《大学物理学》答案(上海交大版)上下册 2
《大学物理学》答案(上海交大版)上下册
习 题1-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω=消去t 可得轨道方程 222R y x =+2) j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])c o s ()s i n [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:1)由j i r )t 23(t 42++=可知2t 4x =t 23y +=消去t 得轨道方程为:2)3y (x -=2)j i rv 2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)j i rv 2t 2dt d +== i va 2dtd ==2)212212)1t (2]4)t 2[(v +=+= 1t t 2dtdv a 2t +==n a ==1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-420221gt t v h y -+= (2)21y y = (3) 解之t =初速度0v 水平抛出,求:1-5. 一质量为m 的小球在高度h 处以(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+=(2)联立式(1)、式(2)得 22v 2gx h y -=(3)j i rgt -v t d d 0= 而 落地所用时间 gh 2t = 所以j i r 2gh -v t d d 0= j v g td d -= 2202y 2x )gt (v v v v -+=+=212220[()]g t dvdt v gt ==+1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
上海交大第三版大学物理学答案上册
第一章 运动的描述1、解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v2、解:=a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)3、解: ct b t S +==d /d vc t a t ==d /d v()R ct b a n /2+=根据题意:a t =a n即()R ct b c /2+=解得cb c R t -=4、解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvs t 1=时,v = 4Rt 2 = 8 m/s 2s /168/m Rt dt d a t ===v22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 25、解:(1) 球相对地面的初速度=+='v v v 030 m/s抛出后上升高度9.4522='=gh v m/s 离地面高度H = (45.9+10) m =55.9 m(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 08.420==gt v s 6、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得ts s t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的,∴tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s lt l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v s lv s v v s t sl t l st v a =+-=+-=-==船船 7、解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如图(a)由图可知1222121h km 50-⋅=+=v v v方向北偏西︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v-=,依题意作出速度矢量图如图(b),同上法,得5012=v 1h km -⋅,方向南偏东o 87.36第二章 运动定律与力学中的守恒定律1、解:(1)位矢j t b i t a rωωsin cos += (SI)可写为t a x ωcos =,t b y ωsin =t a t x x ωωsin d d -==v ,t b ty ωωυcos d dy == 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v 在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v (2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22--由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω2、解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得B B A A A A m m m v v v +=0①2220212121B B A A A A m m m v v v +=② 联立解出0A B A B AA m m m m v v +-=,02A BA AB m m m v v += 由于二球同时落地,∴0>A v ,B A m m >;且B B A A L L v v //=∴52==B A B A L L v v ,522=-A B Am m m 解出5/=B A m m3、解:(1) 释放后,弹簧恢复到原长时A 将要离开墙壁,设此时B 的速度为v B 0,由机械能守恒,有2/3212020B m kx v = 得mk x B 300=v A 离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧伸长量为x 时有022211B m m m v v v =+①202222221121212121B m m kx m v v v =++②当v 1 =v 2时,由式①解出v 1 =v 2mkx B 3434/300==v (2) 弹簧有最大伸长量时,A 、B 的相对速度为零v 1 =v 2 =3v B 0/4,再由式②解出0max 21x x =4、解:二滑块在弹力作用下将沿水平导杆作振动. 因导杆光滑,不产生摩擦阻力, 故整个系统的机械能守恒,而且沿水平方向的动量守恒(等于零).当二滑块运动到正好使弹簧垂直于二导杆时,二滑块所受的弹力的水平分力同时为零,这时二滑块的速度将分别达到其最大速度v 1和v 2且此时弹簧为原长,弹簧势能为零。
上海交大版大学物理第二章参考答案
版权归原著所有 本答案仅供参考习题22-1 质量为16kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为6N x f =,7N y f =,当0t =时,0x y ==,2m /s x v =-,0y v =。
当2st =时,求:(1) 质点的位矢; (2) 质点的速度。
解:由 x x f a m =,有:x a 263m /168s ==,2/167s m m f a y y ==(1) t dt a v v txx x 83200+-=+=⎰ 20001632)832(t t dt t dt v x x t t x +-=+-=+=⎰⎰t dt a v v t y y y 167000+=+=⎰2000327167t tdt dt v y y t t y ==+=⎰⎰于是2秒时质点的位矢为:)m )(87413(j i j y i x r+-=+=(2)于是质点在2s 时的速度: )m/s (8745j i v+-=2-2 摩托快艇以速率v 0行驶,它受到的摩擦阻力与速率平方成正比,可表示为F = -kv 2(k 为正值常量)。
设摩托快艇的质量为m ,当摩托快艇发动机关闭后,求: (1) 求速率v 随时间t 的变化规律; (2) 求路程x 随时间t 的变化规律;(3) 证明速度v 与路程x 之间的关系为x0ek v v '-=,其中m k k /='。
解:(1)由牛顿运动定律F ma =得:2d vkv md t-=,分离变量有2k d v d t m v -=,两边积分得:速率随时间变化的规律为011kt v v m=+; (2)由位移和速度的积分关系:0tx v dt =⋅⎰,积分有:000111ln()ln 1tk k k x dt t k m v m m v t v m=⋅=+-+⎰由于此题路程和位移相等,∴路程随时间变化的规律为:0ln(1)k kx v t m m=+ ; (3)由2d v d xkv m d x d t-=⋅,k d v d x m v -=,∴00x v v k dv dx m v -=⎰⎰ 积分有: )exp(0x mkv v -=)(0x k e v '-=,其中m k k ='2-3.质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度。
上海交大版大学物理上册答案
上海交大版大学物理上册答案第一章质点运动学【例题】例1-1 At= s 例1-2D 例1-3 D 例1-4 B 例1-5 33 例1-6 D 例1-7 C 例1-8 证明:dvdt?dvdx?dxdt?vdvdx??Kv ∴ d v /v =-Kdx 2?v1vv0dv???Kdx , ln0xvv0??Kx ∴v =v 0e-Kx例1-9 1 s m例1-10 B 【练习题】1-1 x=(y-3)2 1-2 -/s-6m/s 1-3 D 1-4 不作匀变速率运动.因为质点若作匀变速率运动,其切向加速度大小at必为常数,即at1?at2?at3,现在虽然a1?a2?a3,但加速度与轨道各处的切线间夹角不同,这使得加速度在各处切线方向的投影并不相等,即at1?at2?at3,故该质点不作匀变速率运动。
