kA E kx E p == 故 )21(412122kA kx =得: m)(05.0±=x 根据题意,振子在平衡位置的下方,取x =-0.05m.根据振动系统的能量守恒定律:222212121kA m kx =+υ 故 )s m (091.0122-⋅±=-±=x A ωυ根据题意,取m/s 091.0-=υ 再由 )sin()cos(ϕωωυϕω+-=+=t A t t A x)cos(d d 2ϕωω+-==t A tva x 2ω-= 得: )m /s (055.02=a(3)t=0时,(J)108.681)21(41413222-⨯====mA kA E E p ω (J)102183)21(43433222-⨯====mA kA E E k ω(J)108.273-⨯=+=p k E E E (4)由简谐振动的振动表达式)cos(ϕω+=t A x 当t=0时,0m/s 091.0m,05.000<-=-=υx ,可得:πϕ32= 又 3,10.0πω==m A故 m t x )323cos(1.0ππ+= 8-13 解:(1)据题意,两质点振动方程分别为:mt x mt x Q P )3cos(1000.2)3cos(1000.522ππππ-⨯=+⨯=--(2)P 、Q 两质点的速度及加速度表达分别为:)m/s )(3sin(1000.52ππωυ+⨯⨯-==-t dt dx P P )m/s )(3sin(1000.22ππωυ-⨯⨯-==-t dt dx QQ )m/s )(3cos(1000.5222ππωυ+⨯⨯-==-t dt d a P P )m/s )(3cos(1000.2222ππωυ-⨯⨯-==-t dtd a Q Q当t=1s 时,有:)(m/s 1087.9/32cos 1000.2)(m/s 1068.24/34cos 1000.5(m/s)1044.5/32sin 1000.2(m/s)1060.13/34sin 1000.5(m)1000.132cos 1000.2)(m 105.234cos1000.5222222222222222222------------⨯=⨯⨯-=⨯=⨯⨯-=⨯-=⨯⨯-=⨯=⨯⨯-=⨯-=⨯=⨯=⨯=s m a s m a s m s m m x m x Q P Q P Q P ππππππυππυππ(3)由相位差32)3(3)()(πππϕϕϕωϕωϕ∆=--=-=+-+=Q P Q P t t 可见,P 点的相比Q 点的相位超前32π. 8-14 解:(1)由题意得初始条件:⎪⎩⎪⎨⎧<=02100υA x 可得:3πϕ=(由旋转矢量法可证出)在平衡位置的动能就是质点的总能量)J (1008.3212152222-⨯====⇒=A m kA E m k m kωωω可求得:s rad m E A /221πω==则振动表达式为:m t x )32cos(1000.52ππ+⨯=-(2) 初始位置势能)32(cos 21212222ππω+==t A m kx E P 当t=0时,3cos 21222πωA m E P =J J 6222221071.73cos )1000.5()2(1000.121---⨯=⨯⨯⨯⨯⨯=ππ 8-15 解:(1)由初始条件:⎩⎨⎧<⨯=-0102.1010υm x 可知,3πϕ=且 22ππω==v则振动表达式为:m t x )32cos(24.0ππ+=当t=0.5s 时,m m x 21000.6)3212cos(24.0-⨯-=+⨯=ππ(2) t=0.5s 时,小球所受力:(N)1048.1)(32-⨯=-==x m ma f ω因t=0.5s 时,小球的位置在m x 21000.6-⨯-=处,即小球在x 轴负方向,而f 的方向是沿x 轴正方向,总是指向平衡位置.(3) 从初始位置m x 10102.1-⨯=到m x 1102.1-⨯-=所需最短时间设为t ,由旋转矢量法知,πϕπϕ32,3,0±=±=处处x x 习题8-15图)s (3223=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧==t t πωπω(4) 因为 )32sin(24.02)sin(πππϕωωυ+⨯-=+-=t t A )32cos(24.04)cos(22πππϕωω+⨯-=+-=t t A a 在s t m x 32102.11=⨯-=-处 )32cos(24.04)3322cos(24.04/1026.3/)3322sin(24.022212ππππππαπππυ+⨯-=+⨯⨯-=⨯-=+⨯⨯-=-t s m s m (5) t=4s 时, 22)]32sin([2121ππωυ+-==t A m m E k (J)1033.5J)342(sin 24.0)2(01.0214222-⨯=+⨯⨯⨯⨯=πππ)32(cos 21212222ππω+==t A m kx E P (J)1077.1J)342(cos 24.0)2(01.0214222-⨯=+⨯⨯⨯⨯⨯=πππ(J)107.10J 101.77J 1033.5-4-44⨯=⨯+⨯=+=-P k E E E 总 8-16 解:设两质点的振动表达式分别为:)cos()cos(2211ϕωϕω+=+=t A x t A x由图题可知,一质点在21Ax =处时对应的相位为: 32/arccos 1πϕω==+A A t同理:另一质点在相遇处时,对应的相位为:习题8-16图352/arccos2πϕω==+A A t 故相位差)()(12ϕωϕωϕ∆+-+=t tπππϕϕ3433512=-=-= 若21υυ与的方向与上述情况相反,故用同样的方法,可得:πππϕϕϕ∆32)3(312=--=-= 8-17 解:由图题8-17(图在课本上P 200)所示曲线可以看出,两个简谐振动的振幅相同,即m 05.021==A A ,周期均匀s 1.0=T ,因而圆频率为:ππω202==T由x -t 曲线可知,简谐振动1在t=0时,,010=x 且010>υ,故可求得振动1的初位相πϕ2310=.同样,简谐振动2在t=0时,πϕυ==-=202020,0,05.0可知m x 故简谐振动1、2的振动表达式分别为:mt x t x )20cos(05.0)2320cos(05.021ππππ+=+=因此,合振动的振幅和初相位分别为: m A A A A A 210202122211025)cos(2-⨯=-++=ϕϕ2021012021010cos cos sin sin arctanϕϕϕϕϕA A A A ++=ππ4541arctan 或== 但由x-t 曲线知,t=0时,πϕ45,05.021应取因此-=+=x x x . 故合振动的振动表达式:m t x )4520cos(10252ππ+⨯=- 8-18 解:(1)它们的合振动幅度初相位分别为:)cos(212212221ϕϕ-++=A A A A Am )535cos(06.005.0206.005.022ππ-⨯⨯⨯++=m 0892.0=22112211cos cos sin sin arctanϕϕϕϕϕA A A A ++=316819.15.2arctan 5cos06.053cos 05.05sin06.053sin 05.0'︒===++=rad ππππ (2)当πϕϕk 21±=-,即ππϕπϕ53221+±=+±=k k 时,31x x +的振幅最大;当πϕϕ)12(2+±=-k ,即5)12()12(2ππϕϕ++±=++±=k k 时,32x x +的振幅最小.(3)以上两小问的结果可用旋转矢量法表示,如图题8-18所示.8-19 解:根据题意画出振幅矢量合成图,如习题8-19图所示.由习题8-19图及余弦定理可知cm 233.172023.172030cos 22212122⨯⨯⨯-+=︒-+=AA A A A 0.10m cm 10== 又因为)cos(cos 12ϕϕϕ∆-=0103.172)100300(4002)(2122212=⨯⨯+-=+-=A A A A A若2πϕ∆=,即第一、第二两个振动的相位差为2π第9章波动习题解答9-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s 02.001.0ϕ=- 21cos 0-=ϕ ,0s i n 00>-=ϕωυA 0sin 0<ϕ即 πϕ320-=或π34初始相位 πϕ320-=则 m t y s )32cos(02.0πω-= 再建立如图题9-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: uxt =∆ 习题8-19图习题9-1图则该波的波动方程为:m ux t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0 若坐标原点不选在S 点,如习题9-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uLx t -=∆ 则该波的波方程为:m u L x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0 若P 点选在S 点左侧,P 点比S 点超前时间为uxL -,如习题9-1图(c)所示,则 ⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0u L x t ∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0u L x t y 9-2 解(1)由习题9-2图可知, 波长 m 8.0=λ 振幅 A=0.5m 频率 Hz 125Hz 8.0100===λuv 周期 s 10813-⨯==vT ππυω2502== (2)平面简谐波标准波动方程为:⎥⎦⎤⎢⎣⎡+-=ϕω)(cos ux t A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。
大学物理学 北京邮电大学出版社(赵近芳主编)课后习题答案(1-5章)
习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v ts d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度径向上的分量, ∴tr t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d=,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tvt v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=,jty i t xt r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxyx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
大学物理学-(第3版.修订版)-北京邮电大学出版社-下册--第十章-习题10标准答案..
