2015-2016年山东省济宁市曲阜市八年级(上)期末数学试卷和解析答案
2015-2016人教版八年级数学第一学期期末考试试卷及答案
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
济宁市曲阜市2015-2016学年八年级上期末数学试卷含答案解析
2015-2016学年山东省济宁市曲阜市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)2.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是()A.B.C.D.3.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣24.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣115.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°6.下列计算正确的是()A.a﹣1=﹣a B.aa2=a2C.a6÷a2=a3D.(2012贵阳)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF8.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)9.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°10.观察下列各式及其展开式:(a﹣b)2=a2﹣2ab+b2(a﹣b)3=a3﹣3a2b+3ab2﹣b3(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5…请你猜想(a﹣b)10的展开式第三项的系数是()A.﹣36 B.45 C.﹣55 D.66二、填空题(共5小题,每小题3分,满分15分)11.计算:3a3a2﹣2a7÷a2=.12.如果一个正多边形的内角和是900°,则这个正多边形是正边形.13.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC=cm.14.=+是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用R1,R2表示R,则R=.15.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD,则∠BDE=度.三、解答题(共7小题,满分55分)16.化简:(+)÷.17.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.18.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.阅读:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:①am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)②x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式(1)mx﹣2ny﹣nx+2my;(2)4x2﹣4x﹣y2+1.20.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.21.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.22.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC 和△OAC,参考上面的方法,解答下列问题:如图2,在非等边△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,且AD,CE交于点F,求证:AC=AE+CD.2015-2016学年山东省济宁市曲阜市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)【考点】坐标与图形变化-平移.【分析】将点P(3,2)向右平移2个单位后,纵坐标不变,横坐标加上2即可得到平移后点的坐标.【解答】解:将点P(3,2)向右平移2个单位,所得的点的坐标是(3+2,2),即(5,2).故选D.【点评】本题考查了坐标与图形变化﹣平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.2.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、B、D中的图案是轴对称图形,C中的图案不是轴对称图形,故选:C.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.3.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零,可得x+2≠0,据此求出x的取值范围即可.【解答】解:∵分式有意义,∴x+2≠0,∴x≠﹣2,即x的取值应满足:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,要熟练掌握,解答此题的关键是要明确:(1)分式有意义的条件是分母不等于零.分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.4.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000000034=3.4×10﹣10,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°【考点】三角形内角和定理.【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.6.下列计算正确的是()A.a﹣1=﹣a B.aa2=a2C.a6÷a2=a3D.(a3)2=a6【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、负整数指数幂与正整数指数幂互为倒数,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.7.(3分)(2012贵阳)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.8.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再利用完全平方公式分解即可.【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.【点评】本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.9.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.【点评】考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.10.观察下列各式及其展开式:(a﹣b)2=a2﹣2ab+b2(a﹣b)3=a3﹣3a2b+3ab2﹣b3(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5…请你猜想(a﹣b)10的展开式第三项的系数是()A.﹣36 B.45 C.﹣55 D.66【考点】完全平方公式.【专题】计算题;规律型.【分析】根据各式与展开式系数规律,确定出所求展开式第三项系数即可.【解答】解:根据题意得:第五个式子系数为1,﹣6,15,﹣20,15,﹣6,1,第六个式子系数为1,﹣7,21,﹣35,35,﹣21,7,﹣1,第七个式子系数为1,﹣8,28,﹣56,70,﹣56,28,﹣8,1,第八个式子系数为1,﹣9,36,﹣84,126,﹣126,84,﹣36,9,﹣1,第九个式子系数为1,﹣10,45,﹣120,210,﹣252,210,﹣120,45,﹣10,1,则(a﹣b)10的展开式第三项的系数是45,故选B.【点评】此题考查了完全平方公式,弄清题中的规律是解本题的关键.二、填空题(共5小题,每小题3分,满分15分)11.计算:3a3a2﹣2a7÷a2=a5.【考点】整式的混合运算.【分析】根据整式的混合运算顺序,首先计算乘法和除法,然后计算减法,即可求出算式3a3a2﹣2a7÷a2的值是多少.【解答】解:3a3a2﹣2a7÷a2=3a5﹣2a5=a5故答案为:a5.【点评】(1)此题主要考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.12.如果一个正多边形的内角和是900°,则这个正多边形是正七边形.【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数.【解答】解:设这个正多边形的边数是n,则(n﹣2)180°=900°,解得:n=7.则这个正多边形是正七边形.【点评】此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解.13.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC=7cm.【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到AD=BD,进行等量代换后可得答案.【解答】解:∵DE为AB边的垂直平分线∴DA=DB∵△ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填7.【点评】此题主要考查线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进行线段的等量代换是正确解答本题的关键.14.=+是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用R1,R2表示R,则R=.【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R(R2+R1),R=,故答案为.【点评】本题考查了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.15.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD,则∠BDE=90度.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】要证∠BDE=90°可转化为证明△BAD≌△CAE,由已知可证AB=AC,AE=AD,∠BAC=∠EAD=90°,因为∠BAC+∠CAE=∠EAD+∠CAE,即可证∠BAD=∠CAE,符合SAS,即得对应角相等,于是得到结论.【解答】证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠BDA=∠E=45°,∴∠BDE=∠BDA+∠ADE=90°.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(共7小题,满分55分)16.化简:(+)÷.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式===.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.【考点】作图—复杂作图;线段垂直平分线的性质.【专题】作图题.【分析】(1)利用线段垂直平分线的作法得出D点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.【解答】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°﹣37°=16°.【点评】此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出∠BAD=∠B=37°是解题关键.18.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先根据等腰三角形的性质得到AD是顶角的平分线,再利用全等三角形进行证明即可.【解答】证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN,∵AB=AC,AD平分∠BAC,∴∠MAD=∠NAD,在△AMD与△AND中,,∴△AMD≌△AND(SAS),∴DM=DN.【点评】本题考查了全等三角形的判定和性质,关键是根据等腰三角形的性质进行证明.19.阅读:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:①am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)②x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式(1)mx﹣2ny﹣nx+2my;(2)4x2﹣4x﹣y2+1.【考点】因式分解-分组分解法.【专题】阅读型.