三角函数导数及不定积分公式
不定积分习题答案
不定积分习题答案不定积分习题答案在学习数学的过程中,不定积分是一个重要的概念。
它是求函数的原函数的逆运算,也被称为反导数。
不定积分习题是我们在学习不定积分的过程中经常遇到的问题,解答这些习题可以帮助我们更好地理解不定积分的概念和运算规则。
一、基本不定积分基本不定积分是指可以通过运用基本积分公式直接求解的不定积分。
这些公式是我们在学习不定积分时需要掌握的基础知识。
以下是一些常见的基本不定积分公式:1. 常数函数的不定积分公式:∫kdx = kx + C,其中k为常数,C为常数。
2. 幂函数的不定积分公式:∫x^ndx = (1/(n+1)) * x^(n+1) + C,其中n不等于-1,C为常数。
3. 指数函数的不定积分公式:∫e^xdx = e^x + C,其中e为自然对数的底,C为常数。
4. 三角函数的不定积分公式:∫sinxdx = -cosx + C,∫cosxdx = sinx + C,其中C为常数。
二、常见的不定积分习题1. 求解∫(2x^3 - 5x^2 + 3x - 1)dx。
解答:根据基本不定积分公式,我们可以将这个不定积分分解为每一项的不定积分求解,即:∫(2x^3 - 5x^2 + 3x - 1)dx = ∫2x^3dx - ∫5x^2dx + ∫3xdx - ∫1dx根据幂函数的不定积分公式,我们可以得到:= (1/4)x^4 - (5/3)x^3 + (3/2)x - x + C其中C为常数。
2. 求解∫(3e^x + 2sinx)dx。
解答:根据基本不定积分公式,我们可以得到:∫(3e^x + 2sinx)dx = 3∫e^xdx + 2∫sinxdx根据指数函数和三角函数的不定积分公式,我们可以得到:= 3e^x - 2cosx + C其中C为常数。
三、不定积分的性质不定积分具有一些特定的性质,这些性质在解答不定积分习题时可以发挥重要的作用。
1. 线性性质:对于任意的实数a和b,以及任意的可积函数f(x)和g(x),有∫(af(x) + bg(x))dx = a∫f(x)dx + b∫g(x)dx。
导数微分不定积分公式
一、导数的概念及其计算1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=xx f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim→∆x x y∆∆=0lim →∆x xx f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率x y ∆∆=xx f x x f ∆-∆+)()(00; (3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.常见函数的导出公式.(1)0)(='C (C 为常数) (2)1)(-⋅='n nxn x(3)x x cos )(sin =' (4)x x sin )(cos -=' 4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。
不定积分公式大全 含求积分通用方法及例题
不定积分小结一、不定积分基本公式(1)∫x a dx=x a+1a+1+C(a≠−1) (2)∫1xdx=ln|x|+C(3)∫a x dx=a xln a+C(4)∫sin x dx=−cos x+C(5)∫cos x dx=sin x+C(6)∫tan x dx=−ln|cos x|+C (7)∫cot x dx=ln|sin x|+C(8)∫sec x dx=ln|sec x+tan x|+C (9)∫csc x dx=ln|csc x−cot x|+C(10)∫sec2x dx=tan x+C (11)∫csc2x dx=−cot x+C(12)∫dx1+x2=arctan x+C(13)∫dxx2+a2=1aarctan xa+C(14)∫dxx2−a2=12aln|a−xa+x|+C(15)∫dxa2−x2=12aln|a+xa−x|+C(16)∫√1−x2=arcsin x+C(17)√a2−x2=arcsin xa+C(18)√x2±a2=ln|x+√x2±a2|+C(19)∫√a2−x2dx=x2√a2−x2+a22arcsinxa+C(20)∫√x2±a2dx=x2√x2±a2±a22ln|x+√x2±a2|+C二、两个重要的递推公式(由分部积分法可得)(1)D n=∫sin n x dx(详情请查阅教材166页)则D n=−cos x sin n−1xn+n−1nD n−2(求三角函数积分)易得D n:n为奇数时,可递推至D1=∫sin x dx=−cos x+C;n为偶数时,可递推至D2=∫sin2x dx=x2−sin2x4+C;(2)I n=∫dx(x2+a2)n(详情请查阅教材173页)则I n+1=12na2x(x2+a2)n+2n−12na2I n易得I n可递推至I1=∫dxx2+a2=1aarctan xa+C迅捷P DF编辑器(这是有理函数分解后一种形式的积分的求法,大家可以回顾课本恢复记忆)三、普遍方法(一)换元积分法:第一类换元积分法(凑微分法)这类方法需要敏锐的观察力,即观察出某个函数的导数,这就要求我们熟悉常见函数的导数。
arctanxdx的导数