习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。
[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。
[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。
[答案:B](4)一个100匝的圆形线圈,半径为5厘M ,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。
[答案:A]10.2 填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度。
[答案:aIπμ220,方向垂直正方形平面] (2)计算有限长的直线电流产生的磁场用毕奥——萨伐尔定律,而用安培环路定理求得(填能或不能)。
[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为。
电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为。
[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将。
大学物理课后习题答案(第四章) 北京邮电大学出版社
又
k 0.2 2 5,即T 1.26s 3 m 8 10
2 A x0 (
v0
)2
2 2
5.0 10 2 2 (1.0 10 ) ( ) 5 2 10 2 m v 5.0 10 2 5 tan 0 0 1, 即 0 2 x 0 1.0 10 5 4 5 x 2 10 2 cos(5t )m 4 ∴
A 3.2 10 3 rad l
∴ 故其角振幅
2 A x0 (
小球的振动方程为
4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为 0.20m ,位相与第一振动的
给小球一水平向右的冲量 Ft 1.0 10 kg m s ,取打击时刻为计时起点 (t 0) ,求 振动的初位相和角振幅,并写出小球的振动方程. 解:由动量定理,有
4 1
v0 x 0
F t mv 0
∴
v
F t 1.0 10 0.01 m 1.0 10 3
A mg 2 m 2 2 gh 2 x ( ) ( ) ( ) k (m M )
2 0 2
v0
mg 2kh 1 k (m M ) g
2kh ( M m) g (第三象限),所以振动方程为 (3) mg 2kh k 2kh x 1 cos t arctan k (m M ) g ( M m) g mM 3 4-10 有一单摆,摆长 l 1.0m ,摆球质量 m 10 10 kg ,当摆球处在平衡位置时,若 tan 0
(2)
当
Ek E p
时,有
E 2E p
大学物理学课后答案第3版下册北京邮电大学出版社(2020年整理).pptx
f 到底应等于多少?
解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法
E q
把合场强 0 S 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一
E q
q
q2
f q
个板的电场为 20 S ,另一板受它的作用力
20S 20 S ,这是两板间相互作
用的电场力.
8-5 一电偶极子的电矩为 p ql ,场点到偶极子中心 O 点的距离为 r ,矢量 r 与 l 的夹角为
小球体,如题 8-13 图所示.试求:两球心O 与 O点的场强,并证明小球空腔内的电场是
均匀的.
解: 将此带电体看作带正电 的均匀球与带电 的均匀小球的组合,见题 8-13 图
(a).
(1) 球在O 点产生电场 E10 0 ,
4 πr3
球在 O
点产生电场
E20
3
4π 0d
3
OO'
∴
E0 O 点电场
,(见题 8-5 图),且 r l .试证 P 点的场强 E 在 r 方向上的分量 Er 和垂直于r 的分量
E 分别为
p cos
p sin
Er = 20 r 3 , E = 40r 3
证: 如题 8-5 所示,将 p 分解为与r 平行的分量 psin 和垂直于r 的分量 psin .
∵ r l
(2) AB 电荷在O 点产生电势,以U 0
U1
A dx 2R dx ln 2 B 4π 0 x R 4π 0 x 4π 0
同理 CD 产生
U
2
ln 2 4π 0
半圆环产生
U3
πR 4π 0 R
4 0
大学物理学第版修订版北京邮电大学出版社下册习题答案.docx
习题9 9.1 选择题(1)正方形的两对角线处各放置电荷 Q,另两对角线各放置电荷 q,若 Q 所受到合力为零,则 Q与 q 的关系为:()( A) Q=-23/2 q (B) Q=23/2 q(C) Q=-2q(D) Q=2q[ 答案: A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[ 答案: D](3)一半径为 R 的导体球表面的面点荷密度为σ,则在距球面 R处的电场强度()(A)σ / ε0(B)σ /2ε 0(C)σ /4ε 0(D)σ /8ε0 [ 答案: C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[ 答案: C]9.2 填空题(1) 在静电场中,电势不变的区域,场强必定为。
[ 答案:相同 ](2) 一个点电荷 q 放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[ 答案: q/6 ε0 ,将为零](3) 电介质在电容器中作用(a)——( b)——。
[ 答案: (a) 提高电容器的容量;(b)延长电容器的使用寿命](4) 电量 Q均匀分布在半径为R 的球体内,则球内球外的静电能之比。
[ 答案: 5: 6]9.3电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1) 在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡( 即每个电荷受其他三个电荷的库仑力之和都为零)?(2) 这种平衡与三角形的边长有无关系?解 :如题9.3图示(1)以A处点电荷为研究对象,由力平衡知:q 为负电荷解得q 3 q3(2)与三角形边长无关.题 9.3 图题9.4图9.4两小球的质量都是m ,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为 2, 如题 9.4 图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题 9.4 图示解得q 2 sin 40mgtan l9.5 根据点电荷场强公式E q,当被考察的场点距源点电荷很近(r →0) 时,则0r 24场强→∞,这是没有物理意义的,对此应如何理解?解 :qr0仅对点电荷成立,当r0 时,带电体不能再视为点电荷,再用上Er24π式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6在真空中有 A , B 两平行板,相对距离为 d ,板面积为 S ,其带电量分别为+ q 和q 2- q.则这两板之间有相互作用力 f ,有人说 f =40d 2,又有人说,因为f = qE , E q,所以 f =q2.试问这两种说法对吗 ?为什么 ? f 到底应等于多少?0 SS解 :题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强E q看成是一个带电板在另一带电板处的场强也是不对的.正确0S解答应为一个板的电场为 Eq,另一板受它的作用力 f qq q22 0 S 2 0 S,这是两2 0 S板间相互作用的电场力.9.7 长l =15.0cm的直导线 AB上均匀地分布着线密度=5.0x10-9-1的正电C·m荷.试求: (1) 在导线的延长线上与导线 B端相距a1=5.0cm处P点的场强;(2)在导线的垂直平分线上与导线中点相距 d 2=5.0cm 处Q点的场强.解:如题 9.7 图所示(1) 在带电直线上取线元dx ,其上电量dq在 P 点产生场强为dE P1dx4π0(a x) 2l dxE P dE P2题 9.7图l(a x)24π02用 l 15 cm, 5.0 10 9 C m 1,a12.5 cm代入得E P 6.74102N C1方向水平向右(2) 同理dE Q1dx方向如题 9.7图所示4π0x 2 d 22由于对称性dE Qx 0 ,即 E Q只有 y 分量,l2∵dE Qy1dx dπ 0x2 d 22x 2d224以 5.0 10 9 C cm 1,l 15 cm,d2 5 cm 代入得E Q E Qy14.96 102N C1,方向沿 y 轴正向9.8一个半径为R的均匀带电半圆环,电荷线密度为, 求环心处O点的场强.解: 如 9.8 图在圆上取dl Rd题9.8 图dq dl R d,它在O点产生场强大小为RddE方向沿半径向外24π0 R则dE x dE sinsin d4π0 R积分E x sin d04π0 R2π0 R∴ E E x,方向沿 x 轴正向.2π0 R9.9均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强 E ;(2)证明:在r l 处,它相当于点电荷q 产生的场强 E .解 :如9.9图示,正方形一条边上电荷q在P点产生物强dE P方向如图,大小为4l∵cos212r 2l2∴dE Pl2 l 22 l 24π0r r42 dE P在垂直于平面上的分量dE dE P cos∴l rdE4π0r 2l 2r 2l 2r 2l 2424题9.9 图由于对称性,P 点场强沿 OP 方向,大小为q∵4l∴E P qr方向沿 OP4π0 ( r 2l 2) r2 l 2429.10 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2) 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理qE dSs立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量e q.60(2) 电荷在顶点时,将立方体延伸为边长2a 的立方体,使 q 处于边长 2a 的立方体中心,则边长 2a 的正方形上电通量qe60q对于边长 a 的正方形,如果它不包含q 所在的顶点,则e,24 0如果它包含 q 所在顶点则e0 .如题 9.10 图所示.题9.10图9.11 均匀带电球壳内半径6cm,外半径 10cm,电荷体密度为 2×105-3求距球心C· m5cm,8cm ,12cm 各点的场强.解 :高斯定理 E dS q, E4πr2qs00当 r 5 cm时,q 0 ,E0r 8 cm时, q p 4π(r3r内3 ) 34πr3r内2∴E323.48 104N C1,方向沿半径向外.4π0 rr 12cm时 ,4π33q( r外内3r )4πr外3r内3∴E324.10 104N C1沿半径向外 .4π0 r9.12半径为R1和R2(R2>R1)的两无限长同轴圆柱面,单位长度上分别带有电量和- , 试求 :(1)r < R1;(2)R1< r < R2;(3)r > R2处各点的场强.解 :高斯定理q E dSs取同轴圆柱形高斯面,侧面积S2πrl则 E dSSE2πrl对 (1)r R1q 0, E0(2)R1r R2q l∴E沿径向向外2π0 r(3)r R2q0∴ E 0题9.13 图9.13两个无限大的平行平面都均匀带电,电荷的面密度分别为 1 和 2 ,试求空间各处场强.