1-5 D 1-6证明:设质点在x处的速度为v a?1-7 16 R t 4 rad /s2 2 dvdt?dvdx?dxdtv?2?6x 2?vdv?0??2?6x?dx v20x?2x?x?3?12 1-8 Hv/(H-v) 1-9 C 第二章质点运动定律【例题】例2-1 B 例2-2 B 例2-3 解:(1) 子弹进入沙土后受力为-Kv,牛顿定律?Kmdt?dvvt ∴dxdt,??m0xKvdt?t?v0dvv?Kt/m∴v?v0e (2) 求最大深度v? dx?v0e?Kt/mdt?0dx??0v0e?Kt/ mdt∴x?(m/K)v0(1?e?Kt/m) xmax?mv0/K 例2-4 D 例2-5 答:(1) 不正确。
向心力是质点所受合外力在法向方向的分量。
质点受到的作用力中,只要法向分量不为零,它对向心力就有贡献,不管它指向圆心还是不指向圆心,但它可能只提供向心力的一部分。
即使某个力指向圆心,也不能说它就是向心力,这要看是否还有其它力的法向分量。
(2) 不正确。
作圆周运动的质点,所受合外力有两个分量,一个是指向圆心的法向分量,另一个是切向分量,只要质点不是作匀速率圆周运动,它的切向分量就不为零,所受合外力就不指向圆心。
《大学物理教程习题答案》上海交通大学出版社
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt =,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)由d rv dt =,有速度:82v t i j =+从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =,有:22v t i j =+,d va dt =,有:2a i =;(2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt==,利用222t n a a a =+有: n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
大学物理学第三版(上海交大)下册习题答案
第十一章习题11-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设m 03.0m ,04.0==AC BC ).解:1q 在C 点产生的场强 20114ACq E πε=2q 在C 点产生的场强 22204q E BC πε=C 点的合场强 43.2410VE m==⨯ 方向如图11-2. 用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向.解: 棒长 m d r l 12.32=-=π电荷线密度 19100.1--⋅⨯==m C lqλ若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强。
由于r d ,该小段可看成点电荷 C d q 11100.2-⨯=='λ圆心处场强 1211920072.0)5.0(100.2100.94--⋅=⨯⨯⨯='=m V r q E πε 方向由缝隙指向圆心处11-3. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:设O 为坐标原点,水平方向为x 轴,竖直方向为y 轴 半无限长导线∞A 在O 点的场强 )(40j i E 1-=Rπελ半无限长导线∞B 在O 点的场强 )(40j i E 2+-=RπελAB 圆弧在O 点的场强 )(40j i E 3+=Rπελ总场强 j)i E E E E 321+=++=(40Rπελ11-4. 带电细线弯成半径为R 的半圆形,电荷线密度为φλλsin 0=,式中0λ为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度. 解:R d R dldE 00204sin 4πεϕϕλπελ==ϕcos dE dE x = 考虑到对称性 0=x E ϕsin dE dE y =RR d dE E y 00002084sin sin ελπεϕϕλϕπ===⎰⎰方向沿y 轴负向11-5. 一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心O 处的电场强度.解:把球面分割成许多球带,球带所带电荷 dl r dq σπ2= 2322023220)(42)(4r x dl rx r x xdq dE +=+=πεσππεθc o s R x = θs i n R r = θRd dl =21sin 2224E d i πσσθθεε==⎰11-6. 图示一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ.求板内、外的场强分布,并画出场强随坐标x 变化的图线,即x E -图线(设原点在带电平板的中央平面上,Ox 轴垂直于平板).解:在平板内作一个被平板的中间面垂直平分的闭合圆柱面1S 为高斯面S E d S ∆=∙⎰21S E S x q ∆=∑ρ20ερx E =)2(d x ≤ 同理可得板外一点场强的大小 02ερd E =()2dx >11-7. 设电荷体密度沿x 轴方向按余弦规律x cos 0ρρ=分布在整个空间,式中0ρ为恒量.求空间的场强分布.解:过坐标x ±处作与x 轴垂直的两平面S ,用与x 轴平行的侧面将之封闭,构成高斯面。
《大学物理教程习题答案》上海交通大学出版社
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+ 消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; (2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dva dt==222t n a a a =+有: n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
大学物理教程习题答案上海交通大学出版社
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:1质点的轨道;2速度和速率;解:1 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在0,0处,半径为R 的圆; 2由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=;1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s ;求:1质点的轨道;2从0=t 到1=t 秒的位移;30=t 和1=t 秒两时刻的速度;解:1由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线; 2由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:1100(82)42r v d t t i j d t i j ∆==+=+⎰⎰30=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ ; 1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:1任一时刻的速度和加速度;2任一时刻的切向加速度和法向加速度; 解:1由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; 2而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt=221t t =+,利用222t n a a a =+有: 22221n t a a a t =-=+;1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间;解法一:以地面为参照系,坐标如图,设同一时间内螺钉下落的距离为1y ,升降机上升的高度为2y ,运动方程分别为21012y v t gt =- 122012y v t at =+ 212y y d += 3注意到1y 为负值,有11y y =- 联立求解,有:2dt g a=+;解法二:以升降机为非惯性参照系,则重力加速度修正为'g g a =+,利用21'2d g t =,有:22'ddt g g a==+; 1-5.一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:1小球的运动方程;2小球在落地之前的轨迹方程;3落地前瞬时小球的d r d t ,d v d t ,d vd t; 解:1如图,可建立平抛运动学方程:0x v t = ,212y h g t =- ,∴201()2r v t i h g t j =+-;2联立上面两式,消去t 得小球轨迹方程:2202gx y h v =-+为抛物线方程;3∵201()2r v t i h g t j =+-,∴0d r v i g t j d t =-, 即:0v v i g t j =-,d vg j d t=- 在落地瞬时,有:2ht g=,∴02d r v i gh j d t =- 又∵ v =2222()xyv v v gt +=+-,∴2122220022[()]g gh g t dvdt v gh v gt ==++ ; 1-6.路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走;试证明人影的顶端作匀速运动,并求其速度2v .