arctanxdx的导数arctanx dx是一个特殊的不定积分,常用于解决微积分中关于角度的求解问题。
它也是求绝对值及三角函数积分中最重要的积分形式之一。
arctanx的不定积分是xarctanx - (1/2)ln(1 + x^2) + C,其中C是积分常数。
arctanx作为函数,有其特定的定义域和值域。
其定义域为全体实数R,值域为(-π/2, π/2)。
与tanx不同,arctanx不是周期函数。
在求解arctanx dx的积分过程中,需要运用一些基本的积分技巧和公式,如凑微分、换元等。
这些技巧在微积分中有广泛的应用,也是解决各类积分问题的基本工具。
总的来说,arctanx dx是一个在微积分和三角函数中有着重要应用的积分形式,掌握其求解方法和相关性质对于深入理解和应用微积分具有重要意义。
要求arctan(x) dx的导数,首先需要明确一点:arctan(x) dx本身表示的是arctan(x)关于x的不定积分,而不是一个函数。
因此,它本身并没有一个直接的“导数”。
不过,我们可以求arctan(x)的导数,因为arctan(x)是一个函数。
arctan(x)的导数是1/(1 + x^2)。
这个导数是通过反函数的导数规则和链式法则得出的。
如果你想要知道arctan(x) dx积分后得到的函数的导数,那么我们可以先对arctan(x)进行不定积分,然后再求那个积分结果的导数。
不定积分的结果是:∫arctan(x) dx = x * arctan(x) - 1/2 * ln(1 + x^2) + C其中C是积分常数。
然后,对这个结果求导,我们会得到:[d/dx] [x * arctan(x) - 1/2 * ln(1 + x^2) + C]= arctan(x) + x * 1/(1 + x^2) - 1/2 * (2x / (1 + x^2))= arctan(x) + x/(1 + x^2) - x/(1 + x^2)= arctan(x)注意,在求导过程中,积分常数C的导数为0,因为它是一个常数。
不定积分常用公式大全
不定积分常用公式大全有很多的同学是非常的想知道,不定积分常用公式有哪些,小编整理了相关信息,希望会对大家有所帮助!不定积分常用公式有哪些1)∫0dx=c 不定积分的定义2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c4)∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c13)∫secxdx=ln|secx+tanx|+c 基本积分公式14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c16) ∫sec^2 x dx=tanx+c;17) ∫shx dx=chx+c;18) ∫chx dx=shx+c;19) ∫thx dx=ln(chx)+c;不定积分解题技巧个人经验首先,要知道一下,不定积分其实就是求导的逆运算,就像下面的公式;只不过在后面加上常数C,因为加上C与不加C的导数结果一样,毕竟,常数的导数为0嘛。
下图是书上的公式以验证词步骤。
其次,我们要谈论对第一类换元法的理解,所谓的第一类换元其实就是一种拼凑利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。
(用换元法说,就是把f(x)换为t,再换回来)分布积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,我认为比较好的记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
高数各知识点总结大一公式
高数各知识点总结大一公式在大一学习高等数学时,我们会接触到许多重要的知识点和公式。
这些知识点和公式在解决数学问题时起到了重要的作用。
下面将对这些知识点和公式进行总结,以便帮助大家更好地理解和应用它们。
一、导数与微分导数是研究曲线上一点的变化率的概念,它在物理、经济学等领域有着广泛的应用。
以下是一些常见的导数和微分公式:1. 基本导数公式:常数、幂函数、指数函数、对数函数、三角函数等的导数公式。
2. 幂函数求导:幂函数y=x^n (n≠0) 的导数公式为y'=nx^(n-1)。
3. 指数函数和对数函数求导:指数函数 y=a^x 的导数公式为y'=a^x * ln(a),对数函数 y=log_a(x) 的导数公式为 y' = 1 / (x* ln(a))。
4. 三角函数求导:正弦函数 y=sin(x) 的导数公式为 y'=cos(x),余弦函数 y=cos(x) 的导数公式为 y'=-sin(x),正切函数 y=tan(x) 的导数公式为 y'=sec^2(x)。
二、积分与不定积分积分是导数的逆运算,它在计算面积、求曲线长度、求物体的质量、求函数的平均值等方面发挥着重要作用。
下面是一些常见的积分和不定积分公式:1. 基本积分公式:幂函数、指数函数、对数函数、三角函数等的积分公式。
2. 幂函数积分:幂函数y=x^n (n≠-1) 的不定积分公式为∫x^n dx = (x^(n+1))/(n+1) + C。
3. 指数函数和对数函数积分:指数函数 y=a^x 的不定积分公式为∫a^x dx = (a^x) / ln(a) + C,对数函数 y=log_a(x) 的不定积分公式为∫1/(x * ln(a)) dx = log_a|x| + C。