【分析】(1)将原式重新分组进而提取公因式进而分解因式得出答案;(2)将原式重新分组进而提取公因式进而分解因式得出答案.【解答】解:(1)mx﹣2ny﹣nx+2my=(mx﹣nx)﹣(2ny﹣2my)=x(m﹣n)﹣2y(m﹣n)=(m﹣n)(x﹣2y);(2)4x2﹣4x﹣y2+1=(4x2﹣4x+1)﹣y2=(2x﹣1)2﹣y2=(2x﹣1+y)(2x﹣1﹣y).【点评】此题主要考查了分组分解法因式分解,正确分组是解题关键.20.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】几何综合题.【分析】(1)根据等腰直角三角形的性质得出DF⊥AE,DF=AF=EF,进而利用全等三角形的判定得出△DFC≌△AFM(AAS),即可得出答案;(2)由(1)知,∠MFC=90°,FD=EF,FM=FC,即可得出∠FDE=∠FMC=45°,即可理由平行线的判定得出答案.【解答】(1)证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),∴CF=MF,∴∠FMC=∠FCM;(2)AD⊥MC,理由:由(1)知,∠MFC=90°,FD=FA=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.【点评】此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,得出∠DCF=∠AMF是解题关键.21.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.【考点】分式方程的应用;一元一次方程的应用.【分析】(1)可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;(2)可设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成24000个零件的生产任务,列出方程求解即可.【解答】解:(1)设原计划每天生产的零件x个,依题意有=,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.【点评】考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.22.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC 和△OAC,参考上面的方法,解答下列问题:如图2,在非等边△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,且AD,CE交于点F,求证:AC=AE+CD.【考点】全等三角形的判定与性质.【分析】在AC上截取AG=AE,连接FG,根据“边角边”证明△AEF和△AGF全等,根据全等三角形对应角相等可得∠AFE=∠AFG,全等三角形对应边相等可得FE=FG,再根据角平分线的定义以及三角形的内角和定理推出∠2+∠3=60°,从而得到∠AFE=∠CFD=∠AFG=60°,然后根据平角等于180°推出∠CFG=60°,然后利用“角边角”证明△CFG和△CFD全等,根据全等三角形对应边相等可得FG=FD,从而得证.【解答】证明:如图,在AC上截取AG=AE,连接FG.∵AD是∠BAC的平分线,CE是∠BCA的平分线,∴∠1=∠2,3=∠4在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,∵∠B=60°∴∠BAC=∠ACB=120°,∴∠2+∠3=(∠BAC+∠ACB)=60°,知识像烛光,能照亮一个人,也能照亮无数的人。
2015-2016学年八年级上学期期末考试数学试题及答案
2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。
八年级上册数学期末测试卷及答案(实用)
八年级数学上册期末试卷(总分100分 答卷时间120分钟)温馨提示:亲爱的同学,你好!现在是展示你的才华的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力! 一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出 的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入 题前括号内.【 】1.计算23()a 的结果是A .a 5B .a 6C .a 8D .3 a 2【 】2.若正比例函数的图像经过点(-1,2),则这个图像必经过点A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)【 】3.下列图形是轴对称图形的是A .B .C .D .【 】4.如图,△ACB ≌△A ’C B’,∠BCB ’=30°,则∠ACA ’的度数为A .20°B .30°C .35°D .40°【 】5.一次函数y =2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【 】6.从实数 2-,31-,0,π,4 中,挑选出的两个数都是无理数的为 A .31-,0 B .π,4 C .2-,4 D .2-,π 题号 一 二三总 分 结分人19~20 21~22 23~24 25~262728得分得分 评卷人CABB 'A '(第4题)【 】7.若0a >且2x a =,3y a =,则x ya-的值为A .-1B .1C .23D .32【 】8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t (单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为A .12分B .10分C .16分D .14分二、填空题:本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上.9.计算:32128x x ⎛⎫⨯-⎪⎝⎭= . 10.一次函数(24)5y k x =++中,y 随x 增大而减小,则k 的取值范是 . 11.分解因式:22m n mn -= .12.如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数 为 .13.计算:(1-)2009-(π-3)0+4= . 14.当12s t =+时,代数式222s st t -+的值为 . 15.若225(16)0x y -++=,则x +y = . 16.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x = 过点A ,则不等式20x kx b <+<的解集为 . 17.如图,小量角器的零度线在大量角器的零度线上, 且小量角器的中心在大量角器的外缘边上.如果 它们外缘边上的公共点P 在小量角器上对应的度数为66°,那么在大量角器上对应的度数为__________° (只需写出0°~90°的角度).18.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.三、解答题:本大题共10小题,共60分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题6分,第20题5分,共11分)得分 评卷人得分 评卷人ADCEB(第12题)(第17题)(第16题)OB Ay (第8题)s /千米t /分3 2 1 O61019.(1)化简:)8(21)2)(2(b a b b a b a ---+. (2)分解因式:322x x x ---.20.如图,一块三角形模具的阴影部分已破损.(1)如果不带残留的模具片到店铺加工一块与原来的模具△ABC 的形状和大小完全相同的模具△A B C ''',需要从残留的模具片中度量出哪些边、角?请简要说明理由. (2)作出模具A B C '''△的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).(第21题5分,第22题5分,共10分)21.已知2514x x -=,求()()()212111x x x ---++的值.22.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P . (1)求b 的值;(2)不解关于y x ,的方程组10x y mx y n -+=⎧⎨-+=⎩ 请你直接写出它的解.x(第20题)(第23题5分,第24题6分,共11分)23.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,. (1)在图中画出ABC △关于y 轴的对称图形111A B C △; (2)写出点111A B C ,,的坐标.24.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ; (2)BO =DO .1 23 4AB CDO (第24题)(第23题)(第25题6分,第26题6分,共12分)25.只利用一把有刻度...的直尺,用度量的方法,按下列要求画图: (1)在图1中用下面的方法画等腰三角形ABC 的对称轴.① 量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点D ; ② 画直线AD ,即画出等腰三角形ABC 的对称轴. (2)在图2中画∠AOB 的对称轴,并写出画图的方法.【画法】26.已知线段AC 与BD 相交于点O ,连结AB 、DC ,E 为OB 的中点,F 为OC 的中点,连结EF (如图所示).(1)添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC .(2)分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题 (选择“真”或“假”填入空格,不必证明).ODCABEF(第26题)BC图1AOB 图2(第27题8分)27. 如图,在平面直角坐标系xOy 中,已知直线AC 的解析式为122y x =-+,直线AC 交x轴于点C ,交y 轴于点A .(1)若一个等腰直角三角形OBD 的顶点D 与点C 重合,直角顶点B 在第一象限内,请直接写出点B 的坐标; (2)过点B 作x 轴的垂线l ,在l 上是否存在一点P ,使得△AOP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)试在直线AC 上求出到两坐标轴距离相等的所有点的坐标.得分 评卷人(第27题)xA yC(D)BO28.元旦期间,甲、乙两个家庭到300 km外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h(从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y甲(km)、y乙(km)与时间x(h)之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:(1)由于汽车发生故障,甲家庭在途中停留了h;(2)甲家庭到达风景区共花了多少时间;(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15 km,请通过计算说明,按图所表示的走法是否符合约定.y八年级上册数学期末试卷(参考答案)一、选择题(本题共8小题;每小题2分,共16分)1.B 2.D 3.A 4.B 5.B 6.D 7.C 8.D二、填空题(本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.)9.514x -10.k <-2 11.m n (m -n ) 12.37° 13.0 14.1415.9 16.-2<x <-1 17.48° 18.7三、解答题(本大题共10小题,共60分.)19.解:(1))8(21)2)(2(b a b b a b a ---+2224214b ab b a +--=……………………………………………………4分ab a 212-=…………………………………………………………………6分 (2)322x x x ---=2(1)x x x -++ …………………………………………………………3分 =2(1)x x -+ …………………………………………………………5分20.(1)只要度量残留的三角形模具片的∠B ,∠C 的度数和边BC 的长,因为两角及其夹边对应相等的两个三角形全等.……………………………3分 (2)按尺规作图的要求,正确作出A B C '''∠的图形.……………………………5分 21.解:()()()212111x x x ---++=22221(21)1x x x x x --+-+++……………………………………………2分 =22221211x x x x x --+---+ ……………………………………………3分=251x x -+………………………………………………………………………4分 当2514x x -=时,原式=2(5)114115x x -+=+= ……………………………………………5分22.解:(1)∵),1(b 在直线1+=x y 上,∴当1=x 时,211=+=b .……………………………………………3分 (2)解是⎩⎨⎧==.2,1y x …………………………………………………………………5分23.