证明:设人向路灯行走,t 时刻人影中头的坐标为1x ,足的坐标为2, 由相似三角形关系可得:12211x x h x h -=, ∴11212h x x h h =- 两边对时间求导有:11212d x h d x d t h h d t =- ,考虑到:21d x v d t=, 知人影中头的速度:21112d x hv v d t h h ==-影常数;1-7.一质点沿直线运动,其运动方程为2242t t x -+=m,在 t 从0秒到3秒的时间间隔内,则质点走过的路程为多少解:由于是求质点通过的路程,所以可考虑在0~3s 的时间间隔内,质点速度为0的位置:t dtdxv 44-==若0=v 解得 s t 1=, m x x x 1021=∆+∆=∆;1-8.一弹性球直落在一斜面上,下落高度cm 20=h ,斜面对水平的倾角 30=θ,问它第二次碰到斜面的xy 0v h O O1x 2x 1h 2h位置距原来的下落点多远假设小球碰斜面前后速度数值相等,碰撞时人射角等于反射角;解:小球落地时速度为gh v 20=,建立沿斜面的直角坐标系,以小球第一次落地点为坐标原点如图示,00060cos v v x =→ 200060cos 2160cos t g t v x += 1 00060sin v v y =→ 200060sin 2160sin t g t v y -= 2第二次落地时:0=y ,代入2式得:g vt 02=,所以:2002002122cos 60cos 604802v gh x v t g t h cm g g ⋅=+====; 1-9.地球的自转角速度最大增加到若干倍时,赤道上的物体仍能保持在地球上而不致离开地球已知现在赤道上物体的向心加速度约为2s /cm 4.3,设赤道上重力加速度为2m/s 80.9;解:由向心力公式:2F m R ω=向,赤道上的物体仍能保持在地球必须满足:F mg =向,而现在赤道上物体的向心力为:'F ma =向∴016.9817ωω====≈ 1-10.已知子弹的轨迹为抛物线,初速为0v ,并且0v 与水平面的夹角为θ;试分别求出抛物线顶点及落地点的曲率半径;解:1抛物线顶点处子弹的速度0cos x v v θ=,顶点处切向加速度为0,法向加速度为g ;因此有:22011(cos )v vg θρρ==, 2201cos v gθρ=; 2在落地点时子弹的0v ,由抛物线对称性,知法向加速度方向与竖直方向成θ角,则:cos n a g θ=,有:202cos v g θρ= 则: 22cos v g ρθ=;1-11.一飞行火箭的运动学方程为1()ln(1)=+--x ut u t bt b,其中b 是与燃料燃烧速率有关的量,u 为燃气相对火箭的喷射速度;求: 1火箭飞行速度与时间的关系;2火箭的加速度;解:一维运动,直接利用公式:dx v dt =,dva dt=有: 1)1ln(bt u dt dx v --== , 2btub dt dv a -==1 1-12.飞机以s /m 1000=v 的速度沿水平直线飞行,在离地面高m 98=h 时,驾驶员要y把物品投到前方某一地面目标上,问:投放物品时,驾驶员看目标的视线和竖直线应成什么角度此时目标距飞机下方地点多远 解:设此时飞机距目标水平距离为x 有:t v x 0=┄①,221gt h =┄② 联立方程解得:m x 447≈,∴05.77arctan ≈=hx θ;1-13.一物体和探测气球从同一高度竖直向上运动,物体初速为s /m 0.490=v ,而气球以速度s /m 6.19=v 匀速上升,问气球中的观察者在第二秒末、第三秒末、第四秒末测得物体的速度各多少解:物体在任意时刻的速度表达式为:gt v v y -=0故气球中的观察者测得物体的速度v v v y -=∆代入时间t 可以得到第二秒末物体速度:29.8m v s ∆=,向上 第三秒末物体速度:30v ∆=第四秒末物体速度:49.8m v s ∆=-向下;思考题11-1.质点作曲线运动,其瞬时速度为v ,瞬时速率为v ,平均速度为v ,平均速率为v ,则它们之间的下列四种关系中哪一种是正确的A v v ==v v ,;B v v =≠v v ,;C v v ≠=v v ,;D v v ≠≠v v ,答:C1-2.沿直线运动的物体,其速度大小与时间成反比,则其加速度的大小与速度大小的关系是:A 与速度大小成正比;B 与速度大小平方成正比;C 与速度大小成反比;D 与速度大小平方成反比; 答:B1-3.如图所示为A,B 两个质点在同一直线上运动的-v t 图像,由图可知 A 两个质点一定从同一位置出发 B 两个质点都始终作匀加速运动 C 在2s t 末两个质点相遇D 在20s t 时间内质点B 可能领先质点A 答:D 1-4.质点的t x ~关系如图,图中a ,b ,c 三条线表示三个速度不同的运动.问它们属于什么类型的运动哪一个速度大哪一个速度小答:匀速直线运动;a b c v v v >>; 1-5.如图所示,两船A 和B 相距R ,分别以速度A v 和B v 匀速直线行驶,它们会不会相碰若不相碰,求两船相靠最近的距离.图中α和β为已知;答:方法一:如图,以A 船为参考系,在该参考系中船A 是静止的,而船B 的速度A v v v B -=';v '是船B 相对于船A 的速度,从船B 作一条平行于v '方向的直线BC,它不与船A 相交,这表明两船不会相碰.由A 作BC 垂线AC,其长度min r 就是两船相靠最近的距离 θsin min R r =作FDv v v A B '-=αβθsin sin sin )cos(222βα+++='B A B A v v v v v R v v v v v v r B A B A A B )cos(2sin sin 22min βααβ+++-=t 0)(=dt t dr Rv v v v v v r B A BA AB )cos(2sin sin 22min βααβ+++-=0d r d t =0d r d t ≠0d v d t =0d v d t ≠0d a d t =0d ad t==+x y v v i v j 0d d =⎰⎰ttxv t v t 0d d =⎰⎰ttyv t v td d =⎰⎰ttx v t v td d =⎰⎰tty v t v t 1t 111d ,d ,d t t t xyv t v t v t⎰⎰⎰A B⎰⎰⎰BABABAr d ,d ,d r r tv t xd 1⎰tvt yd 10⎰1d t v t⎰1t ⎰B Ar d d B A⎰r ⎰BAdr 16kg xOy6N x f =7N y f =0t =0x y ==2m /s x v =-0y v =2s t =x x f a m =x a 263m /168s ==27m /16y y f a s m -==2003522m /84x x x v v a dt s =+=-+⨯=-⎰200772m /168y y y v v a dt s -=+=⨯=-⎰2s 57m /s 48v i j =--22011()22x y r v t a t i a t j=++1317(224)()428216i j -=-⨯+⨯⨯+⨯2kg 2424=-F i t j 034=+v i jn F d v F m d t =24242d v i t j dt -=⋅0201(424)2v t v d v i t j dt =-⎰⎰3024v v t i t j =+-034v i j =+s t 1=15v i =t v v e =15v i =s t 1=s t 1=ij 2424F i t j =-s t 1=424424t n F i j e e =-=-24n F N=-45A a g=1m 2m μFmax 212222f mg f Fa m m m m m μ==<=+12()F m m g μ<+maxF max 12()F m m g μ=+12()F m m g μ<+θ)(θμtg <a θμμθtan 1tan 1+-=a g θμμθtan 1tan 2-+=a gtan tan 1tan 1tan g a g θμθμμθμθ-+≤≤+-'x 'y 'x sin cos 0mg ma f θθ-±='y cos sin 0N mg ma θθ--=f N μ=sin cos (cos sin )0mg ma mg ma θθμθθ-±+=sin cos tan cos sin 1tan a g g θμθθμθμθμθ±±==a tan tan 1tan 1tan g a g θμθμμθμθ-+≤≤+-m 0v k f kv =-dv f mdt=•m AR B dv kv m dt -=dv k dt v m =-000t v dv k dt v m =-⎰⎰t m ke v v -=00v =dv dv dx dt dx dt =dx v dt =mdx dvk=-00max 0v m mx dv v k k=-=⎰2m 1m θ2m 1m 2'a 1m 1a 2m 2m g 1N 21m a 1m 1m g 1N 2N 2m 21222cos sin 'm a m g m a θθ+=1212sin cos N m a m g θθ+=1m 111sin N m a θ=11212sin cos sin m a m a m g θθθ+=21212sin cos sin m a g m m θθθ=+122212()sin 'sin m m a g m m θθ+=+2'a 122212sin cos 'sin x x m a a a g m m θθθ=-=-+111sin m a N θ==g m m m m θθ22121sin cos +R μ0=t 0v 2v N m R =f Nμ=dtdvmf =-2dv v dt Rμ=-0201vt v dv dt v R μ-=⎰⎰t μv R R v v 00+=20R m =0.6F i =F R -R2020B A r r r i j∆=-=-+A F r =⋅∆0.6(2020)12A i i j =⋅-+=-0.5kg A F r=⋅∆250.5r t i j =+24(4)(2)60r r r i →∆=-=220.5105d rF m i i d t==⋅=560300A i i J =⋅=m2()F at i bt j =+t P F v =⋅P F v =⋅2232325111111()()()2323ati bt j at i bt j a t b t m m =+⋅+=+2(52.838.4)F x x i =--F x N m m 522.01=x m 34.12=x ()()F x F x i =f A 2v N G mR-=R G N mv )(21212-=2102f mgR A mv +=-11()(3)22f A N G R mgR N mg R =--=-1ρl 2ρAB B1212ρρρ<<max v H G F =浮hsg lsg 12ρρ=l h 12ρρ=212mgh mv A =+浮22max21012h slv sglh gsydy ρρρ=-⎰2max 1v gl ρρ=H 'H l h =+2110'l lsgH ysgdy lsgh ρρρ=+⎰2110()l lsgH ysgdy lsg H l ρρρ=+-⎰1122()lH ρρρ=-L m A A B A m B m k l B 0x A B A A B A B A22011()22A B m m v k x +=0x m m k v B A +=x l =A 221122A A m v kx =0AA A Bm x x m m =+m3e Gm m F r r =-e e ,R m e e 211e e P R R eE F dr Gm m dr Gm m r R ∞∞=⋅=-⋅=-⎰⎰I T I τ12v v =I mv =∆0I =cos T mgθ=2mgπωm Oxy cos sin r a t i b t j ωω=+0=t ωπ/2=t P mv =d r v dt ==2m 1m θθ1N2m 2m g21m a 1m θ1m g 2N 1N θy xOB AFθωl mg Tsin cosa t ib t jωωωω-+()(sin cos )P t m a t i b t jωωω=--2()(0)0I mv P P m b j m b j πωωω=∆=-=-= 2.0kg1.0m20g 0v 600m v 30m 01mv mv M v =+01 5.7mv mv v M-==/m s21v T Mg M l -=2184.6v T Mg M Nl=+=00.0257011.4I mv mv N s =-=-⨯=-⋅m /skg 102.122⋅⨯-236.410kg m/s -⨯⋅kg 108.526-⨯2222221.20.6410P P P -=+=+⨯核电子中微子0.64tan 1.2P P α==中微子电子028.1α=221.410/P kgm s -=⨯核9.151=-=απθ2180.17102k P E J m -==⨯核核m 2c x c x 112212c m x m x x m m +=+12m m m ==12c x x =2223,42c c c mx mx x x x m +== 30=α 1.0M kg =30x cm =0.01m kg=200/v m s =25/k N m =22111sin 22Mv kx Mgx α+=10.83/v m s ⇒=1cos Mv mv m M v α'-=+()0.89/v m s '⇒=-θM L 0cos M r F mg v t kθ=⨯=-200cos 2t mg v L r mv M dt t k θ=⨯==-⎰1v 2v 1122r mv r mv =122v v =0P MmE G r=-R Mm G mv R Mm G mv 421221022021-=-mg R Mm G =20321Rg v =62Rg v =ρρ220v m Mm G =R 38=ρ22v Rg =0E =24sin A mv R mv R θ=⋅22v Rg =030θ⇒=m r m 2m 2/2mr m2m ma T mg 222=-ma mg T =-12()T T r J β-=βJ r T T =-)(1βr a =2/2J mr =ga 41=mg T 811=l m μ0ωO l m =λdm d x λ=d f dmg gd x μμλ==d M g xd xμλ=20124lM g xd x mgl μλμ==⎰d M J J dt ωβ==000t Mdt Jd ωω-=⎰⎰2011412mglt m l μω-=-03l t g ωμ=0M t J J ωω-=-0ω=2112J ml =03l t g ωμ=2m kg 01.0⋅cm 7kg 5N/m 200=k x maxx 2max max 12k x mg x =max 20.49mg x m k ==222111222k x mv J mg x ω++=v Rω=2222111222k x m R J mg x ωω++=x0d d x ω=21()22d k x m R J mg d x ωω++⋅=0d d x ω=αP 中微子P 电子P 核cx /2c x xyO x y 0v vOz•θT)(245.0m k mg x ==0.245x =22max 2121()2mgx kx v J m r -=+max 1.31v =m 2l 31l 32m 0v m 021v 22004221()9933l l v l v l ω+=+032v l ω=mg N =αsin 212cos N N α=α1N 1F kx m gμ=+2kx m g μ=11A m a kx m g μ=+121A m m a g m μ+=22B m a kx m g μ=-0B a =F GF G F 2321μ+≤1322F F μ<33μ>Rv m mg N 2sin +=θA B F s F A F r =⋅∆F s k m m mg k x =k mg x =212mg x k x =kmgx 2=αx v x 120αI 21I m v m v =-21v v =αm Δ1v 2v m Δm Δf 'f 'm 1e 212e 222121r m Gm mv r m Gm mv -=-1122sin sin θθmv mv =2e 2rm Gm r mv =当两小孩质量相等时,M =0;则系统角动量守恒,两人的实际的速度相同,将同时到达滑轮处,与谁在用力,谁不在用力无关;选择C; 2-13.一圆盘绕过盘心且与盘面垂直的轴O 以角速度ω按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面方向同时作用到盘上,则盘的角速度ω怎样变化 答:增大2-14.一个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的: A 机械能守恒,角动量守恒;B 机械能守恒,角动量不守恒; C 机械能不守恒,角动量守恒;D 机械能不守恒,角动量不守恒; 答:C习题33-1.原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式;g 取解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =; ∴ 9.8980.1k m ω===; 取竖直向下为x 正向,弹簧伸长为时为物体的平衡位置,所以如果使弹簧的初状态为原长,那么:A =,mg 1N 2N α1mv 2mv I风风'f //'f 'f ⊥当t =0时,x =-A ,那么就可以知道物体的初相位为π;所以:0.1cos x π=+)即:)x =-;3-2.有一单摆,摆长m 0.1=l ,小球质量g 10=m ,0=t 时,小球正好经过rad 06.0-=θ处,并以角速度0.2rad/s θ=向平衡位置运动;设小球的运动可看作简谐振动,试求:1角频率、频率、周期;2用余弦函数形式写出小球的振动式;g 取解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了;1角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s ===;2振动方程可表示为:cos3.13A t θϕ=+(),∴ 3.13sin 3.13A t θϕ=-+() 根据初始条件,0t =时:cos Aθϕ=,0(12sin 0(34 3.13A θϕ>=-<,象限),象限)可解得:2008.810227133 2.32A m ϕ-=⨯==-=-,,所以得到振动方程:28.810cos3.13 2.32t m θ-=⨯-() ; 3-3.一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2;当0=t 时,位移为cm 6,且向x 轴正方向运动;求:1振动表达式;2s 5.0=t 时,质点的位置、速度和加速度;3如果在某时刻质点位于cm 6-=x ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间;解:1由题已知 A =,T =2 s ,∴ 2Tπωπ==又∵t =0时,06x cm =,00v >,由旋转矢量图,可知:3πϕ=-故振动方程为:0.12cos3x t m ππ=-(); 2将t = s 代入得:0.12cos 0.12cos 0.10436x t m πππ=-==(),0.12sin 0.12cos 0.188/36v t m s ππππ=--==-(),2220.12cos 0.12cos 1.03/36a t m s πππππ=--=-=-(),方向指向坐标原点,即沿x 轴负向;3由题知,某时刻质点位于6cm 2Ax =-=-, 且向x 轴负方向运动,如图示,质点从P 位置回到平衡位置Q 处需要走32ππϕ∆=+,建立比例式:2tTϕπ∆∆=,有:56t s ∆= ;3-4.