4. 三角函数积分:正弦函数 y=sin(x) 的不定积分公式为∫sin(x) dx = -cos(x) + C,余弦函数 y=cos(x) 的不定积分公式为∫cos(x) dx = sin(x) + C,正切函数 y=tan(x) 的不定积分公式为∫tan(x) dx = -ln|cos(x)| + C。
三角函数的换算公式
三角函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(A±B) = sinAcos±BcosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±cotA)3、倍角公式sin2A=2s inA•cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))5、和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)6、积化和差sinαsinβ = -1/2*[cos(α-β)-cos(α+β)]cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]7、万能公式2tan 12tan 2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
三角函数的积分与曲线下面积计算
三角函数的积分与曲线下面积计算在微积分中,我们经常需要计算三角函数的积分以及曲线下面的面积。
三角函数在数学和物理学中具有广泛的应用,了解如何进行积分和面积计算对于解决问题和应用这些概念非常重要。
一、三角函数的积分1. 正弦函数的积分在计算正弦函数的积分时,我们常常使用不定积分的方法。
根据积分的定义,正弦函数的积分可以表示为:∫sin(x)dx = -cos(x) + C其中C为常数,表示积分的任意常数。
这个结果可以通过对反函数的导数进行验证:d/dx(-cos(x) + C) = sin(x)2. 余弦函数的积分同样地,我们可以使用不定积分的方法来计算余弦函数的积分。
根据积分的定义,余弦函数的积分可以表示为:∫cos(x)dx = sin(x) + C这个结果也可以通过对反函数的导数进行验证:d/dx(sin(x) + C) = cos(x)3. 正切函数的积分正切函数的积分相对复杂一些,我们可以通过变换来求解。
具体来说,我们可以使用以下公式来计算正切函数的积分:∫tan(x)dx = -ln|cos(x)| + C其中ln表示自然对数函数,C为常数。
二、曲线下面积的计算曲线下面的面积计算是微积分中另一个重要的应用。
通过计算曲线函数与坐标轴之间的面积,我们可以得到很多有用的信息。
1. 正弦函数下的面积计算在计算正弦函数下的面积时,我们通常使用定积分的方法。
以周期为2π的正弦函数为例,我们可以计算在给定区间上的面积。
例如,要计算正弦函数在区间[0, π]上的面积,我们可以使用以下公式:Area = ∫[0,π] sin(x)dx将正弦函数的积分公式代入,我们可以得到:Area = [-cos(x)]︱[0,π] = 2因此,正弦函数在区间[0, π]上的面积为2。
2. 余弦函数下的面积计算与正弦函数类似,我们可以使用定积分的方法计算余弦函数下的面积。
以周期为2π的余弦函数为例,计算在给定区间上的面积也是如此。
不定积分中五个公式的推导
不定积分中五个公式的推导1. $\int \sec^2(x) dx = \tan(x) + C$我们首先从$\textrm{sec}^2(x)$开始。
需要注意的是,$\textrm{sec}^2(x)$是$\frac{d}{dx} \tan(x)$的导数。
因此,我们可以将积分项看作是$\frac{d}{dx} \tan(x)$的原函数,即可得出积分结果为$\tan(x) + C$。
2. $\int \csc^2(x) dx = -\cot(x) + C$同样地,$\textrm{csc}^2(x)$是$\frac{d}{dx} \cot(x)$的导数。
因此,我们可以将积分项看作是$\frac{d}{dx} \cot(x)$的原函数,即可得出积分结果为$-\cot(x) + C$。
3. $\int \sec(x) \tan(x) dx = \sec(x) + C$对于积分项$\sec(x) \tan(x)$,我们考虑将其写成$\frac{d}{dx}\sec(x)$的形式。
我们知道$\frac{d}{dx} \sec(x) = \sec(x) \tan(x)$,因此积分结果为$\sec(x) + C$。
4. $\int \csc(x) \cot(x) dx = -\csc(x) + C$我们同样将积分项$\csc(x) \cot(x)$写成$\frac{d}{dx}\csc(x)$的形式。
我们知道$\frac{d}{dx} \csc(x) = -\csc(x)\cot(x)$,因此积分结果为$-\csc(x) + C$。
5. $\int \sin^2(x) dx = \frac{x}{2} - \frac{\sin(2x)}{4} +C$对于积分项$\sin^2(x)$,我们需要进行一些代数变换。