(1)画图正确; ………………………………………………………………………2分(2)111(4,3)A B C (1,5),(1,0),………………………………………………5分 24.证明:(1)在△ABC 和△ADC 中1234AC AC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△ADC .………………………………………………………3分 (2)∵△ABC ≌△ADC∴AB =A D ……………………………………………………………………4分又∵∠1=∠2∴BO =DO …………………………………………………………………6分25.(1)画图正确……………… …………………………………………………………2分(2) ①利用有刻度的直尺,在∠AOB 的边OA 、OB 上分别截取OC 、OD ,使OC =OD ; ②连接CD ,量出CD 的长,画出线段CD 的中点E ;③画直线OE ,直线OE 即为∠AOB 的对称轴.………………………………6分 (作图正确2分,作法正确2分) 26.(1)∵∠OEF =∠OFE∴OE =OF …………………………………………………………………………1分 ∵E 为OB 的中点,F 为OC 的中点,∴OB =OC ……………………………………………………………………………2分 又∵∠A =∠D ,∠AOB =∠DOC ,△AOB ≌△DOC ………………………………………………………………4分 ∴AB=DC …………………………………………………………………………5分 (2)假 ………………………………………………………………………………6分 27.(1)B (2,2); ………………………………………………………………………2分 (2)∵等腰三角形OBD 是轴对称图形,对称轴是l ,∴点O 与点C 关于直线l 对称,∴直线AC 与直线l 的交点即为所求的点P . ……………………………………3分把x =2代入122y x =-+,得y =1,∴点P 的坐标为(2,1)……………………………………………………………4分 (3)设满足条件的点Q 的坐标为(m ,122m -+),由题意,得 122m m -+= 或 122m m -+=-……………………………………………6分解得43m = 或4m =-…………………………………………………………7分∴点Q 的坐标为(43,43)或(4-,4)……………………………………8分(漏解一个扣2分)28.(1)1;…………………………………………………………………………………1分 (2)易得y 乙=50x -25…………………………………………………………………2分当x =5时,y =225,即得点C (5,225).由题意可知点B (2,60),……………………………………………………3分 设BD 所在直线的解析式为y =kx +b ,∴5225,260.k b k b +=⎧⎨+=⎩解得55,50.k b =⎧⎨=-⎩∴BD 所在直线的解析式为y =55x -50.………………………………………5分当y =300时,x =7011.答:甲家庭到达风景区共花了7011 h .……………………………………………6分(3)符合约定. …………………………………………………………7分由图象可知:甲、乙两家庭第一次相遇后在B 和D 相距最远. 在点B 处有y 乙-y = -5x +25=-5×2+25=15≤15;在点D 有y —y 乙=5x -25=7511≤15.……………………………………………8分。
山东省曲阜上学期初中八年级期末教学质量检测考试数学试卷(附答案解析)
上学期初中八年级期末教学质量检测考试数学试卷注意事项:1.本试题分第I 卷和第Ⅱ卷两部分,共8页,第I 卷2页为选择题和填空题,48分,第Ⅱ卷6页为解答题,52分;共100分,考试时间为120分钟.2.第I 卷每题选出答案后,填写在第Ⅱ卷的指定位置.3.答第Ⅱ卷时,将密封线内的项目填写清楚,并将座号填写在指定位置,用钢笔或圆珠笔直接答在试卷上,第I 卷(共48分)一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.若代数式13x -在实数范围内有意义,则实数x 的取值范围是( )A .x<3B .x>3C .x ≠3D .x=32.下面四个手机应用图标中是轴对称图形的是( )3.下列各式中,计算正确的是A .3412a a a ⋅=B .23193x x x +=--C .22(2)4a a +=+D .32()()xy xy xy --⋅-=4.如图,△ABO 关于x 轴对称,若点A 的坐标为(3,1),则点B 的坐标为()A .(1,3)B .(-1,3)C .(3,-1)D .(-1,-3)5.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2-6a+9C .x 2+5yD .x 2-5y6.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C=34°,则∠BED 的度数是( )A .17°B .34°C .56°D .68°7.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E .若BC=3,则DE 的长为( )A .1B .2C .3D .48.把x 3-9x 分解因式,结果正确的是( )A .x (x 2-9)B .x (x-3)2C .x (x+3)2D .x (x+3)(x-3)9.如图,在△ABC 和△DEF 中,∠B=∠DEF ,AB=DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF10.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米:设原计划每天施工x 米,则根据题意所列方程正确的是( )A .20002000250x x -=+B .20002000250x x-=+ C .20002000250x x -=- D .20002000250x x -=- 二、填空题:(每小题3分,共18分;结果填写在第Ⅱ卷的指定位置)11.当x=____时,分式1x x -值为0. 12.PM 2.5是指大气中直径小于或等于0.000 002 5m 的颗粒物,将0.000 0025用科学记数法表示为____.13.已知一个多边形的内角和是1620°,则这个多边形是____边形.14.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为____.15.如图,在△ABC 中,BD 是边AC 上的高,CE 平分∠ACB ,交BD 于点E ,DE=2,BC=5,则△BCE 的面积为____.16.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得:3S-S=39-1,即2S=39-1,∴9312S -=得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m+m 2+m 3+m 4+…+m 2016的值?如能求出,其正确答案是____.第Ⅱ卷(共52分)三、解答题:(共52分)17.(每小题3分,共6分)计算:(1)33222a ab b b ⎛⎫⎛⎫÷-⋅ ⎪ ⎪-⎝⎭⎝⎭ (2)2(2)()()x y x y x y --+- 18.(5分)如图,C 是线段AB 的中点,CD=BE ,CD ∥BE.求证:∠D=∠E.19.(6分)先化筒再求值:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭(取一个你认为合适的数) 20.(6分)解方程:3111x x x -=-+ 21.(6分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度(1)用记号(a ,b ,c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹)22.(7分)甲乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲、乙两人每小时各做多少个零件?23.(8分)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌AACD;(2)BE=CE。
(2021年整理)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】
(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】的全部内容。
2015—2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个. A 。
1 B2 C.3 D.4 2。
与3—2相等的是( )A.91B.91- C.9D.-9 3。
当分式21-x 有意义时,x 的取值范围是( )A.x <2 B 。
x >2 C.x ≠2 D 。
x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A 。
1,2,3B.1,5,5 C 。
3,3,6 D 。
4,5,6 5.下列式子一定成立的是( )A 。
3232a a a =+B 。
632a a a =• C. ()623a a = D 。
326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B 。
7 C.8 D 。
97。
空气质量检测数据pm2。
5是值环境空气中,直径小于等于2。
5微米的颗粒物,已知1微米=0。
000001米,2。
5微米用科学记数法可表示为( )米。
A 。
2。
5×106B.2.5×105C 。
2.5×10—5D 。
2.5×10-68。
已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。
2015—2016学年度第一学期初二期末质量检测数学试卷附答案
2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。
鲁教版八年级数学上册期末测试题(附参考答案)
鲁教版八年级数学上册期末测试题(附参考答案)满分150分 考试时间120分钟一、选择题:本题共12个小题,每小题4分,共48分。
每小题只有一个选项符合题目要求。
1.下列因式分解正确的是( ) A .2a 2-4a +2=2(a -1)2 B .a 2+ab +a =a (a +b ) C .4a 2-b 2=(4a +b )(4a -b ) D .a 3b -ab 3=ab (a -b )22.若k 为任意整数,则(2k +3)2-4k 2的值总能( ) A .被2整除 B .被3整除 C .被5整除D .被7整除3.分式x 2−xx−1的值为0,则x 的值是( ) A .0 B .-1 C .1D .0或14.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x 吨,则所列方程正确的是( ) A .75x−5=50x B .75x =50x−5 C .75x+5=50x D .75x =50x+55.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁6.如图,一束太阳光平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为( )A.41°B.51°C.42°D.49°7.如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平行四边形,则下列正确的是( )A.AD=BC B.∠ABD=∠BDCC.AB=AD D.∠A=∠C8.如图,□ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD的中点.若AD=4,CD=6,则EO的长为( )A.1 B.2C.3 D.49.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )10.在正数范围内定义一种运算“※”,其规则为a※b=1a +1b,如2※4=12+14,根据这个规则,方程3※(x-1)=1的解为( ) A.x=52B.x=-1C.x=12D.x=-311.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)12.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC二、填空题:本题共6个小题,每小题4分,共24分。
2015-2016学年度上学期期末考试八年级数学试卷(含答案)
2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
2015~2016学年第一学期期末考试卷八年级数学试题附答案