两质点作同方向、同频率的简谐振动,振幅相等;当质点1在 2/1A x =处,且x向左运动时,另一个质点2在 2/2A x -= 处,且向右运动;求这两个质点的位相差; 解:由旋转矢量图可知:当质点1在 2/1A x =处,且向左运动时,相位为3π,而质点2在 2/2A x -= 处,且向右运动,相位为43π;所以它们的相位差为π;3-5.当简谐振动的位移为振幅的一半时,其动能和势能各占总能量的多少物体在什么位置时其动能和势能各占总能量的一半解:由212P E k x =,212k E mv =,有:221cos ()2P E k A t ωϕ=+,2222211sin ()sin ()22k E m A t k A t ωωϕωϕ=+=+, 1当2Ax =时,由cos()x A t ωϕ=+,有:1cos()2t ωϕ+=,3sin()t ωϕ+=,∴14P E E =,34k E E =; 2当12P k E E E ==时,有:22cos ()sin ()t t ωϕωϕ+=+ ∴cos()2t ωϕ+=20.7072x A A ==±; 3-6.两个同方向的简谐振动曲线如图所示1求合振动的振幅;2求合振动的振动表达式; 解:通过旋转矢量图做最为简单; 由图可知,两个振动同频率,且1A 初相:12πϕ=,2A 初相:22πϕ=-,表明两者处于反相状态,反相21(21)k ϕϕϕπ∆=-=±+,012k =,,,∵12A A <,∴合成振动的振幅:21A A A =- ;合成振动的相位:22πϕϕ==- ;合成振动的方程:)()(22cos 12ππ--=t T A A x ;3-7.两个同方向,同频率的简谐振动,其合振动的振幅为cm 20,与第一个振动的位相差为6π;若第一个振动的振幅为cm 310;则1第二个振动的振幅为多少2两简谐振动的位相差为多少解:如图,可利用余弦定理:由图知 ︒-+=30cos 2122122A A A A A = m ∴A 2=0.1 m ,再利用正弦定理:02sin sin 30AA θ=,有: 2sin 12A A θ==,∴2πθ=;说明A 1与A 2间夹角为π/2,即两振动的位相差为π/2 ; 3-8. 质点分别参与下列三组互相垂直的谐振动:1 4cos 864cos 86x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩ ;2 4cos 8654cos 86x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩;3 4cos 8624cos 83x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩;试判别质点运动的轨迹;解:质点参与的运动是频率相同,振幅相同的垂直运动的叠加;对于cos()x x A t ωϕ=+,4cos()y y t ωϕ=+的叠加,可推得:1将6x πϕ=,6y πϕ=-代入有:2222cos 16sin 33x y x y ππ+-=,则方程化为:2212x y x y +-=,轨迹为一般的椭圆;2将6x πϕ=,56y πϕ=-代入有:2222cos 16sin x y x y ππ+-=则方程化为:2220x y x y +-=,即0x y +=,轨迹为一直线;3将6x πϕ=,23y πϕ=代入有:2222cos 16sin 22x y x y ππ+-=则方程化为:2224x y +=,轨迹为圆心在原点,半径为4m 的圆;3-9.沿一平面简谐波的波线上,有相距2.0m 的两质点A 与B ,B 点振动相位比A 点落后6π,已知振动周期为2.0s ,求波长和波速;解:根据题意,对于A 、B 两点,m x 2612=∆=-=∆,πϕϕϕ,而相位和波长之间满足关系:πλπλϕϕϕ221212xx x ∆-=--=-=∆,代入数据,可得:波长λ=24m;又∵T =2s ,所以波速12/u m s Tλ==;3-10.已知一平面波沿x 轴正向传播,距坐标原点O 为1x 处P 点的振动式为)cos(ϕω+=t A y ,波速为u ,求:1平面波的波动式;2若波沿x 轴负向传播,波动式又如何 解:1设平面波的波动式为0cos[]xy A t uωϕ=-+(),则P 点的振动式为:10cos[]P x y A t uωϕ=-+(),与题设P 点的振动式cos()P y A t ωϕ=+比较, 有:10xuωϕϕ=+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=-+;2若波沿x 轴负向传播,同理,设平面波的波动式为:0cos[]xy A t u ωϕ=++(),则P 点的振动式为:10cos[]P x y A t uωϕ=++(),与题设P 点的振动式cos()P y A t ωϕ=+比较, 有:10xuωϕϕ=-+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=++;3-11.一平面简谐波在空间传播,如图所示,已知A 点的振动规律为cos(2)y A t πνϕ=+,试写出: 1该平面简谐波的表达式;2B 点的振动表达式B 点位于A 点右方d 处; 解:1仿照上题的思路,根据题意,设以O 点为原点平面简谐波的表达式为:0cos[2]xy A t u πνϕ=++(),则A 点的振动式:0cos[2]A ly A t uπνϕ-=++()题设A 点的振动式cos(2)y A t πνϕ=+比较,有:02lu πνϕϕ=+, ∴该平面简谐波的表达式为:]2cos[ϕπν+++=)(uxu l t A y2B 点的振动表达式可直接将坐标x d l =-,代入波动方程:3-12.已知一沿x 正方向传播的平面余弦波,s 31=t 时的波形如图所示,且周期T 为s 2;1写出O 点的振动表达式;2写出该波的波动表达式; 3写出A 点的振动表达式; 4写出A 点离O 点的距离;解:由图可知:0.1A m =,0.4m λ=,而2T s =,则:/0.2/u T m s λ==,2T πωπ==,25k ππλ==,∴波动方程为:00.1cos(5)y t x ππϕ=-+O 点的振动方程可写成:00.1cos()O y t πϕ=+由图形可知:s 31=t 时:0.05O y =,有:00.050.1cos()3πϕ=+考虑到此时0O d y d t <,∴03πϕ=,53π舍去 那么:1O 点的振动表达式:0.1cos()3O y t ππ=+;2波动方程为:0.1cos(5)3y t x πππ=-+;3设A 点的振动表达式为:0.1cos()A A y t πϕ=+由图形可知:s 31=t 时:0A y =,有:cos()03A πϕ+=考虑到此时0A d y d t >,∴56A πϕ=-或76A πϕ=∴A 点的振动表达式:50.1cos()6A y t ππ=-,或70.1cos()6A y t ππ=+;4将A 点的坐标代入波动方程,可得到A 的振动方程为:0.1cos(5)3A A y t x πππ=-+,与3求得的A 点的振动表达式比较,有:5563A t t x πππππ-=-+,所以:m x A 233.0307== ; 3-13.一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播;已知原点的振动曲线如图所示;试写出:1原点的振动表达式; 2波动表达式;3同一时刻相距m 1的两点之间的位相差; 解:这是一个振动 图像由图可知A =0.5cm ,设原点处的振动方程为:30510cos()O y t ωϕ-=⨯+;1当0t =时,30 2.510O t y -==⨯,考虑到:00O t d y d t=>,有:03πϕ=-,当1t =时,10O t y ==,考虑到:10O t d y d t =<,有:32ππω-=,56πω=,∴原点的振动表达式:35510cos()63O y t ππ-=⨯-;2沿x 轴负方向传播,设波动表达式:35510cos()63y t k x ππ-=⨯+-而512460.825k u ωππ==⨯=,∴3524510cos()6253y t x πππ-=⨯+-; 3位相差:252 3.2724x k x rad ϕππλ∆∆==∆== ; 3-14.一正弦形式空气波沿直径为cm 14的圆柱形管行进,波的平均强度为39.010-⨯/()J s m ⋅,频率为Hz 300,波速为m/s 300;问波中的平均能量密度和最大能量密度各是多少每两个相邻同相面间的波段中含有多少能量解:1已知波的平均强度为:39.010I -=⨯/()J s m ⋅,由I w u =⋅ 有:53max 2610/w w J m -==⨯;2由W w V =⋅,∴221144uW w d w d πλπν=⋅=5327310/(0.14)1 4.62104J m m m J π--=⨯⨯⋅⋅=⨯ ;3-15.一弹性波在媒质中传播的速度310/u m s =,振幅41.010A m -=⨯,频率310Hz ν=;若该媒质的密度为3800/kg m ,求:1该波的平均能流密度;21分钟内垂直通过面积24m 100.4-⨯=S 的总能量; 解:1由:2212I u A ρω=,有:34232110800102102I π-=⨯⨯⨯⨯()()521.5810/W m =⨯; 21分钟为60秒,通过面积24m 100.4-⨯=S 的总能量为:W I S t =5431.581041060 3.7910J -=⨯⨯⨯⨯=⨯ ;3-16.设1S 与2S 为两个相干波源,相距41波长,1S 比2S 的位相超前2π;若两波在在1S 、2S 连线方向上的强度相同且不随距离变化,问1S 、2S 连线上在1S 外侧各点的合成波的强度如何又在2S 外侧各点的强度如何解:1如图,1S 、2S 连线上在1S 外侧,∵212122()24r r πππλϕϕϕπλλ∆=---=--⋅=-, ∴两波反相,合成波强度为0; 2如图,1S 、2S 连线上在2S 外侧,∵212122('')()024r r πππλϕϕϕλλ∆=---=---=, ∴两波同相,合成波的振幅为2A ,合成波的强度为:220(2)44I A A I === ;3-17.图中所示为声音干涉仪,用以演示声波的干涉;S 为声源,D 为声音探测器,如耳或话筒;路径SB D 的长度可以变化,但路径SAD 是固定的;干涉仪内有空气,且知声音强度在B 的第一位置时为极小值100单位,而渐增至B 距第一位置为cm65.1的第二位置时,有极大值900单位;求:1声源发出的声波频率;2抵达探测器的两波的振幅之比;解:根据驻波的定义,相邻两波节腹间距:2x λ∆=,相邻波节与波腹的间距:4x λ∆=,可得:4 6.6x cm λ=∆=;1声音的速度在空气中约为340m/s ,所以:234051516.610u Hz νλ-===⨯()。