我们可以利用三角恒等式$\sin^2(x) = \frac{1 - \cos(2x)}{2}$将其转化为$\cos(2x)$的形式。
高中三年级不定积分的计算
高中三年级不定积分的计算不定积分是高等数学中的重要概念,它在数学和科学的各个领域中都有广泛的应用。
在高中数学中,学生将学习如何计算不定积分,掌握相关的技巧和方法。
本文将介绍高中三年级不定积分的计算方法。
一、不定积分的定义不定积分是反导数的概念。
设函数f(x)在区间[a, b]上连续,且F(x)是其一个原函数。
则函数F(x)在区间[a, b]上的任意一点x处的导数就是f(x)。
不定积分使用∫f(x)dx表示,其中∫为积分号,f(x)为被积函数,dx表示变量。
二、基本不定积分的计算1. 常数函数的不定积分当f(x) = c,c为常数时,∫f(x)dx = cx + C,其中C为常数。
2. 幂函数的不定积分当f(x) = x^n,其中n ≠ -1时,∫x^n dx = (1 / (n + 1)) x^(n+1) + C。
3. 三角函数的不定积分常见的不定积分公式有:∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C∫sec^2(x) dx = tan(x) + C∫csc^2(x) dx = -cot(x) + C4. 指数函数和对数函数的不定积分常见的不定积分公式有:∫e^x dx = e^x + C∫1 / x dx = ln|x| + C∫a^x dx = (a^x) / ln(a) + C5. 一些特殊函数的不定积分常见的不定积分公式有:∫(e^x + e^(-x)) dx = sinh(x) + C∫(e^x - e^(-x)) dx = cosh(x) + C三、变量代换法变量代换法是计算不定积分的常用方法。
通过引入新的变量,将原积分转化为简单的形式,再进行计算。
例如,对于∫x^2 sqrt(1 + x^3) dx 这个积分,我们可以令u = 1 + x^3,得到du=3x^2 dx,将原积分转化为∫sqrt(u) du,进而计算得到积分的结果。
不定积分三角函数代换公式
不定积分三角函数代换公式在学习高等数学的过程中,我们经常会遇到需要求解不定积分的问题。
不定积分是求解函数的原函数,也就是反导数的过程。
在求解不定积分的过程中,我们需要掌握各种积分技巧和公式,其中三角函数代换公式是不可或缺的一种。
三角函数代换公式是指将不定积分中的三角函数用其他三角函数代换的公式。
这种代换可以将原本复杂的积分式子转化为简单的形式,从而更容易求解。
下面我们来详细介绍三角函数代换公式的使用方法。
1. sin x 代换当不定积分中含有 $\sqrt{a^2-x^2}$ 时,我们可以使用 sin x 代换。
具体步骤如下:令$x=a\sin t$,则$\sqrt{a^2-x^2}=a\cos t$,$dx=a\cos t dt$。
将 $x$ 和 $dx$ 用 $t$ 和 $dt$ 表示后,将原式中的 $\sqrt{a^2-x^2}$ 用 $a\cos t$ 代换,得到:$$\int f(x)dx=\int f(a\sin t)a\cos t dt$$2. cos x 代换当不定积分中含有 $\sqrt{a^2+x^2}$ 时,我们可以使用 cos x 代换。
具体步骤如下:令$x=a\tan t$,则$\sqrt{a^2+x^2}=a\sec t$,$dx=a\sec^2 t dt$。
将$x$ 和$dx$ 用$t$ 和$dt$ 表示后,将原式中的$\sqrt{a^2+x^2}$ 用 $a\sec t$ 代换,得到:$$\int f(x)dx=\int f(a\tan t)a\sec^2 t dt$$3. tan x 代换当不定积分中含有$\sqrt{x^2-a^2}$ 时,我们可以使用tan x 代换。
具体步骤如下:令$x=a\sec t$,则$\sqrt{x^2-a^2}=a\tan t$,$dx=a\sec t\tan t dt$。
将 $x$ 和 $dx$ 用 $t$ 和 $dt$ 表示后,将原式中的 $\sqrt{x^2-a^2}$ 用 $a\tan t$ 代换,得到:$$\int f(x)dx=\int f(a\sec t)a\sec t\tan t dt$$通过三角函数代换公式,我们可以将原本复杂的积分式子转化为简单的形式,从而更容易求解。
arctanxdarctanx的不定积分
一、概述arctanx是反正切函数,是求一角的正切值为x的角度的函数。
在解决数学问题中,arctanx的不定积分是一个常见的问题,本文将对arctanx的不定积分进行详细讨论。
二、arctanx的不定积分公式1.首先我们来看arctanx的导数公式:(1+x^2)'/(1+x^2)=1/(1+x^2)根据不定积分的逆运算原理,我们可以得到arctanx的不定积分公式:∫1/(1+x^2)dx=arctanx+C其中C为任意常数。
三、arctanx的不定积分求解方法1.利用换元法当我们求解∫1/(1+x^2)dx时,可以通过令x=tanθ进行换元。
即令x=tanθ,则dx=sec^2θdθ,代入原式得到:∫1/(1+x^2)dx=∫1/(1+tan^2θ)sec^2θdθ=∫1/(1+tan^2θ)dθ由三角恒等式1+tan^2θ=sec^2θ可知:∫1/(1+tan^2θ)dθ=∫1/sec^2θdθ=∫cos^2θdθ这样就将原式转换成了常见的三角函数积分,可以通过常用的方法进行求解。