2015~2016学年第一学期期末考试卷 八年级数学试题 2016.1注意事项:1.本卷考试时间为100分钟,满分100分.其余结果均应给出精确结果.一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中是轴对称图形的是-------------------------------------------------------( )A .(1)、(2) B .(1)、(3) C .(1)、(4) D .(2)、(3)2.下列实数中,是无理数的为--------------------------------------------------------------------( )AB .13C .0D .3-3.在△ABC 中和△DEF 中,已知BC =EF ,∠C =∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是-------------------------------------------------------------------------( ) A 、AC =DF B 、AB =DE C 、∠A =∠D D 、∠B =∠E 4.满足下列条件的△ABC 不是..直角三角形的是----------------------------------------------( ) A 、1=a 、2=b , 3=c B 、1=a 、2=b , 5=cC 、a ∶b ∶c =3∶4∶5D 、∠A ∶∠B ∶∠C =3∶4∶55.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是------------------------------------------------------------------------------------------------------( ) A . B . C .D CB A6.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m 的值为-----------------------------------------------------------------------------------------------( )A.2B.-2C. 4D.-4 7.如图,在平面直角坐标系中,点P 坐标为(-4,3), 以点B (-1,0)为圆心,以BP 的长为半径画弧, 交x 轴的负半轴于点A ,则点A 的横坐标介于-----------( ) A 、-6和-5之间 B 、-5和-4之间 C 、-4和-3之间 D 、-3和-2之间8. 在平面直角坐标系中,点A(1,1),B(3,3),动点C 在x轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为------------------------------------------------------( )B.3C.4D.5二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是10.点A (—3,4)关于y 轴对称的点的坐标是 . 11.地球上七大洲的总面积约为149 480 000km 2,把这个数值精确到千万位,并用科学计数法表示为 .12. 函数2-=x y 中自变量x 的取值范围是_____ ________13. 如图,在等腰三角形ABC 中,AC AB =,DE 垂直平分AB ,已知∠ADE =40º,则∠DBC= ︒.14.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为15.如图,已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8.则△ABC 的周长为__________。
2015~2016学年度上学期期末考试试卷八年级数学附答案
2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。
2015-2016学年八年级上学期期末数学试卷
2015-2016学年八年级上学期期末数学试卷一、选择题(每题3分,共45分) 1.下列各式中计算正确的是( ) A .B .C .D .2.(3分)如图中点P 的坐标可能是( ) A . (﹣5,3) B . (4,3) C . (5,﹣3) D .(﹣5,﹣3)3.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A . 0 B . 1 C . 2 D .3 4.在﹣2,0,3,这四个数中,最大的数是() A . ﹣2 B . 0 C . 3 D . 5.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°, 则∠2的度数是( ) A . 50° B . 45° C . 35° D .30° 6.(3分)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A . 第一象限 B . 第二象限 C . 第三象限 D .第四象限 7.若方程mx+ny=6的两个解是,,则m ,n 的值为( )A . 4,2B . 2,4C . ﹣4,﹣2D .﹣2,﹣4 8.(3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果: 居民(户) 1 3 2 4 月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是() A . 中位数是55 B . 众数是60 C . 方差是29 D .平均数是54 9.(3分)下列四组线段中,可以构成直角三角形的是() A . 4,5,6 B . 1.5,2,2.5 C . 2,3,4 D .1,,3 10.(3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是() A . 体育场离张强家2.5千米 B . 张强在体育场锻炼了15分钟 C . 体育场离早餐店4千米 D . 张强从早餐店回家的平均速度是3千米/小时11.下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。
2015-2016学年度第一学期八年级数学上册期末考试试卷
八年级数学 第1页,共3页密学校 班级姓名 学号密 封 线 内 不 得 答 题2015-2016学年第一学期期末考试 座次号:八年级数学试卷一.选择题(每题3分,共30分)1. 下列各式中,正确的是( )A .()222-=- B .()932=- C .39±= D .39±=±2.在坐标平面内,有一点P (a ,b ),若ab=0,那么点P 的位置在…( ) A. 原点 B. 坐标轴上 C. y 轴 D. x 轴上3.一次函数y=-2x-3的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.到三角形三个顶点的距离相等的点是三角形( )的交点.A. 三个内角平分线B. 三边垂直平分线C. 三条中线D. 三条高线 5.如图,函数y 1=ax +b 与y 2=bx+a 正确的图象为( )1 6. 方程组{4x 3y=k 2x+3y=5-的解x 与y 的值相等,则k =( )A. 1或-1B. -5C.5D. 1 则这12名队员年龄的众数、中位数分别是( ) A. 20,19 B. 19,19 C. 19,20.5 D. 19,208. 如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交 AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .11 9.如图,下列判断正确的是( )A .若∠1=∠2,则AD∥BCB .若∠1=∠2,则AB∥CDC .若∠A=∠3,则AD∥BCD .若∠A+∠ADC=180°, 则AD∥BC10. 如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O ,给出下列四个条件:①∠EBO=∠DCO ;②BE=CD ;③OB=OC ;④OE=OD .从上述四个条件中,选取两个条件,不能判定△ABC 是等腰三角形的是( ) A .①② B .①③ C .③④ D .②③二、填空题(每题4分,共40分)11.的平方根是 .12.把命题“对顶角相等”写成“如果…那么…”的形式 为: . 13. 已知x 、y 是实数,且,则(x ﹣y )2016= .14.已知等腰三角形的两边长分别为5㎝、3㎝,则该等腰三角形的 周长是15.已知直线y=(2m+1)x + m -3与直线 y=3x +3平行,则m= 16.已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为 标准差为17.小明参加了某电视台招聘记者的三项素质测试,成绩如下:采访写作70分,计算机操作60分,创意设计88分,如果采访写作、计算机操作和创意设计的成绩按4:1:3计算,则他的素质测试平均成绩为 分. 18.如右图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于y ax by kx =+⎧⎨=⎩的二元一次方程组的解是 .19.如图,在△ABC 中,∠A=50°, ∠ABC、∠ACB 的角平分线相交于点P , 则∠BPC 的度数为 .20.==第2页,共3 页的规律用含自然数n(n≥1)的等式表示出来___________________。
【鲁教版】八年级数学上期末试题带答案(1)
一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°2.下列命题为真命题的是( )A .内错角相等,两直线平行B .面积相等的两个三角形全等C .若a b >,则22a b ->-D .一般而言,一组数据的方差越大,这组数据就越稳定3.如图,60A ∠=,70B ∠=,将纸片的一角折叠,使点C 落在ABC 外.若218∠=,则1∠的度数为( )A .50B .118C .75D .804.在长方形ABCD 中,放入6个形状大小完全相同的小长方形,所标尺寸如 图所示,则小长方形的宽AE 的长度为( ) cm .A .1B .1.6C .2D .2.55.为了研究吸烟对肺癌是否有影响,某研究机构随机调查了8000人,结果显示:在吸烟者中患肺癌的比例是3%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人.在这8000人中,设吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y .所列方程组正确的是( )A.333%0.5%8000x yx y-=⎧⎨⨯+⨯=⎩B.80003%0.5%22x yx y+=⎧⎨⨯-⨯=⎩C.3380003%0.5%x yx y-=⎧⎪⎨+=⎪⎩D.8000333%0.5%x yx y+=⎧⎪⎨-=⎪⎩6.由方程组223224x y mx y m-=+⎧⎨+=+⎩可得x与y的关系式是()A.3x=7+3m B.5x﹣2y=10 C.﹣3x+6y=2 D.3x﹣6y=27.一次函数y=2x+1的图像,可由函数y=2x的图像()A.向左平移1个单位长度而得到B.向右平移1个单位长度而得到C.向上平移1个单位长度而得到D.向下平移1个单位长度而得到8.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y(单位:升)与时间x (单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为()A.22 B.22.5 C.23 D.259.已知函数y=kx+b的图象如图所示,则y=2kx+b的图象可能是()A.B.C.D.10.点()1,2-关于y轴对称的点的坐标是()A .()1,2-B .()2,1-C .()1,2--D .()1,211.下列选项中,属于无理数的是( )A .πB .227-C .4D .012.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25二、填空题13.如图所示,D 是ABC 的边BC 上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC=_________.14.如图所示,已知∠1=22°,∠2=28°,∠A=56°,则∠BOC 的度数是___________.15.在平面直角坐标系中有两点(1,2)A -,()2,3B ,如果函数1y kx =-的图象与线段AB 的延长线相交(交点不包括点B ),则实数k 的取值范围是__________.16.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵. 17.已知Q 在直线4y x =-+上,且点Q 到两坐标轴的距离相等,那么点Q 的坐标为__________.18.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.19.有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m .20.已知等腰三角形的两边长分别为a ,b ,且a ,b 满足2235(2313)0a b a b -+++-=,则此等腰三角形的面积为____.三、解答题21.