解 :如题9.13图示,两带电平面均匀带电,电荷面密度分别为 1 与 2 ,两面间, E1( 12 ) n201面外, E1( 12 )n202面外, E1( 12 ) n20n :垂直于两平面由 1 面指为 2 面.9.14半径为R 的均匀带电球体内的电荷体密度为, 若在球内挖去一块半径为r <R 的小球体,如题9.14 图所示.试求:两球心O 与 O点的场强,并证明小球空腔内的电场是均匀的.解 :将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题9.14图(a).(1)球在O点产生电场E100 ,4 π3球在 O 点产生电场E2033OO'4π0dr 3∴O点电场EOO';030d34d3(2)在O产生电场E1033 OO '4π0d球在 O 产生电场E200∴O点电场E03OO '题 9.14 图(a)题9.14图(b)(3)设空腔任一点 P 相对 O 的位矢为 r ,相对 O 点位矢为 r (如题8-13(b)图)则E PO r ,30EPO r,30∴EPEPOEPO( r r )dOO'3 0 3 0 3 0∴腔内场强是均匀的.9.15一电偶极子由 q =1.0×10-6C的两个异号点电荷组成,两电荷距离d=0.2cm,把这电偶极子放在 1.0 × 105N·C-1的外电场中,求外电场作用于电偶极子上的最大力矩.解 :∵电偶极子p在外场E中受力矩∴M max pE qlE 代入数字9.16两点电荷q1=1.5× 10-8C,q2=3.0× 10-8C,相距r1=42cm,要把它们之间的距离变为 r2=25cm,需作多少功?解 : Ar2F dr r2 q1q2drq1q2 (11 )r1r2 4π0r24π0 r1r2外力需作的功A A 6.55 10 6J题9.17 图9.17如题9.17图所示,在A,B两点处放有电量分别为+q ,- q的点电荷,AB间距离为 2 R,现将另一正试验点电荷q0从O点经过半圆弧移到 C 点,求移动过程中电场力作的功.解: 如题 9.17 图示∴ A q0 (U Oq o q U C )6π0 R9.18如题9.18图所示的绝缘细线上均匀分布着线密度为的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心 O 点处的场强和电势.解 : (1)由于电荷均匀分布与对称性,AB 和 CD 段电荷在 O 点产生的场强互相抵消,取dl Rd则 dq Rd产生O点dE如图,由于对称性,O点场强沿 y 轴负方向题9.18 图[sin() sin ]4π0 R22(2)AB 电荷在 O 点产生电势,以U0同理 CD 产生U 2ln 24π 0πR 半圆环产生U 34π 0 R4 0∴U O U 1 U 2 U 3ln 22π 04 04-1的匀速率作圆周运动.求带9.19 一电子绕一带均匀电荷的长直导线以 2× 10 m ·s电直线上的线电荷密度.-31-19( 电子质量 m 0 =9.1 × 10 kg ,电子电量 e =1.60 × 10 C)解 :设均匀带电直线电荷密度为,在电子轨道处场强电子受力大小F ee eE2π 0 r∴e v 2 2π 0 rmr得2π 0 mv 212.5 10 13 C m 1e-19.20 空气可以承受的场强的最大值为E =30kV · cm ,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为 d =0.5cm ,求此电容器可承受的最高电压.解 :平行板电容器内部近似为均匀电场9.21 证明:对于两个无限大的平行平面带电导体板 ( 题9.21 图 ) 来说, (1) 相向的两面上,电荷的面密度总是大小相等而符号相反;(2) 相背的两面上,电荷的面密度总是大小相等而符号相同.证 :如题 9.21 图所示,设两导体A 、 的四个平面均匀带电的电荷面密度依次为1,B2,3,4题 9.21 图(1) 则取与平面垂直且底面分别在 A 、 B 内部的闭合柱面为高斯面时,有∴230说明相向两面上电荷面密度大小相等、符号相反;(2) 在 A 内部任取一点 P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即又∵230∴14说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板2A ,B 和C 的面积都是 200cm , A 和 B 相距 4.0mm , A 与 C 相距 2.0 mm . B , C 都接地,如题 9.22 图所示.如果使 A 板带正电 3.0 ×10-7 C ,略去边缘效应,问 B 板和 C 板上的感应电荷各是多少?以地的电势为零,则 A 板的电势是多少?解 :如题9.22图示,令A板左侧面电荷面密度为 1 ,右侧面电荷面密度为2题9.22 图(1)∵∴∴且得而(2)U AC U AB,即E AC d AC E AB d AB1 E AC d AB2EABdAC21+q A2S2qA ,12q A3S3Sq C 1 S2q A 2 10 7C3q B 2 S 1 10 7 CU A E AC d AC 1 d AC 2.3103V9.23 两个半径分别为R1和 R2( R1< R2)的同心薄金属球壳,现给内球壳带电+ q,试计算: (1) 外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3) 再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q ;球壳内表面带电则为q ,外表面带电为q ,且均匀分布,其电势U E dr qdr qR2 4π0 r24π0RR2题9.23 图(2) 外壳接地时,外表面电荷q 入地,外表面不带电,内表面电荷仍为q .所以球壳电势由内球q 与内表面q 产生:(3) 设此时内球壳带电量为q ;则外壳内表面带电量为q ,外壳外表面带电量为q q (电荷守恒),此时内球壳电势为零,且得q R1qR2外球壳上电势9.24半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d3R处有一点电荷 + q,试求:金属球上的感应电荷的电量.解 :如题9.24图所示,设金属球感应电荷为q ,则球接地时电势U O0题9.24 图由电势叠加原理有:得q q39.25 有三个大小相同的金属小球,小球 1,2带有等量同号电荷,相距甚远,其间的库仑力为 F 0 .试求:(1) 用带绝缘柄的不带电小球 3先后分别接触 1, 2后移去,小球 1, 2之间的库仑力;(2) 小球 3依次交替接触小球 1,2很多次后移去,小球 1, 2之间的库仑力.解 : 由题意知q 2F 00 r 24π (1) 小球 3 接触小球 1后,小球 3和小球 1均带电qq,2小球 3 再与小球 2 接触后,小球 2 与小球 3 均带电∴此时小球 1与小球 2 间相互作用力(2) 小球 3 依次交替接触小球 1、 2 很多次后,每个小球带电量均为2q .32 q 2 q4 ∴ 小球 1、 2间的作用力3 3F 24π 0 r 29F9.26 在半径为 R 1 的金属球之外包有一层外半径为 R 2 的均匀电介质球壳,介质相对介电常数为r ,金属球带电 Q .试求:(1) 电介质内、外的场强;(2) 电介质层内、外的电势;(3) 金属球的电势.解 : 利用有介质时的高斯定理D dSqS(1) 介质内 ( R 1r R 2 ) 场强DQr , E 内Qrr3;4π 34π0 rr介质外 (rR 2 ) 场强(2) 介质外 (r R 2 ) 电势介质内 (R 1 r R 2 ) 电势(3) 金属球的电势9.27 如题 9.27 图所示,在平行板电容器的一半容积内充入相对介电常数为 r 的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解 : 如题 9.27 图所示,充满电介质部分场强为 E 2 ,真空部分场强为 E 1 ,自由电荷面密度分别为2 与1由 D dSq 0 得D1 1,D2 2而D1 0E 1 ,D2 0 rE2∴20 r E2r10 E1题 9.27 图题9.28图9.28两个同轴的圆柱面,长度均为l,半径分别为R1和R2(R2>R1),且l>>R2-R1,两柱面之间充有介电常数的均匀电介质 . 当两圆柱面分别带等量异号电荷Q 和- Q 时,求:(1)在半径 r 处( R1< r < R2=,厚度为dr,长为l的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量;(3)圆柱形电容器的电容.解 :取半径为r的同轴圆柱面( S)则D S rlD( S)d2π当 (R1r R2 ) 时,q Q∴(1)电场能量密度QD2πrlD 2Q 2w22l228π r薄壳中 dW wdQ 2Q 2 dr22l22πrdrl8π r4π rl(2)电介质中总电场能量(3) 电容:∵Q 2W2CQ 2πl∴C22W ln( R2 / R1 )题9.29 图9.29如题9.29图所示,C1=0.25F,C2 =0.15 F,C3 =0.20 F .C1上电压为50V.求:U AB.解 :电容C1上电量电容 C 2与 C3并联 C 23 C 2C3其上电荷 Q 23Q1∴Q23C1U 125 50 U 2C 2335C 239.30C1和 C 2两电容器分别标明“200 pF 、 500 V ”和“ 300 pF 、 900 V ”,把它们串联起来后等值电容是多少?如果两端加上 1000 V的电压,是否会击穿?解 : (1)C1与 C 2串联后电容(2)串联后电压比U 1C23,而 U 1 U 2 1000U 2C12∴U 1600 V, U 2400V即电容 C1电压超过耐压值会击穿,然后 C 2也击穿.9.31 半径为R1 =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2=4.0cm和 R3=5.0cm,当内球带电荷 Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量;(3)此电容器的电容值.解: 如图,内球带电Q,外球壳内表面带电Q ,外表面带电 Q题9.31 图(1) 在r R1和 R2r R3区域在 R1 r R2时QrE134π0 rr R3时QrE234π0 r∴在 R1r R2区域在 r R3区域∴总能量 W W1 W2Q 2(11 1 )8π0R1R2R3(2) 导体壳接地时,只有 R 1 r R 2 时 E Qr , W 2 0 4π 0 r 3∴W W 1 Q 2 ( 1 1 ) 1.01 10 4 J 8π 0 R 1 R 2(3) 电容器电容C 2W 4π 0 /( 1 1 ) Q 2 R 1 R 2。
大学物理学第版版北京邮电大学出版社下册习题答案
习题10选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。
[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。
[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要()(A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。
[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为安,当线圈在的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A );(B );(C );(D )14J 。