2.利用分部积分法我们也可以通过分部积分法来求解arctanx的不定积分。
设u=arctanx, dv=dx,则du=1/(1+x^2)dx, v=x,根据分部积分法公式:∫udv=uv-∫vdu将u、dv代入公式得到:∫arctanxdx=x*arctanx-∫x/(1+x^2)dx右侧的积分∫x/(1+x^2)dx可以通过简单的换元法或者分项分式的方法进行求解,最终得到arctanx的不定积分。
3.其他方法除了换元法和分部积分法之外,还可以通过其他方法来求解arctanx的不定积分,比如使用复数形式表示,或者利用级数展开等方法进行求解。
四、arctanx的不定积分实例以下举例对arctanx的不定积分进行具体求解:1.求解∫arctanxdx通过使用分部积分法,可以得到:∫arctanxdx=x*arctanx-∫x/(1+x^2)dx这样就将原式转化为了∫x/(1+x^2)dx的求解,可以通过换元法进行计算。
高中数学导数与积分知识点归纳总结
高中数学导数与积分知识点归纳总结在高中数学中,导数和积分是两个重要的概念。
它们在计算和解决数学问题时起着关键作用。
以下是导数和积分的一些核心知识点的总结。
导数导数可以理解为函数在某一点的变化率。
它描述了函数在不同点的斜率或曲线的切线。
以下是导数的一些重要知识点:1. 导数的定义:函数f(x)在点x处的导数定义为f'(x) =lim(h→0) [(f(x+h) - f(x))/h]。
2. 导数的计算:使用导数的定义,我们可以通过求极限来计算导数。
另外,还有一些常见函数的导数公式,如幂函数、指数函数、对数函数和三角函数等。
3. 导数的性质:导数具有一些重要的性质,如线性性、乘法法则、除法法则和链式法则等。
这些性质可以简化导数计算的过程。
4. 高阶导数:除了一阶导数外,函数还可以有更高阶的导数,称为二阶导数、三阶导数等。
高阶导数描述了函数的曲率和曲线的变化情况。
积分积分可以理解为函数的累积总和。
它是导数的逆运算,可以用来计算曲线下面的面积或实现函数的反向操作。
以下是积分的一些重要知识点:1. 定积分:定积分是指对函数在给定区间上的积分。
定积分的计算可以使用黎曼和或牛顿-莱布尼茨公式等方法。
2. 不定积分:不定积分是指对函数求积分得到的含有任意常数的函数。
不定积分可以通过求导的逆运算来计算。
3. 积分的性质:积分具有一些重要的性质,如线性性、换元法、分部积分法等。
这些性质可以简化积分计算的过程。
4. 定积分的应用:定积分在几何学、物理学和经济学等领域有广泛的应用。
它可以用来计算曲线下的面积、质心、弧长以及求解各种实际问题。
以上是高中数学中导数和积分的一些核心知识点的归纳总结。
导数和积分在数学的不同领域中都具有重要的应用价值,例如计算、物理学、工程学等。
希望这份总结对您的学习和应用有所帮助。
导数微分不定积分公式
导数微分不定积分公式导数、微分和不定积分是微积分中的基本概念和工具。
它们是描述函数变化、近似变化以及计算曲线下面积的重要方法。
下面我将详细介绍导数、微分和不定积分的定义及其相关公式。
一、导数导数是描述函数变化率的概念。
对于函数y=f(x),在其中一点x处的导数表示的是函数在该点处的瞬时变化率,也就是函数曲线在该点处的切线斜率。
1.导数的定义函数在点x处的导数,记为f'(x)或dy/dx,定义为:f'(x) = lim┬(h→0)(f(x+h)-f(x))/h如果该极限存在,则称函数在x处可导,否则不可导。
2.基本导数公式(1)常数的导数:如果f(x)=C,其中C是常数,则f'(x)=0。
(2)幂函数的导数:如果f(x) = x^n(n为任意实数),则f'(x)= nx^(n-1)。
(3)指数函数的导数:如果f(x) = a^x(a>0,a≠1),则f'(x) = a^x * ln(a)。
(4)对数函数的导数:如果f(x) = ln(x)(x>0),则f'(x) = 1/x。
(5)三角函数的导数:如果f(x) = sin(x),则f'(x) = cos(x);如果f(x) = cos(x),则f'(x) = -sin(x)。
二、微分微分是导数的另一种形式。
微分表示函数的局部线性近似,并且可以用于计算函数的局部变化。
1.微分的定义函数y=f(x)在点x处的微分,记为dy,定义为:dy = f'(x) * dx其中,dx表示自变量x的一个增量。
2.微分的性质(1)微分的线性性:如果z = cf(x) + dg(x),其中c为常数,f(x)和g(x)是可导函数,则dz = c * df(x) + d * dg(x)。
(2)微分的逆运算:如果y=f(x),则du = f'(x) * dx 可以写成dy = f'(x) * dx,这是微分的基本公式。
(整理)三角函数转换公式.