如图,已知直线//AB CD ,100A C ∠=∠=︒,E 、F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)直线AD 与BC 有何位置关系?请说明理由.(2)求DBE ∠的度数.(3)若平行移动AD ,在平行移动AD 的过程中,存在使BEC ADB ∠=∠的情况,求ADB ∠的度数.22.随着新冠肺炎疫情的持续,某学校计划购进一批防疫物品,经过市场调查得知:某品牌洗手液和消毒水原来的单价和为50元.因政府市场调控,洗手液降价10%,消毒水降价20%,调价后,两种物品的单价和比原来降低了16%.请你用二元一次方程组的知识计算该学校购买 200 瓶洗手液和 300 瓶消毒水共需要多少钱.23.如图,1l 表示振华商场一天的某型电脑销售额与销售量的关系,2l 表示该商场一天的销售成本与电脑销售量的关系.观察图象,解决以下问题:(1)当销售量x =2时, 销售额= 万元,销售成本= 万元;(2)一天销售 台时,销售额等于销售成本;当销售量 时,该商场实现赢利(收入大于成本);(3)分别求出1l 和2l 对应的函数表达式;(4)直接写出利润w 与销售量x 之间的函数表达式,并求出当销售量x 是多少时,每天的利润达到5万元?24.已知:A (0,1),B (2,0),C (4,3)(1)在坐标系中描出各点,画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求P 的坐标.25.阅读材料:我们定义:如果一个数的平方等于1-,记作21i =-,那么这个i 就叫做虚数单位.虚数与我们学过的实数合在一起叫做复数.一个复数可以表示为a bi +(a ,b 均为实数)的形式,其中a 叫做它的实部,b 叫做它的虚部.复数的加、减、乘的运算与我们学过的整式加、减、乘的运算类似.例如计算:()()()()62362382i i i i i ++-=++-=-.根据上述材料,解决下列问题:(1)填空:3i ______,6i =_________;(2)计算:2(32)i +;(3)将32i i+-化为a bi +(a ,b 均为实数)的形式(即化为分母中不含i 的形式). 26.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB =90°,∴∠A +∠B =90°,∵△CDB′是由△CDB 翻折得到,∴∠CB′D =∠B ,∵∠CB′D =∠A +∠ADB′=∠A +20°,∴∠A +∠A +20°=90°,解得∠A =35°.故选:C .【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.A解析:A【分析】根据平行线的判定和性质、三角形全等的判定、不等式的性质、方差的性质逐一判断即可.【详解】A 、内错角相等,两直线平行,是真命题,符合题意;B 、面积相等的两个三角形不一定全等,原命题是假命题,不符合题意;C 、若a b >,则22a b -<-,原命题是假命题,不符合题意;D 、一般而言,一组数据的方差越大,这组数据就越不稳定,原命题是假命题,不符合题意;故选:A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B解析:B【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-60°-70°=50°;再根据折叠的性质得到∠C′=∠C=50°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+50°,即可得到∠3+∠4=62°,然后利用平角的定义即可求出∠1.【详解】∵∠A=60°,∠B=70°,∴∠C=180°-∠A-∠B=180°-60°-70°=50°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=50°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+50°,∠2=18°,∴∠3+18°+∠4+50°+50°=180°,∴∠3+∠4=62°,∴∠1=180°-62°=118°.故选:B.【点睛】本题综合考查了三角形内角和定理、外角定理以及翻折变换的问题,而翻折变换实际上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.明确各个角之间的等量关系,是解决本题的关键.4.C解析:C【分析】设小长方形的长为xcm,宽为ycm,则AD=x+3y,AB=x+y=6+2y,联立构造方程组求解即可.【详解】设小长方形的长为xcm,宽为ycm,则AD=x+3y,AB=x+y=6+2y即x-y=6,根据题意,得3146x y x y +=⎧⎨-=⎩, 解得62x y =⎧⎨=⎩, 即AE=2,故选C .【点睛】本题考查了二元一次方程组的应用,合理引进未知数,列出正确的方程组是解题的关键. 5.C解析:C【分析】根据吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人且该研究机构共调查了8000人,即可得出关于x ,y 的二元一次方程,此题得解.【详解】解:依题意得:3380003%0.5%x y x y -=⎧⎪⎨+=⎪⎩. 故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.D解析:D【分析】方程组消去m 即可得到x 与y 的关系式.【详解】解:223224x y m x y m -=+⎧⎨+=+⎩①②, ①×2﹣②得:3x ﹣6y =2,故选:D .【点睛】此题考查了解二元一次方程组,利用了消元的思想,本题用的是加减消元法. 7.C解析:C【分析】根据一次函数图象平移规律,直接判断即可.【详解】解:∵一次函数图象向上平移m (m>0)个单位,常数项增加m ,∴函数y =2x 的图像向上平移1个单位可以得到y =2x +1的图像,故选:C .【点睛】本题考查了一次函数图象平移的规律,解题关键是掌握一次函数图象平移的规律:上加下减常数项,左加右减自变量.8.B解析:B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】 本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.9.A解析:A【分析】由图知,函数y =kx +b 图象过点(0,1),即k >0,b =1,再根据一次函数的特点解答即可.【详解】解:∵由函数y =kx +b 的图象可知,k >0,b =1,∴y =2kx +b =2kx +1,2k >0,∴2k >k ,可见一次函数y =2kx +b 图象与x 轴的夹角,大于y =kx +b 图象与x 轴的夹角.∴函数y =2kx +1的图象过第一、二、三象限且与x 轴的夹角比y =kx +b 与x 轴的夹角大.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k 与b 的关系是解题的关键.10.C解析:C【分析】根据关于y 轴对称的点的坐标的变化特征求解即可.【详解】解:关于y 轴对称的点的坐标变化规律是:纵坐标不变,横坐标变为原来的相反数, 所以,点()1,2-关于y 轴对称的点的坐标是(-1,-2),故选:C .【点睛】本题考查了关于y 轴对称点的坐标变化规律,解题关键是树立数形结合思想,掌握坐标变化规律.11.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式. 12.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =,22BC CE BE +=2,2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴==, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.二、填空题13.【分析】先根据三角形的外角性质可得再根据三角形的内角和定理可得然后根据角的和差即可得的度数由此即可得【详解】又解得故答案为:【点睛】本题考查了三角形的外角性质三角形的内角和定理等知识点熟练掌握三角形 解析:24︒【分析】先根据三角形的外角性质可得4321∠=∠=∠,再根据三角形的内角和定理可得18041DAC ∠=︒-∠,然后根据角的和差即可得1∠的度数,由此即可得.【详解】12∠=∠,31221∴∠=∠+∠=∠,34∠∠=,421∴∠=∠,1804318041DAC ∴∠=︒-∠-∠=︒-∠,118031BAC DAC ∴∠=∠+∠=︒-∠,又63BAC ∠=︒,1803163∴︒-∠=︒,解得139∠=︒,1804118043924DAC ∴∠=︒-∠=︒-⨯︒=︒,故答案为:24︒.【点睛】本题考查了三角形的外角性质、三角形的内角和定理等知识点,熟练掌握三角形的角的性质是解题关键.14.106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解【详解】如图连接AO 延长AO 交BC 于点D 根据三角形中一个外角等于与它不相邻的两个内角和可得:∠BOD=∠1+∠BAO ∠DOC=解析:106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO ,延长AO 交BC 于点D .根据三角形中一个外角等于与它不相邻的两个内角和,可得:∠BOD=∠1+∠BAO ,∠DOC=∠2+∠OAC ,∵∠BAO+∠CAO=∠BAC=56°,∠BOD+∠COD=∠BOC ,∴∠BOC=∠1+∠2+∠BAC=22°+28°+56°=106°.故答案为:106°.【点睛】本题考查了三角形的内角和定理,三角形的外角的性质,关键是利用了三角形中一个外角等于与它不相邻的两个内角和求解.15.【分析】先求出直线AB 的解析式找出两临界点即可得出答案【详解】解:设AB 的解析式为:y=kx+b ;将代入可得;解得:当与直线AB 平行此时当过时2k-1=3则k=2∴实数k 的取值范围是:【点睛】本题考 解析:123k << 【分析】先求出直线AB 的解析式,找出两临界点即可得出答案.【详解】解: 设AB 的解析式为:y=kx+b ;将(1,2)A -,()2,3B 代入可得232k b k b +=⎧⎨-+=⎩; 解得:1373k b ⎧=⎪⎪⎨⎪=⎪⎩当1y kx =-与直线AB 平行,此时13k =,当1y kx =-过()2,3B 时,2k-1=3,则k=2,∴实数k 的取值范围是:123k << 【点睛】本题考查一次函数图象与系数的关系,有一定难度,关键是找出两临界条件. 16.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x ﹣1)求解【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有1解析:10【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x 棵,即可列方程:4x+5=5(x ﹣1)求解.【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有10棵,鸦的个数为:10×4+5=45故答案为45,10【点睛】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.17.【分析】根据题意分点Q 的坐标是(aa)和点Q 的坐标是(b-b)两种情况然后根据点Q 在直线y=-x+4上分别求出点Q 的坐标是多少即可【详解】解:(1)当点Q 的坐标是(aa)时a=-a+4解得a=2∴点解析:()2,2【分析】根据题意,分点Q 的坐标是(a ,a )和点Q 的坐标是(b ,-b )两种情况,然后根据点Q 在直线y =-x +4上,分别求出点Q 的坐标是多少即可.【详解】解:(1)当点Q 的坐标是(a ,a )时,a =-a +4,解得a =2,∴点Q 的坐标是(2,2);(2)当点Q 的坐标是(b ,-b )时,-b =-b +4,此方程无解.∴点Q 的坐标是(2,2).故答案为:(2,2).【点睛】此题主要考查了一次函数图象上点的坐标特征.注意考虑两种情况.18.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得 解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y >则340x -> 解得43x > 故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.19.1【分析】先根据正方体的体积得出其棱长再求出体积达到125m3时的棱长进而可得出结论【详解】解:设正方体集装箱的棱长为a ∵体积为64m3∴a==4m ;设体积达到125m3的棱长为b 则b==5m ∴b-解析:1【分析】先根据正方体的体积得出其棱长,再求出体积达到125m 3时的棱长,进而可得出结论.【详解】解:设正方体集装箱的棱长为a ,∵体积为64m 3,∴a=364=4m ; 设体积达到125m 3的棱长为b ,则b=3125 =5m ,∴b-a=5-4=1(m ).故答案为:1.【点睛】本题考查的是立方根,熟知正方体的体积公式是解题的关键.20.