[答案:A]填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。
[答案:aIπμ220,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。
[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。
电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。
[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。
[答案:相同,不相同]在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向?解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.题图(1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B ϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题图)的环路积分⎰外B L ϖ·d l ϖ=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为 ⎰外B L ϖ·d l ϖ=I 0μ这是为什么? 解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离. 题 图如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.已知磁感应强度0.2=B Wb ·m-2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题图所示题图(1)通过abcd 面积1S 的磁通是 (2)通过befc 面积2S 的磁通量 (3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb (或24.0-Wb )题图如题图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB产生 01=B ϖCD产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题图解:如题图所示,A B ϖ方向垂直纸面向里 (2)设0=B ϖ在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题图如题图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理课后习题答案 北京邮电大学出版社
习题五5-1 振动和波动有什么区别和联系?平面简谐波动方程和简谐振动方程有什么不同?又有什么联系?振动曲线和波形曲线有什么不同?解: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置,又是时间的函数,即.(2)在谐振动方程中只有一个独立的变量时间,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程中有两个独立变量,即坐标位置和时间,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律.当谐波方程中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一.(3)振动曲线描述的是一个质点的位移随时间变化的规律,因此,其纵轴为,横轴为;波动曲线描述的是介质中所有质元的位移随位置,随时间变化的规律,其纵轴为,横轴为.每一幅图只能给出某一时刻质元的位移随坐标位置变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图.5-2 波动方程=cos[()+]中的表示什么?如果改写为=cos (),又是什么意思?如果和均增加,但相应的[()+]的值不变,由此能从波动方程说明什么?解: 波动方程中的表示了介质中坐标位置为的质元的振动落后于原点的时间;则表示处质元比原点落后的振动位相;设时刻的波动方程为则时刻的波动方程为其表示在时刻,位置处的振动状态,经过后传播到处.所以在中,当,均增加时,的值不会变化,而这正好说明了经过时间,波形即向前传播了的距离,说明描述的是一列行进中的波,故谓之行波方程.5-3 波在介质中传播时,为什么介质元的动能和势能具有相同的位相,而弹簧振子的动能和势能却没有这样的特点?解: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形变势能.形变势能由介质的相对形变量(即应变量)决定.如果取波动方程为,则相对形变量(即应变量)为.波动势能则是与的平方成正比.由波动曲线图(题5-3图)可知,在波峰,波谷处,波动动能有极小(此处振动速度为零),而在该处的应变也为极小(该处),所以在波峰,波谷处波动势能也为极小;在平衡位置处波动动能为极大(该处振动速度的极大),而在该处的应变也是最大(该处是曲线的拐点),当然波动势能也为最大.这就说明了在介质中波动动能与波动势能是同步变化的,即具有相同的量值.题5-3图对于一个孤立的谐振动系统,是一个孤立的保守系统,机械能守恒,即振子的动能与势能之和保持为一个常数,而动能与势能在不断地转换,所以动能和势能不可能同步变化.5-4 波动方程中,坐标轴原点是否一定要选在波源处? =0时刻是否一定是波源开始振动的时刻? 波动方程写成=cos()时,波源一定在坐标原点处吗?在什么前提下波动方程才能写成这种形式?解: 由于坐标原点和开始计时时刻的选全完取是一种主观行为,所以在波动方程中,坐标原点不一定要选在波源处,同样,的时刻也不一定是波源开始振动的时刻;当波动方程写成时,坐标原点也不一定是选在波源所在处的.因为在此处对于波源的含义已做了拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只要把振动方程为已知的点选为坐标原点,即可得题示的波动方程.5-5 在驻波的两相邻波节间的同一半波长上,描述各质点振动的什么物理量不同,什么物理量相同?解: 取驻波方程为,则可知,在相邻两波节中的同一半波长上,描述各质点的振幅是不相同的,各质点的振幅是随位置按余弦规律变化的,即振幅变化规律可表示为.而在这同一半波长上,各质点的振动位相则是相同的,即以相邻两波节的介质为一段,同一段介质内各质点都有相同的振动位相,而相邻两段介质内的质点振动位相则相反.5-6 波源向着观察者运动和观察者向波源运动都会产生频率增高的多普勒效应,这两种情况有何区别?解: 波源向着观察者运动时,波面将被挤压,波在介质中的波长,将被压缩变短,(如题5-6图所示),因而观察者在单位时间内接收到的完整数目()会增多,所以接收频率增高;而观察者向着波源运动时,波面形状不变,但观察者测到的波速增大,即,因而单位时间内通过观察者完整波的数目也会增多,即接收频率也将增高.简单地说,前者是通过压缩波面(缩短波长)使频率增高,后者则是观察者的运动使得单位时间内通过的波面数增加而升高频率.题5-6 图多普勒效应5-7 一平面简谐波沿轴负向传播,波长= m,原点处质点的振动频率为=2. 0 Hz,振幅=,且在=0时恰好通过平衡位置向轴负向运动,求此平面波的波动方程.解: 由题知时原点处质点的振动状态为,故知原点的振动初相为,取波动方程为则有5-8 已知波源在原点的一列平面简谐波,波动方程为=cos(),其中,,为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为处一点的振动方程;(3)任一时刻,在波的传播方向上相距为的两点的位相差.解: (1)已知平面简谐波的波动方程()将上式与波动方程的标准形式比较,可知:波振幅为,频率,波长,波速,波动周期.(2)将代入波动方程即可得到该点的振动方程(3)因任一时刻同一波线上两点之间的位相差为将,及代入上式,即得.5-9 沿绳子传播的平面简谐波的波动方程为=(10),式中,以米计,以秒计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度;(3)求=处质点在=1s时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在=时刻到达哪一点?解: (1)将题给方程与标准式相比,得振幅,频率,波长,波速.(2)绳上各点的最大振速,最大加速度分别为(3)m处的振动比原点落后的时间为故,时的位相就是原点(),在时的位相,即π.设这一位相所代表的运动状态在s时刻到达点,则5-10 如题5-10图是沿轴传播的平面余弦波在时刻的波形曲线.(1)若波沿轴正向传播,该时刻,,,各点的振动位相是多少?(2)若波沿轴负向传播,上述各点的振动位相又是多少?解: (1)波沿轴正向传播,则在时刻,有题5-10图对于点:∵,∴对于点:∵,∴对于点:∵,∴对于点:∵,∴(取负值:表示点位相,应落后于点的位相)(2)波沿轴负向传播,则在时刻,有对于点:∵,∴对于点:∵,∴对于点:∵,∴对于点:∵,∴(此处取正值表示点位相超前于点的位相)5-11 一列平面余弦波沿轴正向传播,波速为5m·s-1,波长为2m,原点处质点的振动曲线如题5-11图所示.(1)写出波动方程;(2)作出=0时的波形图及距离波源处质点的振动曲线.解: (1)由题5-11(a)图知,m,且时,,∴,又,则题5-11图(a)取,则波动方程为(2) 时的波形如题5-11(b)图题5-11图(b) 题5-11图(c)将m代入波动方程,得该点处的振动方程为如题5-11(c)图所示.5-12 如题5-12图所示,已知=0时和=时的波形曲线分别为图中曲线(a)和(b) ,波沿轴正向传播,试根据图中绘出的条件求:(1)波动方程;(2)点的振动方程.解: (1)由题5-12图可知,,,又,时,,∴,而,,∴故波动方程为(2)将代入上式,即得点振动方程为题5-12图5-13 一列机械波沿轴正向传播,=0时的波形如题5-13图所示,已知波速为10 m·s -1,波长为2m,求:(1)波动方程;(2) 点的振动方程及振动曲线;(3) 点的坐标;(4) 点回到平衡位置所需的最短时间.解: 由题5-13图可知,时,,∴,由题知,,则∴(1)波动方程为题5-13图(2)由图知,时,,∴(点的位相应落后于点,故取负值)∴点振动方程为(3)∵∴解得(4)根据(2)的结果可作出旋转矢量图如题5-13图(a),则由点回到平衡位置应经历的位相角题5-13图(a)∴所属最短时间为5-14 如题5-14图所示,有一平面简谐波在空间传播,已知P点的振动方程为=cos().(1)分别就图中给出的两种坐标写出其波动方程;(2)写出距点距离为的点的振动方程.解: (1)如题5-14图(a),则波动方程为如图(b),则波动方程为题5-14图(2) 如题5-14图(a),则点的振动方程为如题5-14图(b),则点的振动方程为5-15 已知平面简谐波的波动方程为(SI).(1)写出= s时各波峰位置的坐标式,并求此时离原点最近一个波峰的位置,该波峰何时通过原点?(2)画出= s时的波形曲线.解:(1)波峰位置坐标应满足解得 (…)所以离原点最近的波峰位置为.∵故知,∴,这就是说该波峰在前通过原点,那么从计时时刻算起,则应是,即该波峰是在时通过原点的.题5-15图(2)∵,∴,又处,时,又,当时,,则应有解得,故时的波形图如题5-15图所示5-16 题5-16图中(a)表示=0时刻的波形图,(b)表示原点(=0)处质元的振动曲线,试求此波的波动方程,并画出=2m处质元的振动曲线.