(整理)三⾓函数转换公式.三⾓函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两⾓和差公式:sin(A±B) = sinAcos±BcosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±3、倍⾓公式sin2A=2s inA?cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半⾓公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))5、和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)6、积化和差sinαsinβ = -1/2*[cos(α-β)-cos(α+β)]cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]7、万能公式2t a n 12t a n 2t a n ,2t a n 12t a n 1c o s ,2t a n 12t a n 2s i n 2222α-α=αα+α-=αα+α=α2010年全国硕⼠研究⽣⼊学统⼀考试数学考试⼤纲--数学三考试科⽬:微积分.线性代数.概率论与数理统计考试形式和试卷结构⼀、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.⼆、答题⽅式答题⽅式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8⼩题,每题4分,共32分填空题6⼩题,每题4分,共24分解答题(包括证明题)9⼩题,共94分微积分⼀、函数、极限、连续考试内容函数的概念及表⽰法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建⽴数列极限与函数极限的定义及其性质函数的左极限和右极限⽆穷⼩量和⽆穷⼤量的概念及其关系⽆穷⼩量的性质及⽆穷⼩量的⽐较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表⽰法,会建⽴应⽤问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利⽤两个重要极限求极限的⽅法.7.理解⽆穷⼩的概念和基本性质.掌握⽆穷⼩量的⽐较⽅法.了解⽆穷⼤量的概念及其与⽆穷⼩量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最⼤值和最⼩值定理.介值定理),并会应⽤这些性质.⼆、⼀元函数微分学考试内容导数和微分的概念导数的⼏何意义和经济意义函数的可导性与连续性之间的关系平⾯曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法⾼阶导数⼀阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最⼤值与最⼩值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的⼏何意义与经济意义(含边际与弹性的概念),会求平⾯曲线的切线⽅程和法线⽅程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解⾼阶导数的概念,会求简单函数的⾼阶导数.4.了解微分的概念,导数与微分之间的关系以及⼀阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗⽇( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应⽤.6.会⽤洛必达法则求极限.7.掌握函数单调性的判别⽅法,了解函数极值的概念,掌握函数极值、最⼤值和最⼩值的求法及其应⽤.8.会⽤导数判断函数图形的凹凸性(注:在区间内,设函数具有⼆阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、⼀元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数⽜顿⼀莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(⼴义)积分定积分的应⽤考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握⽜顿⼀莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利⽤定积分计算平⾯图形的⾯积.旋转体的体积和函数的平均值,会利⽤定积分求解简单的经济应⽤问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念⼆元函数的⼏何意义⼆元函数的极限与连续的概念有界闭区域上⼆元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法⼆阶偏导数全微分多元函数的极值和条件极值.最⼤值和最⼩值⼆重积分的概念.基本性质和计算⽆界区域上简单的反常⼆重积分考试要求1.了解多元函数的概念,了解⼆元函数的⼏何意义.2.了解⼆元函数的极限与连续的概念,了解有界闭区域上⼆元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数⼀阶、⼆阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解⼆元函数极值存在的充分条件,会求⼆元函数的极值,会⽤拉格朗⽇乘数法求条件极值,会求简单多元函数的最⼤值和最⼩值,并会解决简单的应⽤问题.5.了解⼆重积分的概念与基本性质,掌握⼆重积分的计算⽅法(直⾓坐标.极坐标).了解⽆界区域上较简单的反常⼆重积分并会计算.五、⽆穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件⼏何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握⼏何级数及级数的收敛与发散的条件,掌握正项级数收敛性的⽐较判别法和⽐值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分⽅程与差分⽅程考试内容常微分⽅程的基本概念变量可分离的微分⽅程齐次微分⽅程⼀阶线性微分⽅程线性微分⽅程解的性质及解的结构定理⼆阶常系数齐次线性微分⽅程及简单的⾮齐次线性微分⽅程差分与差分⽅程的概念差分⽅程的通解与特解⼀阶常系数线性差分⽅程微分⽅程的简单应⽤考试要求1.了解微分⽅程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分⽅程.齐次微分⽅程和⼀阶线性微分⽅程的求解⽅法.3.会解⼆阶常系数齐次线性微分⽅程.4.了解线性微分⽅程解的性质及解的结构定理,会解⾃由项为多项式.指数函数.正弦函数.余弦函数的⼆阶常系数⾮齐次线性微分⽅程.5.了解差分与差分⽅程及其通解与特解等概念.6.了解⼀阶常系数线性差分⽅程的求解⽅法.7.会⽤微分⽅程求解简单的经济应⽤问题.线性代数⼀、⾏列式考试内容⾏列式的概念和基本性质⾏列式按⾏(列)展开定理考试要求1.了解⾏列式的概念,掌握⾏列式的性质.2.会应⽤⾏列式的性质和⾏列式按⾏(列)展开定理计算⾏列式.⼆、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法⽅阵的幂⽅阵乘积的⾏列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对⾓矩阵、三⾓矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解⽅阵的幂与⽅阵乘积的⾏列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会⽤伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握⽤初等变换求矩阵的逆矩阵和秩的⽅法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表⽰向量组的线性相关与线性⽆关向量组的极⼤线性⽆关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性⽆关向量组的正交规范化⽅法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表⽰、向量组线性相关、线性⽆关等概念,掌握向量组线性相关、线性⽆关的有关性质及判别法.3.理解向量组的极⼤线性⽆关组的概念,会求向量组的极⼤线性⽆关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其⾏(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性⽆关向量组正交规范化的施密特(Schmidt)⽅法.四、线性⽅程组考试内容线性⽅程组的克莱姆(Cramer)法则线性⽅程组有解和⽆解的判定齐次线性⽅程组的基础解系和通解⾮齐次线性⽅程组的解与相应的齐次线件⽅程组(导出组)的解之间的关系⾮齐次线性⽅程组的通解考试要求1.会⽤克莱姆法则解线性⽅程组.2.掌握⾮齐次线性⽅程组有解和⽆解的判定⽅法.3.理解齐次线性⽅程组的基础解系的概念,掌握齐次线性⽅程组的基础解系和通解的求法.4.理解⾮齐次线性⽅程组解的结构及通解的概念.5.掌握⽤初等⾏变换求解线性⽅程组的⽅法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对⾓化的充分必要条件及相似对⾓矩阵实对称矩阵的特征值和特征向量及相似对⾓矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的⽅法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对⾓化的充分必要条件,掌握将矩阵化为相似对⾓矩阵的⽅法.3.掌握实对称矩阵的特征值和特征向量的性质.六、⼆次型考试内容⼆次型及其矩阵表⽰合同变换与合同矩阵⼆次型的秩惯性定理⼆次型的标准形和规范形⽤正交变换和配⽅法化⼆次型为标准形⼆次型及其矩阵的正定性考试要求1.了解⼆次型的概念,会⽤矩阵形式表⽰⼆次型,了解合同变换与合同矩阵的概念.2.了解⼆次型的秩的概念,了解⼆次型的标准形、规范形等概念,了解惯性定理,会⽤正交变换和配⽅法化⼆次型为标准形.3.理解正定⼆次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计⼀、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率⼏何型概率条件概率概率的基本公式事件的独⽴性独⽴重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和⼏何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独⽴性的概念,掌握⽤事件独⽴性进⾏概率计算;理解独⽴重复试验的概念,掌握计算有关事件概率的⽅法.