或【分析】根据非负数的性质列出方程组求解的值然后分两种情况讨论画出图形作底边上的高利用勾股定理求出高即可求解【详解】解:由非负性可知解得①当是腰时三边分别为由2+2>3则能组成三角形设底边上的高为h解析:374或22 【分析】 根据非负数的性质列出方程组求解a ,b 的值,然后分两种情况讨论,画出图形,作底边上的高,利用勾股定理求出高,即可求解.【详解】解:由非负性可知235023130a b a b -+=⎧⎨+-=⎩, 解得23a b =⎧⎨=⎩, ①当a 是腰时,三边分别为2、2、3,由2+2>3,则能组成三角形,设底边上的高为h ,如下图所示则h=22322⎛⎫- ⎪⎝⎭=72 ∴此等腰三角形的面积为17322⨯⨯=374; ②当b 是腰时,三边分别为3、3、2,由3+2>3,则能组成三角形, 设底边上的高为h ,如下图所示则=∴此等腰三角形的面积为122⨯⨯=【点睛】 本题主要考查了等腰三角形的性质,非负数的性质,解二元一次方程组,三角形的三边关系,勾股定理,先求出a ,b 的值是解题的关键,要注意分情况讨论.三、解答题21.(1)直线AD 与BC 互相平行,理由见解析;(2)40DBE ∴∠=︒(3)存在,60BEC ADB ∠=∠=︒.【分析】(1)根据平行线的性质,以及等量代换证明180ADC C ∠+∠=︒,即可证得//AD BC ; (2)由直线//AB CD ,根据两直线平行,同旁内角互补,即可求得ABC ∠的度数,又由12DBE ABC ∠=∠,即可求得DBE ∠的度数. (3)首先设ABD DBF BDC x ∠=∠=∠=︒,由直线//AB CD ,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得BEC ∠与ADB ∠的度数,又由BEC ADB ∠=∠,即可得方程:4080x x ︒+︒=︒-︒,解此方程即可求得答案.【详解】解:(1)直线AD 与BC 互相平行,理由://AB CD ,180A ADC ∴∠+∠=︒,又A C ∠=∠180ADC C ∴∠+∠=︒,//AD BC ∴;(2)//AB CD ,18080ABC C ∴∠=︒-∠=︒,DBF ABD ∠=∠,BE 平分CBF ∠,11140222DBE ABF CBF ABC ∴∠=∠+∠=∠=︒; (3)存在.设ABD DBF BDC x ∠=∠=∠=︒.//AB CD ,40BEC ABE x ∴∠=∠=︒+︒;//AB CD ,18080ADC A ∴∠=︒-∠=︒,80ADB x ∴∠=︒-︒.若BEC ADB ∠=∠,则4080x x ︒+︒=︒-︒,得20x ︒=︒.∴存在60BEC ADB ∠=∠=︒.【点睛】此题主要考查了平行线的性质与判定.解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.22.学校购买 200 瓶洗手液和 300 瓶消毒水共需要10800元.【分析】解:设洗手液和消毒水原来的单价分别为x 元,y 元, 根据题意,列出关于x ,y 的二元一次方程组,进而即可求解.【详解】解:设洗手液和消毒水原来的单价分别为x 元,y 元,由题意得:50(110%)(120%)50(116%)x y x y +=⎧⎨-+-=⨯-⎩,即500.90.842x y x y +=⎧⎨+=⎩, 解得2030x y =⎧⎨=⎩, ∴调价后洗手液的单价为0.12098⨯=(元),消毒水的单价为300.824⨯=(元), 200183002410800⨯+⨯=(元).答:学校购买 200 瓶洗手液和 300 瓶消毒水共需要10800元.【点睛】本题主要考查二元一次方程组的实际应用。
八年级上册济宁数学全册全套试卷测试卷附答案
∴ 在△ ACE 中,∠ E=180°-(∠ 1+∠ 2)=180°-115°=65°.
2.已知一个多边形的内角和与外角和的差是 1260°,则这个多边形边数是 . 【答案】12 【解析】 试题解析:根据题意,得 (n-2)•180-360=1260, 解得:n=11. 那么这个多边形是十一边形. 考点:多边形内角与外角.
3.已知 a、b、c 为△ABC 的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.
【答案】 3a b c
【解析】 【分析】 根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再 去括号合并同类项即可. 【详解】 解:∵a、b、c 为△ABC 的三边, ∴a+b>c,a-b<c,a+c>b, ∴a+b-c>0,a-b-c<0,a-b+c>0, ∴|a+b-c|-|a-b-c|+|a-b+c| =(a+b-c)+(a-b- c)+(a-b+c) =a+b-c+a-b- c+a-b+c =3a-b-c. 故答案为:3a-b-c. 【点睛】 本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边 关系得出绝对值内式子的正负是解决此题的关键.
6.如图,在△ABC 中,∠A=70°,点 O 到 AB,BC,AC 的距离相等,连接 BO,CO,则 ∠BOC=________.
【答案】125° 【解析】 【分析】 根据角平分线性质推出 O 为△ABC 三角平分线的交点,根据三角形内角和定理求出
∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.
2015-2016学年度第一学期期末八年级数学试题(含答案)
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:32(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
山东省济宁市曲阜市2015-2016学年八年级数学上学期期末考试试题(含解析)新人教版
...【考点】线段垂直平分线的性质.【分析】由条件,根据垂直平分线的性质得到AD=BD,进展等量代换后可得答案.【解答】解:∵ DE 为 AB 边的垂直平分线∴DA=DB∵△ ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填 7.【点评】此题主要考察线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进展线段的等量代换是正确解答此题的关键.14. = +是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用 R1,R2表示 R,那么R=.【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R〔 R2+R1〕,R=,故答案为.【点评】此题考察了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,那么必须先通分,把异分母分式化为同分母分式,然后再相加减.【考点】线段垂直平分线的性质.【分析】由条件,根据垂直平分线的性质得到AD=BD,进展等量代换后可得答案.【解答】解:∵ DE 为 AB 边的垂直平分线∴DA=DB∵△ ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填 7.【点评】此题主要考察线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进展线段的等量代换是正确解答此题的关键.14. = +是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用 R1,R2表示 R,那么R=.【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R〔 R2+R1〕,R=,故答案为.【点评】此题考察了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,那么必须先通分,把异分母分式化为同分母分式,然后再相加减.【考点】线段垂直平分线的性质.【分析】由条件,根据垂直平分线的性质得到AD=BD,进展等量代换后可得答案.【解答】解:∵ DE 为 AB 边的垂直平分线∴DA=DB∵△ ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填 7.【点评】此题主要考察线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进展线段的等量代换是正确解答此题的关键.14. = +是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用 R1,R2表示 R,那么R=.【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R〔 R2+R1〕,R=,故答案为.【点评】此题考察了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,那么必须先通分,把异分母分式化为同分母分式,然后再相加减.【考点】线段垂直平分线的性质.【分析】由条件,根据垂直平分线的性质得到AD=BD,进展等量代换后可得答案.【解答】解:∵ DE 为 AB 边的垂直平分线∴DA=DB∵△ ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填 7.【点评】此题主要考察线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进展线段的等量代换是正确解答此题的关键.14. = +是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用 R1,R2表示 R,那么R=.【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R〔 R2+R1〕,R=,故答案为.【点评】此题考察了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,那么必须先通分,把异分母分式化为同分母分式,然后再相加减.【考点】线段垂直平分线的性质.【分析】由条件,根据垂直平分线的性质得到AD=BD,进展等量代换后可得答案.【解答】解:∵ DE 为 AB 边的垂直平分线∴DA=DB∵△ ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填 7.【点评】此题主要考察线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进展线段的等量代换是正确解答此题的关键.14. = +是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用 R1,R2表示 R,那么R=.【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R〔 R2+R1〕,R=,故答案为.【点评】此题考察了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,那么必须先通分,把异分母分式化为同分母分式,然后再相加减.【考点】线段垂直平分线的性质.【分析】由条件,根据垂直平分线的性质得到AD=BD,进展等量代换后可得答案.【解答】解:∵ DE 为 AB 边的垂直平分线∴DA=DB∵△ ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填 7.【点评】此题主要考察线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进展线段的等量代换是正确解答此题的关键.14. = +是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用 R1,R2表示 R,那么R=.【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R〔 R2+R1〕,R=,故答案为.【点评】此题考察了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,那么必须先通分,把异分母分式化为同分母分式,然后再相加减.【考点】线段垂直平分线的性质.【分析】由条件,根据垂直平分线的性质得到AD=BD,进展等量代换后可得答案.【解答】解:∵ DE 为 AB 边的垂直平分线∴DA=DB∵△ ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填 7.【点评】此题主要考察线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进展线段的等量代换是正确解答此题的关键.14. = +是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用 R1,R2表示 R,那么R=.【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R〔 R2+R1〕,R=,故答案为.【点评】此题考察了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,那么必须先通分,把异分母分式化为同分母分式,然后再相加减.