解: 由题5-16(b)图所示振动曲线可知,,且时,,故知,再结合题5-16(a)图所示波动曲线可知,该列波沿轴负向传播,且,若取题5-16图则波动方程为5-17 一平面余弦波,沿直径为14cm的圆柱形管传播,波的强度为×10-3J·m-2·s-1,频率为300 Hz,波速为300m·s-1,求:(1)波的平均能量密度和最大能量密度?(2)两个相邻同相面之间有多少波的能量?解: (1)∵∴(2)5-18 如题5-18图所示,和为两相干波源,振幅均为,相距,较位相超前,求:(1) 外侧各点的合振幅和强度;(2) 外侧各点的合振幅和强度解:(1)在外侧,距离为的点,传到该点引起的位相差为(2)在外侧.距离为的点,传到该点引起的位相差.5-19 如题5-19图所示,设点发出的平面横波沿方向传播,它在点的振动方程为;点发出的平面横波沿方向传播,它在点的振动方程为,本题中以m计,以s计.设=,= m,波速=·s-1,求:(1)两波传到P点时的位相差;(2)当这两列波的振动方向相同时,处合振动的振幅;*(3)当这两列波的振动方向互相垂直时,处合振动的振幅.解: (1)题5-19图(2)点是相长干涉,且振动方向相同,所以(3)若两振动方向垂直,又两分振动位相差为,这时合振动轨迹是通过Ⅱ,Ⅳ象限的直线,所以合振幅为5-20 一平面简谐波沿轴正向传播,如题5-20图所示.已知振幅为,频率为波速为.(1)若=0时,原点处质元正好由平衡位置向位移正方向运动,写出此波的波动方程;(2)若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求轴上因入射波与反射波干涉而静止的各点的位置.解: (1)∵时,,∴故波动方程为m题5-20图(2)入射波传到反射面时的振动位相为(即将代入),再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为若仍以点为原点,则反射波在点处的位相为,因只考虑以内的位相角,∴反射波在点的位相为,故反射波的波动方程为此时驻波方程为故波节位置为故 (…)根据题意,只能取,即5-20 一驻波方程为=(SI),求:(1)形成此驻波的两列行波的振幅和波速;(2)相邻两波节间距离.解: (1)取驻波方程为故知,则,∴(2)∵所以相邻两波节间距离5-22 在弦上传播的横波,它的波动方程为=(13+ (SI)试写出一个波动方程,使它表示的波能与这列已知的横波叠加形成驻波,并在=0处为波节.解: 为使合成驻波在处形成波节,则要反射波在处与入射波有的位相差,故反射波的波动方程为5-23 两列波在一根很长的细绳上传播,它们的波动方程分别为=()(SI), =()(SI).(1)试证明绳子将作驻波式振动,并求波节、波腹的位置;(2)波腹处的振幅多大?=处振幅多大?解: (1)它们的合成波为出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动.令,则,k=0,±1,±2…此即波腹的位置;令,则,…,此即波节的位置.(2)波腹处振幅最大,即为m;处的振幅由下式决定,即5-24 汽车驶过车站时,车站上的观测者测得汽笛声频率由1200Hz变到了1000 Hz,设空气中声速为330m·s-1,求汽车的速率.解: 设汽车的速度为,汽车在驶近车站时,车站收到的频率为汽车驶离车站时,车站收到的频率为联立以上两式,得5-25 两列火车分别以72km·h-1和54 km·h-1的速度相向而行,第一列火车发出一个600 Hz 的汽笛声,若声速为340 m·s-1,求第二列火车上的观测者听见该声音的频率在相遇前和相遇后分别是多少?解: 设鸣笛火车的车速为,接收鸣笛的火车车速为,则两者相遇前收到的频率为两车相遇之后收到的频率为。
大学物理学第版修订版北京邮电大学出版社下册第九章习题答案
习题99.1选择题(1) 正方形的两对角线处各放置电荷Q ,另两对角线各放置电荷q ,若Q 所受到合力为零,则Q 与q的关系为:()(A )Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2) 下面说法正确的是:()(A )若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B )若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C )若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D )若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[答案:D](3) 一半径为R 的导体球表面的面点荷密度为σ,则在距球面R 处的电场强度() (A )σ/ε0 (B )σ/2ε0 (C )σ/4ε0 (D )σ/8ε0[答案:C](4) 在电场中的导体内部的()(A )电场和电势均为零; (B )电场不为零,电势均为零;(C )电势和表面电势相等; (D )电势低于表面电势。
[答案:C]9.2填空题(1) 在静电场中,电势不变的区域,场强必定为 。
[答案:相同](2) 一个点电荷q 放在立方体中心,则穿过某一表面的电通量为 ,若将点电荷由中心向外移动至无限远,则总通量将 。
[答案:q/6ε0, 将为零](3) 电介质在电容器中作用(a )——(b )——。
[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4) 电量Q 均匀分布在半径为R 的球体内,则球内球外的静电能之比 。
[答案:5:6]9.3 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题9.4解: 如题9.4图示解得θπεθtan 4sin 20mg l q =9.5 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S q E 0ε=,所以f =S q 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 9.7 长l =15.0cmAB 上均匀地分布着线密度λ=5.0x10-9C ·m-1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q点的场强.解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图 用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅方向水平向右(2)2220d d π41d +=x xE Q λε 方向如题9.7图所示由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==积分R R E x 000π2d sin π4ελϕϕελπ==⎰ ∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为∵ 22cos 221l r l +=θ∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为 ∵ lq4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s ⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10 图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 9.12 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外 (3) 2R r > 0=∑q ∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E ,ρ-球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ;(2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO 题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 00033)(3ερερερdr r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E中受力矩 ∴ qlE pE M ==max 代入数字9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r rr r q q r r q q r F A εε)11(21r r - 外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C解: 如题9.17图示∴ Rqq U U q A o C O 00π6)(ε=-= 9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题9.18图R 0π4ελ=[)2sin(π-2sin π-] (2) AB 电荷在O 点产生电势,以0=∞U 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 9.19 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm解: 平行板电容器内部近似为均匀电场9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A= 得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳(2)*(3)解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d RR Rqr r q r E U εε 题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且 得 q R R q 21=' 外球壳上电势9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:得 -='q 3q 9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电 ∴ 此时小球1与小球2间相互作用力(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r q q F ==ε 9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内; 介质外)(2R r <场强 (2)介质外)(2R r >电势介质内)(21R r R <<电势(3)金属球的电势9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε= ∴r r E E εεεεσσ==102012 题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== 题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V?解: (1) 1C 与2C 串联后电容 (2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε=∴在21R r R <<区域 在3R r >区域∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε。
大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十五章 习题15 答案