⼆、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、⼆项分布、⼏何分布、超⼏何分布、泊松(Poisson)分布及其应⽤.3.掌握泊松定理的结论和应⽤条件,会⽤泊松分布近似表⽰⼆项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应⽤,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数⼆维离散型随机变量的概率分布、边缘分布和条件分布⼆维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独⽴性和不相关性常见⼆维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解⼆维离散型随机变量的概率分布和⼆维连续型随机变量的概率密度、掌握⼆维随机变量的边缘分布和条件分布.3.理解随机变量的独⽴性和不相关性的概念,掌握随机变量相互独⽴的条件,理解随机变量的不相关性与独⽴性的关系.4.掌握⼆维均匀分布和⼆维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独⽴随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、⽅差、标准差及其性质随机变量函数的数学期望切⽐雪夫(Chebyshev)不等式矩、协⽅差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、⽅差、标准差、矩、协⽅差、相关系数)的概念,会运⽤数字特征的基本性质,并掌握常⽤分布的数字特征.2.会求随机变量函数的数学期望.3.了解切⽐雪夫不等式.五、⼤数定律和中⼼极限定理考试内容切⽐雪夫⼤数定律伯努利(Bernoulli)⼤数定律⾟钦(Khinchine)⼤数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切⽐雪夫⼤数定律、伯努利⼤数定律和⾟钦⼤数定律(独⽴同分布随机变量序列的⼤数定律).2.了解棣莫弗—拉普拉斯中⼼极限定理(⼆项分布以正态分布为极限分布)、列维—林德伯格中⼼极限定理(独⽴同分布随机变量序列的中⼼极限定理),并会⽤相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本⽅差和样本矩分布分布分布分位数正态总体的常⽤抽样分布考试要求.了解总体、简单随机样本、统计量、样本均值、样本⽅差及样本矩的概念,其中样本⽅差定义为2.了解产⽣变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本⽅差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最⼤似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(⼀阶矩、⼆阶矩)和最⼤似然估计法.。
不定积分公式总结
2
1
+ C
( 5 ) ∫cos x dx = sin x + C ( 7 ) ∫cot x dx = ln | sin x| + C ( 9 ) ∫csc x dx = ln | csc x - cot x| + C ( 11 ) ∫csc2 x dx = - cot x + C ( 13 ) ∫x 2 +a 2 = ( 15 ) ∫a 2 -x
5
xe
x 2
例
xe (x e x e x e 1
x x x x
(1 x)
dx
( x 1)
2
dx
x 2
1)e (x dx 1 dx 1 C
e
x
dx e
x
e x
2
x
e 1 e x (x
x
x 2
dx e d
x
1)
1)
(x e 1
x
1)
dx 1
dx 1
1 1 x
x
1
x
de
x
x
(三 )特殊函数积分法
1、有理函数的不定积分
2 2
+
1 2
∫
1 √5 + x- x dx
2
dx
= - √5 + x - x +
1 2
∫
√ 21 2 1 √ ( ) - (x - ) 2 2 2 1 2x - 1 2 √ = - 5 + x - x + arcsin( )+ C 2 21 √ 3 x 例 2: ∫ 4 dx x + x2 + 1 与例 1 类似,我们有: 1 1 3 ( ) 4x + 2x x x 4 2 ∫ 4 dx = ∫ dx 2 4 2 x + x + 1 x + x + 1 1 2 4 2 d (x + 1 d( x + x + 1) 1 2) = ∫ 4 ∫ 2 后面套公式就好啦 2 4 x + x2 + 1 4 1 3 √ (x 2 + ) + ( ) 2 2
三角函数转换公式
三角函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(A±B) = sinAcos±BcosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±cotA)3、倍角公式sin2A=2s inA•cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。