【考点】线段垂直平分线的性质.【分析】由条件,根据垂直平分线的性质得到AD=BD,进展等量代换后可得答案.【解答】解:∵ DE 为 AB 边的垂直平分线∴DA=DB∵△ ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填 7.【点评】此题主要考察线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进展线段的等量代换是正确解答此题的关键.14. = +是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用 R1,R2表示 R,那么R=.【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R〔 R2+R1〕,R=,故答案为.【点评】此题考察了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,那么必须先通分,把异分母分式化为同分母分式,然后再相加减....【考点】线段垂直平分线的性质.【分析】由条件,根据垂直平分线的性质得到AD=BD,进展等量代换后可得答案.【解答】解:∵ DE 为 AB 边的垂直平分线∴DA=DB∵△ ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填 7.【点评】此题主要考察线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进展线段的等量代换是正确解答此题的关键.14. = +是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用 R1,R2表示 R,那么R=.【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R〔 R2+R1〕,R=,故答案为.【点评】此题考察了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,那么必须先通分,把异分母分式化为同分母分式,然后再相加减.13...。
初中数学山东省济宁市曲阜市八年级上期末数学考试卷.docx
xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题 填空题 简答题 xx 题 xx 题 xx 题 总分 得分一、xx 题 (每空xx 分,共xx 分)试题1:将下列长度的三根木棒首尾顺次连接,能组成三角形的是( )A .1,2,4B .8,6,4C .12,6,5D .3,3,6试题2:下列计算结果为a 6的是( )A .a 2+a 3B .a 2•a 3C .(a 3)2 D .a 15÷a 3试题3:如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D ,E 分别是边AB 、AC 上,将△ABC 沿着DE 重叠压平,A 与A ′重合,若∠A=70°,则∠1+∠2=( )A .140°B .130°C .110°D .70°试题4:评卷人得分若分式的值为0,则x的值为()A.0 B.1C.﹣1 D.±1试题5:第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A. B.C. D.试题6:如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD试题7:石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6 B.10×10﹣7 C.0.1×10﹣5 D.1×106试题8:如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论不一定成立的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠B=∠C D.∠AED=2∠ECD试题9:某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为xkm/h,那么可列方程为()A.﹣=1 B.﹣=1C. D.试题10:如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③ B.①②④ C.①③④ D.①②③④试题11:当x≠时,分式有意义.试题12:在平面直角坐标系中点P(﹣2,3)关于x轴的对称点是.试题13:如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D= °.试题14:如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C= .试题15:一列数a1,a2,a3…满足条件,:a1=,a n=(n≥2,且n为整数),则a2018= .试题16:(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)试题17:(x+y)2﹣x(2y﹣x)试题18:解方程: +=.试题19:如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.试题20:先化简,再求值:(﹣)÷,其中a=﹣1.试题21:如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.试题22:星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.试题23:阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当m≠n时,m2+n≠m+n2.可是我见到有这样一个神奇的等式:()2+=+()2(其中a,b为任意实数,且b≠0).你相信它成立吗?”小雨:“我可以先给a,b取几组特殊值验证一下看看.”完成下列任务:(1)请选择两组你喜欢的、合适的a,b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);①当a= ,b= 时,等式(□成立;□不成立);②当a= ,b= 时,等式(□成立;□不成立).(2)对于任意实数a,b(b≠0),通过计算说明()2+=+()2是否成立.试题24:在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1)(1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察,实验提出猜想:在点D运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可)试题1答案:B.【解答】解:A、1+2=3<4,不能组成三角形,故此选项错误;B、6+4>8,能组成三角形,故此选项正确;C、6+5<12,不能组成三角形,故此选项错误;D、3+3=6,不能组成三角形,故此选项错误;试题2答案:C解:A、a2+a3,无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、(a3)2=a6,故此选项正确;D、a15÷a3=a12,故此选项错误;试题3答案:A解:∵四边形ADA′E的内角和为(4﹣2)•180°=360°,而由折叠可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,∴∠AED+∠A′ED+∠ADE+∠A′DE=360°﹣∠A﹣∠A′=360°﹣2×70°=220°,∴∠1+∠2=180°×2﹣(∠AED+∠A′ED+∠ADE+∠A′DE)=140°.试题4答案:C解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.试题5答案:D解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;试题6答案:A解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;试题7答案:A解:0.000 001=1×10﹣6,试题8答案:D解:∵∠ADB是△ACD的外角,∴∠ADB=∠ACB+∠CAD,选项A正确;∵AD=AE,∴∠ADE=∠AED,选项B正确;∵AB=AC,∴∠B=∠C,选项C正确;∵ED≠EC,∴∠AED=2∠ECD不一定成立,选项D错误;故选:D.试题9答案:A解:设慢车的速度为xkm/h,慢车所用时间为,快车所用时间为,可列方程:﹣=1.试题10答案:C解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.试题11答案:﹣1 解:根据题意得,x+1≠0,解得x≠﹣1.故答案为:﹣1.试题12答案:(﹣2,﹣3).【解答】解:∵关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数,∴点P(﹣2,3)关于x轴的对称点坐标是(﹣2,﹣3),故答案为:(﹣2,﹣3).试题13答案:425 °.解:∵∠1=65°,∴∠AED=115°,∴∠A+∠B+∠C+∠D=540°﹣∠AED=425°,试题14答案:35°.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,试题15答案:2 .【解答】解:a1=,a2==2,a3==﹣1,a4=…可以发现:数列以,2,﹣1循环出现,2018÷3=672…2,所以a2018=2.试题16答案:(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)=x2+2x+1+x2﹣2x﹣x2+1=x2+2;试题17答案:(x+y)2﹣x(2y﹣x)=x2+2xy+y2﹣2xy+x2=2x2+y2.试题18答案:解:去分母得:2x+2+x﹣1=7,移项合并得:3x=6,解得:x=2,经检验x=2是分式方程的解.试题19答案:证明:∵∠1=∠2,∴∠CAB=∠EAD在△CAB和△EAD中,∴△CAB≌△EAD(SAS)∴BC=DE试题20答案:解:原式=[﹣]÷=[﹣]÷=•=,当a=﹣1时,原式==﹣1.试题21答案:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.试题22答案:解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.试题23答案:解:(1)例如:①当a=2,b=3时,等式()2+=()+()2成立;②当a=3,b=5时,等式()2+=+()2成立.(2)解:∵()2+==,+()2=+=.所以等式()2+=+()2成立.试题24答案:解:(1)如图1,∵DE=DA,∴∠E=∠DAC,∵△ABC是等边三角形,∴∠BAC=∠ACD=60°,即∠BAD+∠DAC=∠E+∠EDC=60°,∴∠BAD=∠EDC;(2)①补全图形如图2;②证法1:由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC+∠ADB=120°,∴∠ADM=180°﹣120°=60°,∴△ADN是等边三角形,∴AD=AM;证法2:连接CM,由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC+∠ADB=120°,∴∠ADM=180°﹣120°=60°,∴△ADM中,∠DAM=(180°﹣60°)÷2=60°,又∵∠BAC=60°,∴∠BAD=∠CAM,由轴对称可得,∠DCE=∠DCM=120°,又∵∠ACB=60°,∴∠ACM=120°﹣60°=60°,∴∠B=∠ACM,在△ABD和△ACM中,,∴△ABD≌△ACM(ASA),∴AD=AM.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年山东省济宁市曲阜市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得地点地坐标是()A.(1,2) B.(3,0) C.(3,4) D.(5,2)2.(3分)12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形地是()A.B.C. D.3.(3分)要使分式有意义,则x地取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣24.(3分)石墨烯是现在世界上最薄地纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确地是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣115.(3分)如图,在△ABC中,∠B、∠C地平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120° D.121°6.(3分)下列计算正确地是()A.a﹣1=﹣a B.a•a2=a2C.a6÷a2=a3D.(a3)2=a67.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF8.(3分)把代数式ax2﹣4ax+4a分解因式,下列结果中正确地是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)9.(3分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB地延长线于点E.若∠E=35°,则∠BAC地度数为()A.40°B.45°C.60°D.70°10.(3分)观察下列各式及其展开式:(a﹣b)2=a2﹣2ab+b2(a﹣b)3=a3﹣3a2b+3ab2﹣b3(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5…请你猜想(a﹣b)10地展开式第三项地系数是()A.﹣36 B.45 C.﹣55 D.66二、填空题(共5小题,每小题3分,满分15分)11.(3分)计算:3a3•a2﹣2a7÷a2=.12.(3分)如果一个正多边形地内角和是900°,则这个正多边形是正边形.13.(3分)如图,若△ACD地周长为7cm,DE为AB边地垂直平分线,则AC+BC= cm.14.(3分)=+是物理学中地一个公式,其中各个字母都不为零且R1+R2≠0.用R1,R2表示R,则R=.15.(3分)如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD,则∠BDE=度.三、解答题(共7小题,满分55分)16.(6分)化简:(+)÷.17.(7分)如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B 两点地距离相等.(1)用直尺和圆规,作出点D地位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD地度数.18.(7分)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.(8分)阅读:将一个多项式分组后,可提公因式或运用公式继续分解地方法是分组分解法.例如:①am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)②x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式(1)mx﹣2ny﹣nx+2my;(2)4x2﹣4x﹣y2+1.20.(8分)如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE地中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.21.(9分)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产地零件个数和规定地天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产地同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件地个数比20个工人原计划每天生产地零件总数还多20%.按此测算,恰好提前两天完成24000个零件地生产任务,求原计划安排地工人人数.22.(10分)在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形地解决思路,如:在图1中,若C是∠MON地平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,参考上面地方法,解答下列问题:如图2,在非等边△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA地平分线,且AD,CE交于点F,求证:AC=AE+CD.2015-2016学年山东省济宁市曲阜市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得地点地坐标是()A.(1,2) B.(3,0) C.(3,4) D.(5,2)【解答】解:将点P(3,2)向右平移2个单位,所得地点地坐标是(3+2,2),即(5,2).故选D.2.(3分)12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形地是()A.B.C. D.【解答】解:A、B、D中地图案是轴对称图形,C中地图案不是轴对称图形,故选:C.3.(3分)要使分式有意义,则x地取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,∴x≠﹣2,即x地取值应满足:x≠﹣2.故选:D.4.(3分)石墨烯是现在世界上最薄地纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确地是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣11【解答】解:0.00000000034=3.4×10﹣10,故选:C.5.(3分)如图,在△ABC中,∠B、∠C地平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120° D.121°【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C地平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.6.(3分)下列计算正确地是()A.a﹣1=﹣a B.a•a2=a2C.a6÷a2=a3D.(a3)2=a6【解答】解:A、负整数指数幂与正整数指数幂互为倒数,故A错误;B、同底数幂地乘法底数不变指数相加,故B错误;C、同底数幂地除法底数不变指数相减,故C错误;D、幂地乘方底数不变指数相乘,故D正确;故选:D.7.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.8.(3分)把代数式ax2﹣4ax+4a分解因式,下列结果中正确地是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.9.(3分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB地延长线于点E.若∠E=35°,则∠BAC地度数为()A.40°B.45°C.60°D.70°【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.10.(3分)观察下列各式及其展开式:(a﹣b)2=a2﹣2ab+b2(a﹣b)3=a3﹣3a2b+3ab2﹣b3(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5…请你猜想(a﹣b)10地展开式第三项地系数是()A.﹣36 B.45 C.﹣55 D.66【解答】解:根据题意得:第五个式子系数为1,﹣6,15,﹣20,15,﹣6,1,第六个式子系数为1,﹣7,21,﹣35,35,﹣21,7,﹣1,第七个式子系数为1,﹣8,28,﹣56,70,﹣56,28,﹣8,1,第八个式子系数为1,﹣9,36,﹣84,126,﹣126,84,﹣36,9,﹣1,第九个式子系数为1,﹣10,45,﹣120,210,﹣252,210,﹣120,45,﹣10,1,则(a﹣b)10地展开式第三项地系数是45,故选B.二、填空题(共5小题,每小题3分,满分15分)11.(3分)计算:3a3•a2﹣2a7÷a2=a5.【解答】解:3a3•a2﹣2a7÷a2=3a5﹣2a5=a5故答案为:a5.12.(3分)如果一个正多边形地内角和是900°,则这个正多边形是正七边形.【解答】解:设这个正多边形地边数是n,则(n﹣2)•180°=900°,解得:n=7.则这个正多边形是正七边形.13.(3分)如图,若△ACD地周长为7cm,DE为AB边地垂直平分线,则AC+BC= 7cm.【解答】解:∵DE为AB边地垂直平分线∴DA=DB∵△ACD地周长为7cm∴AD+AC+CD=AC+BC=7.故填7.14.(3分)=+是物理学中地一个公式,其中各个字母都不为零且R1+R2≠0.用R1,R2表示R,则R=.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R(R2+R1),R=,故答案为.15.(3分)如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD,则∠BDE=90度.【解答】证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠BDA=∠E=45°,∴∠BDE=∠BDA+∠ADE=90°.三、解答题(共7小题,满分55分)16.(6分)化简:(+)÷.【解答】解:原式=•=•=.17.(7分)如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B 两点地距离相等.(1)用直尺和圆规,作出点D地位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD地度数.【解答】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°﹣37°=16°.18.(7分)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.【解答】证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN,∵AD平分∠BAC,∴∠MAD=∠NAD,在△AMD与△AND中,,∴△AMD≌△AND(SAS),∴DM=DN.19.(8分)阅读:将一个多项式分组后,可提公因式或运用公式继续分解地方法是分组分解法.例如:①am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)②x2﹣y2﹣2y﹣1=(x+y+1)(x﹣y﹣1)试用上述方法分解因式(1)mx﹣2ny﹣nx+2my;(2)4x2﹣4x﹣y2+1.【解答】解:(1)mx﹣2ny﹣nx+2my=(mx﹣nx)﹣(2ny﹣2my)=x(m﹣n)﹣2y(m﹣n)=(m﹣n)(x﹣2y);(2)4x2﹣4x﹣y2+1=(4x2﹣4x+1)﹣y2=(2x﹣1)2﹣y2=(2x﹣1+y)(2x﹣1﹣y).20.(8分)如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE地中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【解答】(1)证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴CF=MF,∴∠FMC=∠FCM;(2)AD⊥MC,理由:由(1)知,∠MFC=90°,FD=FA=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.21.(9分)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产地零件个数和规定地天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产地同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件地个数比20个工人原计划每天生产地零件总数还多20%.按此测算,恰好提前两天完成24000个零件地生产任务,求原计划安排地工人人数.【解答】解:(1)设原计划每天生产地零件x个,依题意有=,解得x=2400,经检验,x=2400是原方程地根,且符合题意.∴规定地天数为24000÷2400=10(天).答:原计划每天生产地零件2400个,规定地天数是10天;(2)设原计划安排地工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,22.(10分)在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形地解决思路,如:在图1中,若C是∠MON地平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,参考上面地方法,解答下列问题:如图2,在非等边△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA地平分线,且AD,CE交于点F,求证:AC=AE+CD.【解答】证明:如图,在AC上截取AG=AE,连接FG.∵AD是∠BAC地平分线,CE是∠BCA地平分线,∴∠1=∠2,3=∠4在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,∵∠B=60°∴∠BAC+∠ACB=120°,∴∠2+∠3=(∠BAC+∠ACB)=60°,∵∠AFE=∠2+∠3,∴∠AFE=∠CFD=∠AFG=60,∴∠CFG=180°﹣∠CFD﹣∠AFG=60°,∴∠CFD=∠CFG,在△CFG和△CFD中,∴△CFG≌△CFD(ASA),∴CG=CD,∴AC=AG+CG=AE+CD.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。