习题1515.1 选择题(1)一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为[ ](A) 4/0I2.(B) I0 / 4.(C) I0 / 2.(D) 2I0 / 2。
[答案:B](2)自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是[ ](A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[答案:C](3)在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则[ ](A) 干涉条纹的间距不变,但明纹的亮度加强.(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[答案:B](4)一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i0,则在界面2的反射光是[ ](A)自然光。
(B)线偏振光且光矢量的振动方向垂直于入射面。
(C)线偏振光且光矢量的振动方向平行于入射面。
(D)部分偏振光。
[答案:B]*(5)ABCD为一块方解石的一个截面,AB为垂直于纸面的晶体平面平行的单色自然光垂直于AB端面入射.在方解石内折射光分解为o光和e光,o光和e光的[ ](A) 传播方向相同,电场强度的振动方向互相垂直.(B) 传播方向相同,电场强度的振动方向不互相垂直.(C) 传播方向不同,电场强度的振动方向互相垂直.(D) 传播方向不同,电场强度的振动方向不互相垂直.[答案:C]15.2 填空题(1)马吕斯定律的数学表达式为I = I0 cos2α.式中I为通过检偏器的透射光的强度;I0为入射__________的强度;α为入射光__________方向和检偏器_________方向之间的夹角。
[答案:线偏振光(或完全偏振光,或平面偏振光),光(矢量)振动,偏振化(或透光轴);](2)当一束自然光以布儒斯特角入射到两种媒质的分界面上时,就偏振状态来说反射光为____________________光,其振动方向__________于入射面。
大学物理第二版答案(北京邮电大学出版社)
大学物理第二版答案(北京邮电大学出版社)习题解答第一章质点运动学1-1(1)质点t时刻位矢为:r(3t5)i12t23t4j(m)(2)第一秒内位移r1(某1某0)i(y1y0)j3(10)i12(10)23(110)j3i3.5j(m)(3)前4秒内平均速度Vr1t4(12i20j)3i5j(m1)(4)速度Vdr3i(t3)j(m1dt)∴V43i(43)j3i7j(m1)A;/。
(5)前4秒平均加速度aVV4V0734jj(m2t40)(6)加速度adVdtj(m2)a4j(m2)1-2vd某dtt33t22某d某vdtc14t4t32tc当t=2时某=4代入求证c=-12即某14t4t32t12vt33t22adv3t2dt6t将t=3代入证某41134(m)v356(m1)a345(m2)1-3(1)由运动方程某4t22t消去t得轨迹方程y3某(y3)20(2)1秒时间坐标和位矢方向为某14m[4,5]m:tgy某1.25,51.3(3)第1秒内的位移和平均速度分别为y15mr1(40)i(53)j4i2j(m)r1V4i2j(m1)t(4)质点的速度与加速度分别为drV8i2j,dtdVa8idt故t=1时的速度和加速度分别为V18i2jm1,a18im21-4该星云飞行时间为9.4610152.741096.5910172.091010a73.9310即该星云是2.091010年前和我们银河系分离的.1-5实验车的加速度为v1600103a2.47102m/225(g)t36001.80基本上未超过25g.1.80内实验车跑的距离为v1600103t1.80400(m)2236001-6(1)设第一块石头扔出后t秒未被第二块击中,则hv0t12gt2代入已知数得11115t9.8t22解此方程,可得二解为t11.84,t11.22第一块石头上升到顶点所用的时间为tmv10/g15/9.81.53由于t1tm,这对应于第一块石头回落时与第二块相碰;又由于t1tm这对应于第一块石头上升时被第二块赶上击中.以v20和v20分别对应于在t1和t1时刻两石块相碰时第二石块的初速度,则由于hv20(t1t1)1g(t1t1)22所以hv2011g(t1t1)2119.8(1.841)222t1t11.84117.2m/同理.2v20h11g(t1t1)2119.8(1.221)2221.221t1t151.1(m/)(2)由于t21.3t1,所以第二石块不可能在第一块上升时与第一块相碰.对应于t1时刻相碰,第二块的初速度为h12g(t)21119.8(1.841.3)2v201t2tt2121.841.323.0(m/)1-7以l表示从船到定滑轮的绳长,则v0dl/dt.由图可知l2h2于是得船的速度为vdldl2h2dtl2h2dtv0习题1-7图负号表示船在水面上向岸靠近.船的加速度为advdldtvdlh2v20dll2h20dt3负号表示a的方向指向岸边,因而船向岸边加速运动.1-8所求位数为2r42n2r42(6104)2gg0.16029.841051-9物体A下降的加速度(如图所示)为a2h20.40.2m/2t222此加速度也等于轮缘上一点在t3时的切向加速度,即at0.2(m/2)在t3时的法向加速度为av2(att)2R(0.23)2n1.00.36(m/2R)习题1-9图习题1-10图1-10a1.2m/2,t00.5,h01.5m.如图所示,相对南面,小球开始下落时,它和电梯的速度为3v0at01.20.50.6(m/)以t表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为hv0t12gt2电梯下降的距离为hv0t12at2又h0hh1(ga)t22由此得t2h021.50.59ga9.81.2而小球相对地面下落的距离为hv0t12gt20.60.599.80.5922.06m1-11v风地v风人v人地2v0人地,速度矢量合成如图(b)两图中v风地应是同一矢量.可知(a)v风人画出速度矢量合成图(a)又v风地12图必是底角为45的等腰直角三角形,所以,风向应为西北风,风速为v风地4.23(m1)v0人地co452v0人地1-12(1)t(2)2L2LvvLL2vLtt1t22vuvuvu222Lu1vv1习题1-11图(3)u由东习题1-12图tt1t2LL,如图所示风速vv向西,由速度合成可得飞机对地速度vuv,则Vv2u2.t2L2L22vvu2Luv1v2证毕1-13(1)设船相对岸的速度为V(如图所示),由速度合成得VuVV的大小由图1.7示可得VVcouco习题1-13图4即VcoVuco323332而Vinuin21船达到B点所需时间tAB两点之距SDctgOBDD1000()VVincoin12D将式(1)、(2)代入可得SD(33)1268(m)(2)由D1103tVinuin船到对岸所需最短时间由极值条件决定dt1du1in2co0即co0,/2故船头应与岸垂直,航时最短.将值代入(3)式得最短航时为3t110minuin/2110320.5103500()(3)设OBl,则lDVDDu2V22inuVcoVinuin欲使l最短,应满足极值条件.dlDu2V22uVcoduacoainuVin2ain2au2V22uVco0简化后可得2u2V2coauVco10即co2a136co10解此方程得co23co12348.2故船头与岸成48.2,则航距最短.将值代入(4)式得最小航程为2lu2v22uvco10002232223minDu1co23221231.5103m1.5(km)AB两点最短距离为52SminlminD21.511.12(km)第二章质点动力学2-1(1)对木箱,由牛顿第二定律,在某向:Fmincofma某0y向:NFmininMg0还有fma某N习题2-1图木箱将要被推动的情况下如图所示,解以上三式可得要推动木箱所需力F的最小值为FminMgcoin在木箱做匀速运动情况下,如上类似分析可得所需力F的大小为FminkMgcokin(2)在上面Fmin的表示式中,如果coin0,则Fmin,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是coin0由此得的最小值为arctan12-2(1)对小球,由牛顿第二定律某向:TcoNinmay向:TinNcomg0联立解此二式,可得Tm(acogin)0.5(2co309.8in30)3.32(N)Nm(gcoain)0.5(9.8co302in30 )3.74(N)由牛顿第三定律,小球对斜面的压力NN3.74(N)(2)小球刚要脱离斜面时N=0,习题2-2图则上面牛顿第二定律方程为Tcoma,Tinmg由此二式可解得ag/tan9.8/tan3017.0m/22-3要使物体A与小车间无相对滑动,三物体必有同一加速度a,且挂吊B的绳应向后倾斜。
大学物理学课后答案第3版下册北京邮电大学出版社.pdf
大学物理习题及解答习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷20220)33(π4130cos π412a q q a q '=︒εε解得q q 33−='(2)与三角形边长无关.题8-1图题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得θπεθtan 4sin 20mg l q =8-3 根据点电荷场强公式204r qE πε=,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解:20π4r r q E ε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S qE 0ε=,所以f =S q 02ε.试问这两种说法对吗?为什么? f 到底应等于多少? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S qE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力S q S q q f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量θsin p .∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P −=λε2220)(d π4d x a xE E llP P −==⎰⎰−ελ]2121[π40l a l a +−−=ελ)4(π220l a l−=ελ用15=l cm ,9100.5−⨯=λ1m C −⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N −⋅ 方向水平向右 (2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵22222220d d d d π41d ++=x x x E Qy λε22π4d d ελ⎰==lQyQy E E ⎰−+2223222)d (d l l x x2220d 4π2+=l lελ以9100.5−⨯=λ1cm C −⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N −⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0R E E x ==ϕϕελϕπd cos π4)cos(d d 0R E E y −=−=积分R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=−=⎰ϕϕελπR E y∴R E E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强P Ed 方向如图,大小为()4π4cos cos d 22021l r E P +−=εθθλ ∵22cos 221l r l +=θ 12cos cos θθ−= ∴24π4d 22220l r ll r E P ++=ελ P Ed 在垂直于平面上的分量βcos d d P E E =⊥∴424π4d 222222l r r l r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ ∵l q 4=λ∴2)4(π422220l r l r qrE P ++=ε 方向沿OP 8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(x Rarctan=α)解: (1)由高斯定理0d εq S E s⎰=⋅ 立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点则=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +−+=∴)(π42200x R Sq +=Φε02εq=[221x R x +−] *关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r S ααα⎰⋅=02d sin π2r)cos 1(π22α−=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510−C·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p =3(r )3内r −∴()2023π43π4r r r E ερ内−=41048.3⨯≈1C N −⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq −3(外r )内3r∴ ()420331010.4π43π4⨯≈−=r r r E ερ内外 1C N −⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s取同轴圆柱形高斯面,侧面积rl S π2=则rlE S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴r E 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,d ε ∑⎰= ⋅ q S E s两面间, nE )(21210σσε−=1σ面外, nE )(21210σσε+−= 2σ面外, nE )(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ−的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场10=E,ρ− 球在O 点产生电场'd π4π3430320OO r E ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ=' ρ−球在O '产生电场002='E∴ O ' 点电场003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则03ερrE PO =,03ερr E O P '−=' ,∴0003'3)(3ερερερd OO r r E E E O P PO P=='−=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p 在外场E中受力矩E p M ⨯= ∴qlEpE M ==m ax 代入数字4536max 100.2100.1102100.1−−−⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解:⎰⎰==⋅=22210212021π4π4d d r r r r q q r rq q r F A εε )11(21r r −61055.6−⨯−=J外力需作的功 61055.6−⨯−=−='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=−R qR q 0π41ε=O U )3(R q R q −R q 0π6ε−=∴R qq U U q A oC O 00π6)(ε=−=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰−==R R E E yR 0π4ελ=[)2sin(π−2sinπ−]R 0π2ελ−=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生0034π4πελελ==R R U∴0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强r E 0π2ελ=电子受力大小r e eE F e 0π2ελ==∴r v m r e 20π2=ελ得1320105.12π2−⨯==e mv ελ1m C −⋅ 8-19 空气可以承受的场强的最大值为E =30kV·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E −∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷r qU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂−= 0r 为r 方向单位矢量.(2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qx i x U E 2/3220π4+=∂∂−=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql l l r q U εθθθε=+−−=∴ 30π2cos r p r U E r εθ=∂∂−=30π4sin 1r p U r E εθθθ=∂∂−=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=−−−εσεσεσεσ又∵ +2σ03=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ ABAC U U =,即∴ABAB AC AC E E d d =∴ 2d d 21===AC ABAB AC E E σσ且 1σ+2σS q A=得,32S q A =σ S q A321=σ 而7110232−⨯−=−=−=A C q S q σC C10172−⨯−=−=S q B σ(2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q −,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q −.所以球壳电势由内球q +与内表面q −产生:π4π42020=−=R qR qU εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '−,外壳外表面带电量为+−q q '(电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+−+−=R q q R q R q U A εεε得 q R R q 21='外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε−=+−+−=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε得 −='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F.试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电qq 43=''∴ 此时小球1与小球2间相互作用力0220183π483π4"'2F rqr q q F =−=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q.∴ 小球1、2间的作用力00294π432322F r q q F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+−==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得S q261==σσ S qd U 2032−=−=εσσ S qd U 2054+=−=εσσ所以CB 间电场S q d U E 00422εεσ+==)2d (212d 02S q U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势. 解: 利用有介质时的高斯定理∑⎰=⋅qS D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r r Q E r Qr D ε ==外(2)介质外)(2R r >电势r Q E U 0rπ4r d ε=⋅=⎰∞ 外介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+−=)11(π420R r Q r r −+=εεε(3)金属球的电势rd r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε )11(π4210R R Q r r −+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值. 