上海交通大学版大学物理学习题答案之2质点运动定律习题思考题
a ′y = a y
于是: tan θ =
a′ ay y = a′ ax − a1 x
(4)
即: ax sin θ − a y cos θ = a1 sin θ 由(1) (2) (3) (4)联立,计算可得:
a1 =
− N sin α = max
(1) (2) (3)
N cos α − mg = ma y
M 的运动方程为: N sin α = MaM
下面列出约束条件的方程: 取 M 作为参考系, 设 m 在其中的相对加速度为 a ′ , 在 x,y 方向的分量分别为 a x 与 a y ,那么: tan α = 利用相对运动的公式, a m = a M + a ′ 所以: a ′ x = a x − aM
− N sin θ = m2 a x
(1 ) (2) (3 )
N cos θ − m2 g = m2 a y
m1 的运动方程为: N sin θ = m1a1
下面列出约束条件的方程:取 m1 作为参考系,设 m2 在其中的相对加速度为
a ′y ′ ′ a ′ ,在 x,y 方向的分量分别为 a x 与 a y ,那么: tan θ = a′ x
Md ,分析这 dm 的绳子的受力情况,因为它做的是圆 L
2 2
周运动,所以我们可列出: dT(r) = ω rdm = ω r
Mdr 。 L
距转轴为 r 处绳中的张力 T( r)将提供的是 r 以外的绳子转动的向心力,所以 两边积分: T(r) =
∫
L
r
dT(r) =
Mω 2 2 (L − r 2) 2L
大学物理教程上海交大答案
1习题11-1.解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt =,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2解:(1)由24(32)r t i t j =++ ,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)由d r v dt= ,有速度:82v t i j =+从0=t 到1=t 秒的位移为:1100(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+。
1-3解:(1)由d rv dt = ,有:22v t i j =+ ,d v a dt = ,有:2a i =;(2)而v v =,有速率:1222[(2)2]v t =+=∴t dv a dt==222t n a a a =+有:n a ==1-4. 解法一:以地面为参照系,坐标如图,设同一时间内螺钉下落的距离为1y ,升降机上升的高度为2y ,运动方程分别为21012y v t gt =- (1)22012y v t at =+ (2)12y y d += (3)(注意到1y 为负值,有11y y =-) 联立求解,有:t =。
解法二:以升降机为非惯性参照系,则重力加速度修正为'g g a =+,利用21'2d g t =,有:t ==1-5解:(1)如图,可建立平抛运动学方程:0x v t = ,212y h g t =- ,∴201()2r v t i h g t j =+-;(2)联立上面两式,消去t 得小球轨迹方程:2202gx y h v =-+(为抛物线方程); (3)∵201()2r v t i h g t j =+-,∴0d rv i g t j d t=- , 即:0v v i g t j =-,d v g j d t=-在落地瞬时,有:t =∴0d r v i j d t = 又∵v ==,∴212220[()]g t dvdt v gt ==+。
大学物理学第三版(上海交大)下册习题答案
第十一章习题11-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设m 03.0m,04.0==AC BC ).解:1q 在C 点产生的场强 20114AC q E πε= 2q 在C 点产生的场强 22204q E BC πε=C 点的合场强 43.2410V E m ==⨯ 方向如图11-2. 用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向.解: 棒长 m d r l 12.32=-=π电荷线密度 19100.1--⋅⨯==m C l q λ若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强。
由于r d ,该小段可看成点电荷 C d q 11100.2-⨯=='λ圆心处场强 1211920072.0)5.0(100.2100.94--⋅=⨯⨯⨯='=m V r q E πε 方向由缝隙指向圆心处11-3. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:设O 为坐标原点,水平方向为x 轴,竖直方向为y 轴半无限长导线∞A 在O 点的场强 )(40j i E 1-=Rπελ 半无限长导线∞B 在O 点的场强 )(40j i E 2+-=Rπελ AB 圆弧在O 点的场强 )(40j i E 3+=Rπελ总场强 j)i E E E E 321+=++=(40Rπελ 11-4. 带电细线弯成半径为R 的半圆形,电荷线密度为φλλsin 0=,式中0λ为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度. 解:R d Rdl dE 00204sin 4πεϕϕλπελ== ϕcos dE dE x = 考虑到对称性 0=x Eϕsin dE dE y =R R d dE E y 00002084sin sin ελπεϕϕλϕπ===⎰⎰方向沿y 轴负向11-5. 一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心O 处的电场强度.解:把球面分割成许多球带,球带所带电荷 dl r dq σπ2=2322023220)(42)(4r x dl rx r x xdqdE +=+=πεσππε θc o s R x = θs i n R r = θRd dl = 001sin 2224E d i πσσθθεε==⎰ 11-6. 图示一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ.求板内、外的场强分布,并画出场强随坐标x 变化的图线,即x E -图线(设原点在带电平板的中央平面上,Ox 轴垂直于平板).解:在平板内作一个被平板的中间面垂直平分的闭合圆柱面1S 为高斯面S E d S ∆=∙⎰21S E S x q ∆=∑ρ2 0ερx E =)2(d x ≤ 同理可得板外一点场强的大小 02ερd E = ()2d x >11-7. 设电荷体密度沿x 轴方向按余弦规律x cos 0ρρ=分布在整个空间,式中0ρ为恒量.求空间的场强分布.解:过坐标x ±处作与x 轴垂直的两平面S ,用与x 轴平行的侧面将之封闭,构成高斯面。
大学物理教程习题答案上海交通大学出版社
大学物理教程习题答案上海交通大学出版社 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT习题 11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt =,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)由d rv dt =,有速度:82v t i j =+从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =,有:22v t i j =+,d va dt =,有:2a i =;(2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt=221tt =+,利用222t n a a a =+有: 22221n t a a a t =-=+。
(完整版)(上海交大)大学物理上册课后习题答案1质点运动
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +v v v其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +v v v,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=v v ,有速度:sin Rcos v R t i t j ωωωω=-+v v v而v v ϖ=,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)rt i t j =++v v v,式中r ϖ的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t s 的位移;(3)0=t 和1=t s 两时刻的速度。
解:(1)由24(32)r t i t j =++v v v ,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)从0=t 到1=t s 的位移为:j i j j i r r r ϖϖϖϖϖϖϖϖ243)54()0()1(+=-+=-=∆(3)由d rv dt =v v ,有速度:82v t i j =+v v v0=t 和1=t 秒两时刻的速度为:(0)2v j =v v,(1)82v i j =+v v v 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+v v v ,式中r ϖ的单位为m ,t 的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =v v ,有:22v t i j =+v v v ,d v a dt=v v ,有:2a i =v v ;(2)而v v ϖ=,有速率:12222[(2)2]21v t t =+=+∴tdv a dt=21t =+,利用222t n aa a =+有: 22221n t a a a t =-=+。
大物 上海交大课后答案 第二章
习题22-1 质量为16kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为6N x f =,7N y f =,当0t =时,0x y ==,2m /s x v =-,0y v =。
当2s t =时,求: (1) 质点的位矢; (2) 质点的速度。
解:由 x x f a m =,有:x a 263m /168s ==,27m /16y y f a s m -== (1)2003522m /84x x x v v a dt s =+=-+⨯=-⎰, 200772m /168y y y v v a dt s -=+=⨯=-⎰。
于是质点在2s 时的速度:57m /s 48v i j =--(2)22011()22x y r v t a t i a t j =++1317(224)()428216i j -=-⨯+⨯⨯+⨯137m 48i j =--2-2 质量为2kg 的质点在xy 平面上运动,受到外力2424=-F i t j 的作用,t =0时,它的初速度为034=+v i j ,求t =1s 时质点的速度及受到的法向力n F 。
解:解:由于是在平面运动,所以考虑矢量。
由:d vF md t=,有:24242d v i t j dt -=⋅,两边积分有:0201(424)2v t v d v i t j dt =-⎰⎰,∴3024v v t i t j =+-, 考虑到034v i j =+,s t 1=,有15v i =由于在自然坐标系中,t v v e =,而15v i =(s t 1=时),表明在s t 1=时,切向速度方向就是i 方向,所以,此时法向的力是j 方向的,则利用2424F i t j =-,将s t 1=代入有424424t n F i j e e =-=-,∴24n F N =-。
2-3.如图,物体A 、B 质量相同,B 在光滑水平桌面上.滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A 下落的加速度是多少? 解:分别对A ,B 进行受力分析,可知:A A A m g T m a -=2B B T m a =12B A a a =则可计算得到:45A a g =。
(整理)大学物理上海交通大学第四版-下册课后题全部答案.
习题1111-1.直角三角形ABC的A点上,有电荷C108.191-⨯=q,B点上有电荷C108.492-⨯-=q,试求C点的电场强度(设0.04mBC=,0.03mAC=)。
解:1q在C点产生的场强:1124ACqE irπε=,2q在C点产生的场强:2224BCqE jr=,∴C点的电场强度:44122.710 1.810E E E i j=+=⨯+⨯;C点的合场强:4123.2410VE m==⨯,方向如图:1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm50的圆环,两端间空隙为cm2,电量为C1012.39-⨯和方向。
解:∵棒长为2 3.12l r d mπ=-=,∴电荷线密度:911.010q C mlλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去md02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O点产生的场强。
解法1:利用微元积分:21cos4O xRddERλθθπε=⋅,∴2000cos2sin2444OdE dR R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m-=⋅;解法2:直接利用点电荷场强公式:由于d r<<,该小段可看成点电荷:112.010q d Cλ-'==⨯,则圆心处场强:1191222.0109.0100.724(0.5)OqE V mRπε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆ix心O 点的场强。
解:以O 为坐标原点建立xOy 坐标,如图所示。
①对于半无限长导线A ∞在O 点的场强:有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B ∞在O 点的场强:有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有:20002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R ππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j R λπε=+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t
t0
Fdt dP P
P0
P
其中动量的变化: mv mv 0 在本题中,小球转动一周的过程中,速度没有变化,动量的变化就为 0,冲量之和也为 0,所以本题中质点所受合 外力的冲量 I 为零 (2)该质点受的外力有重力和拉力,且两者产生的冲量大小相等,方向相反。 重力产生的冲量=mgT=2mg/;所以拉力产生的冲量2mg/,方向为竖直向上。 4-2.一物体在多个外力作用下作匀速直线运动,速度 =4m/s。已知其中一力 F 方向恒与运动方向一致,大小随时 间变化内关系曲线为半个椭圆,如图。求: (1)力 F 在 1s 到 3s 间所做的功; (2)其他力在 1s 到 s 间所做的功。 解: (1)由做功的定义可知:
W Fdx Fvdt v Fdt v S 椭圆 125.6 J
x1 1 1
x2
3
3
(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该 F 做的功为 125.6J 时,其他的力的功 为-125.6J。 4-3.质量为 m 的质点在 Oxy 平面内运动,运动学方程为 r a cos ti b sin tj ,求: (1)质点在任一时刻的动量; (2)从 t 0 到 t 2 / 的时间内质点受到的冲量。 解: (1)根据动量的定义: P mv m(a sin ti b cos tj) (2)从 t 0 到 t 2 / 的时间内质点受到的冲量等于它在这段时间内动量的变化,因为动量没变,所以冲量 为零。 4-4.质量为 M=2.0kg 的物体(不考虑体积) ,用一根长为 l=1.0m 的细绳悬挂在天花板上。今有一质量为 m=20g 的
4-11. 水平路面上有一质量 m1 5kg 的无动力小车以匀速率
0
2m/s 运动。小车由不可伸长的轻绳与另一质量
为 m2 25kg 的车厢连接,车厢前端有一质量为 m3 20kg 的物体,物体与车厢间摩擦系数为 0.2 。开始时车厢 静止,绳未拉紧。求:
(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移; (2)从绳绷紧到三者达到共同速度所需要的时间。(车与路面间摩擦不计,取 g =10m/s2) 解: (1)由碰撞过程动量守恒,可得
子弹以 v0 =600m/s 的水平速度射穿物体。刚射出物体时子弹的速度大小 v =30m/s,设穿透时间极短。求: (1)子弹刚穿出时绳中张力的大小; (2)子弹在穿透过程中所受的冲量。 解: (1)解:由碰撞过程动量守恒可得: 代入数据
mv0 mv Mv1
0.02 600 0.02 30 2v1 可得: v1 5.7m / s
m1v0 (m1 m2 m 3 )v m1v0 (m1 m2 )v
1 2
v 0.2 m s
m1 5 2 1 v0 ms m1 m2 5 25 3
v
1 2
m3 gs (m1 m2 )v 2 (m1 m2 m3)v 2
1 1 (m1 m2 )v 2 (m1 m2 m3)v 1 2 s 2 m m3 g 60
0.003
4-7. 有质量为 2m 的弹丸,从地面斜抛出去,它的落地点为 x c 。如果它在飞行到最高点处爆炸成质量相等的两碎
片。其中一碎片铅直自由下落,另一碎片水平抛出,它们同时落地。问第二块碎片落在何处。 解:在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为 xc。
mg k
如瞬间挂上让其自由下落,弹簧伸长应满足能量守恒: mgx
1 2 kx ,所以 2
x
2mg k
3-6. 试根据力场的力矢量分布图判断哪些力场一定是非保守的?
图[d]、[f]为非保守力,因为如果对其取环路积分必定不为零。 习题 4-1. 如图所示的圆锥摆,绳长为 l,绳子一端固定,另一端系一质量为 m 的质点,以匀角速 ω 绕铅直线作圆周运 动,绳子与铅直线的夹角为 θ。在质点旋转一周的过程中,试求: (1)质点所受合外力的冲量 I; (2)质点所受张力 T 的冲量 IT。 解: (1)根据冲量定理:
1 v0 2
(2)假设碰撞是完全弹性的,
mv0 mv1 mv2
1 1 1 2 2 2 mv0 mv1 mv2 2 2 2
两球交换速度, v1 0
v 2 v0
(3)假设碰撞的恢复系数 e 0.5 ,也就是
mv0 mv1 mv2
v2 v1 0.5 v10 v20
3-2. 叙述质点和质点组动能变化定理,写出它们的表达式,指出定理的成立条件。 质点的动能变化定理: 物体受外力 F 作用下, 从 A 运动 B, 其运动状态变化, 速度为 V1 变化到 V2, 即动能变化。 合外力对质点所做的功等于质点动能的增量。
2 1 1 2 2 A12 f dr mv2 mv1 E K 2 E K 1 1 2 2
(2) m3 v μm3 g t
t
v 0.2 0.1s μg 0.2 10
4-12. 一质量为 M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为 k . 一质量为 m 的子弹射入木块后,弹簧长度被压缩了 L . (1)求子弹的速度;(2)若子弹射入木块的深度为 s ,求子弹所受的平均阻力。 解: (1)碰撞过程中子弹和木块动量守恒,碰撞结束后的运动由机械能守恒条件可得,
k 25N/m 。求子弹打入木块后它们的共同速度。
解:由机械能守恒条件可得到碰撞前木快的速 面方向动量守恒,可得:
1 1 Mv12 kx 2 Mgx sin 2 2
度)
v1 0.83 ( 碰撞前木快的速
Mv1 mv cos (m M)v
v 0.89
v2 R
根据圆周运动的规律:T-G= M (2)根据冲量定理可得:
v2 T M g M1 84.6N R
I mv mv0 0.02 570 11.4 N s
4-5. 一静止的原子核经放射性衰变产生出一个电子和一个中微子, 巳知电子的动量为 1.2 10
22
思考题 3 3-1. 求证:一对内力做功与参考系的选择无关。 证明:对于系统里的两个质点而言,一对内力做功可表示为:A= f1 dr1 f 2 dr2 由于外力的存在,质点 1.2 的运动情况是不同的。
dr1 dr2 , f1 f 2
上式可写为:A= f1 dr1 f 2 dr2 f (dr1 dr2 ) 也就是内力的功与两个质点的相对位移有关22 kg m / s (2)反冲的动能为: Ek
151.9
P2 0.17 1018 J 2m
4-6. 一颗子弹在枪筒里前进时所受的合力大小为 F 400 4 105 t / 3 ,子弹从枪口射出时的速率为 300m/s 。 设子弹离开枪口处合力刚好为零。求: (1)子弹走完枪筒全长所用的时间 t ; (2)子弹在枪筒中所受力的冲量 I ; (3)子弹的质量。 解: ( 1 )由 F 400 4 105 t / 3 和子弹离开枪口处合力刚好为零,则可以得到: F 400 4 105 t / 3 0 算出 t=0.003s。 (2)由冲量定义:
xc
m1 x1 m2 x2 m1 m2
因为 m1 m2 m , x1
xc 2
故 xc
mxc 2mx2 3 , x2 xc 4m 2
4-8. 两个质量分别为 m1 和 m 2 的木块 A、B , 用一劲度系数为 k 的轻弹簧连接, 放在光滑的水平面上。A 紧靠墙。 今用力推 B 块,使弹簧压缩 x 0 然后释放。 (已知 m1 m , m2 3m )求: (1)释放后 A、B 两滑块速度相等时的瞬时速度的大小; (2)弹簧的最大伸长量。 解:分析题意,可知在弹簧由压缩状态回到原 长时,是弹簧的弹性势能转换为 B 木 块的动能,然后 B 带动 A 一起运动,此时动量守恒,可得到两者相同的速度 v ,并且此时就是弹簧伸长最大的位置, 由机械能守恒可算出其量值。
所以: v1
1 v0 4
,
v2
3 v0 4
4-10. 如图,光滑斜面与水平面的夹角为 30 ,轻质弹簧上端固定.今在弹簧的另一端轻轻地挂上质量为 木块沿斜面从静止开始向下滑动. 当木块向下滑 x 30cm 时, 恰好有一质量 m 0.01kg 的子弹, M 1.0kg 的木块, 沿水平方向以速度 v 200m/s 射中木块并陷在其 中。设弹簧的劲度系数为 度,碰撞过程中子弹和木快沿斜
1 1 2 2 m2 v2 0 kx0 2 2
m2 v 2 0 (m1 m2)v
所以 v (2)
3 k x0 4 3m
1 1 1 2 m2 v2 0 kx2 (m1 m2)v 2 2 2 2 1 那么计算可得: x x0 2
4-9. 二质量相同的小球,一个静止,一个以速度 (1)假设碰 0 与另一个小球作对心碰撞,求碰撞后两球的速度。 撞是完全非弹性的; (2)假设碰撞是完全弹性的; (3)假设碰撞的恢复系数 e 0.5 . 解:由碰撞过程动量守恒以及附加条件,可得 (1)假设碰撞是完全非弹性的,即两者将以共同的速度前行: mv0 2mv 所以: v
x2
Fx dx
是否成立?这三式是否是质点动能定理的三个分量式?试作分析。 答:不成立,因为功是标量,不分方向,没有必要这么写。 3-5. 在劲度系数为 k 的弹簧下,如将质量为 m 的物体挂上慢慢放下,弹簧伸长多少?如瞬间挂上让其自由下落弹 簧又伸长多少? 答:如将质量为 m 的物体挂上慢慢放下,弹簧伸长为 mg=kx,所以 x