解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D 得11σ=D ,22σ=D而101E D ε=,202E D r εε=d 21UE E ==∴ r D D εσσ==1212题8-28图 题8-29图rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴rl QD π2=(1)电场能量密度22222π82l r Q D w εε== 薄壳中rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R V R R l Q rl r Q W W εε(3)电容:∵C Q W 22=∴)/ln(π22122R R lW Q C ε==*8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C +=其上电荷123Q Q =∴355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF、500 V”和“300 pF、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==−=−=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+−=+−(2)电场能量损失WW W −=∆0)22()2121(2221212221C q C q U C U C +−+=221212UC C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q −,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε ⎰−==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量)111(π83210221R R R Q W W W +−=+=ε41082.1−⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε =,02=W∴ 4210211001.1)11(π8−⨯=−==R R Q W W ε J(3)电容器电容)11/(π422102R R Q W C −==ε121049.4−⨯=F习题九9-1 在同一磁感应线上,各点B 的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B 的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B 的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B = ∑⎰==−=⋅0d 021I bc B da B l B abcdμ∴ 21B B= (2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B 方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nIB 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L ·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为 ⎰外B L ·d l=I 0μ这是为什么? 解: 我们导出nl B 0μ=内,=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量r IB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转. 9-6 已知磁感应强度0.2=B Wb·m-2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0−Wb ) 题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生R I B 1202μ=,方向垂直向里CD 段产生)231(2)60sin 90(sin 24003−πμ=−πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+−=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2−⨯=⨯+−=πμπμI I B A T(2)设0=B 在2L 外侧距离2L 为r 处则 02)1.0(220=−+r I r Iπμπμ解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1 3选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ] (A) 间隔变小,并向棱边方向平移. (B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [答案:A](3)一束波长为的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ] (A) . (B) / (4n ).(C) . (D) / (2n ). [答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d + / 2. (D) nd .(E) ( n -1 ) d . [答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是 [ ](A) . (B) / (2n ).(C) n . (D) / [2(n-1)]. [答案:D]填空题(1)如图所示,波长为的平行单色光斜入射到距离为d 的双缝上,入射角为.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________.[答案:2sin /d πθλ](2)在双缝干涉实验中,所用单色光波长为= nm (1nm =10-9 m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为x =1.5 mm ,则双缝的间距d =__________________________.[答案:0.45mm](3)波长=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____________nm .(1 nm=10-9 m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变 。
(填疏或密)[答案:变密 ](5)在杨氏双缝干涉实验中,光源作平行于缝S 1,S 2联线方向向下微小移动,则屏幕上的干涉条纹将向 方移动。
[答案:向上 ](6)在杨氏双缝干涉实验中,用一块透明的薄云母片盖住下面的一条缝,则屏幕上的干涉条纹将向 方移动。
[答案:向下 ](7)由两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以垂直于下平玻璃的方向离开平移,则干涉条纹将向 平移,并且条纹的间距将 。
[答案:棱边,保持不变 ]某单色光从空气射入水中,其频率、波速、波长是否变化怎样变化 解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.什么是光程 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同其所需时间是否相同在光程差与位相差的关系式∆λπϕ∆2=中,光波的波长要用真空中波长,为什么解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为Ct ∆=∆. 因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。
用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题图 题图如题图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动.在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求:(1) 若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2) 相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 在双缝装置中,用一很薄的云母片(n=覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为 按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 洛埃镜干涉装置如题图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离. 题图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为,玻璃的折射率为,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000 oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:得 31=k 可由②式求得油膜的厚度为白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为,试问该膜的正面呈现什么颜色背面呈现什么颜色解: 由反射干涉相长公式有 得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.在折射率1n =的镜头表面涂有一层折射率2n =的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即∴ 222422)21(n n k n k e λλλ+=+=令0=k ,得膜的最薄厚度为996oA .当k 为其他整数倍时,也都满足要求.如题图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1) 两玻璃片间的夹角=θ(2) 相邻两明条纹间空气膜的厚度差是多少 (3) 相邻两暗条纹的间距是多少 (4) 在这0.12 m 内呈现多少条明条纹 题图解: (1)由图知,d L =θsin ,即d L =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lLN 条 用=λ5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =.求:(1)膜下面媒质的折射率2n 与n 的大小关系; (2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据解: (1) n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意; (2) 3105.15.12500092929-⨯=⨯⨯==⨯=∆n e nλλ mm (因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm现被第21级暗纹占据.(1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k 个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式 据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得(2)用A 50001&=λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 ∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k o A 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =×10-2m 变为2d =×10-2m ,求液体的折射率.解: 由牛顿环明环公式两式相除得n D D =21,即22.161.196.12221≈==D D n 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm 时,观察到干涉条纹移动数为1024条,求所用单色光的波长.解: 由 2λNd ∆=∆得 102410322.0223-⨯⨯=∆∆=N d λ 把折射率为n =的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ=5000oA ,求此玻璃片的厚度.解: 设插入玻璃片厚度为d ,则相应光程差变化为∴ )1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm。