Agglomerates of amorphous carbon nanoparticles synthesized by a solution-phase method
以新型银胶为衬底的超低浓度R6G的拉曼光谱检测
文章编号:100425929(2007)0120011205以新型银胶为衬底的超低浓度R6G的拉曼光谱检测Ξ马枫茹,刘 琨,张 毅,潘 石3(大连理工大学物理系近场光学与纳米技术研究所,大连 116023)摘 要:利用柠檬酸钠还原硝酸银的原理,提出了一种微波加热制备银胶体粒子的新方法,得到了颗粒大小较均匀的灰色银胶体。
以提纯后的银胶为表面增强拉曼散射衬底,研究了超低浓度染料大分子罗丹明6G分子的表面增强拉曼散射,得到浓度分别为10-12mol/L、10-13mol/L和10-14mol/L的罗丹明6G的表面增强拉曼散射光谱,初步实现了罗丹明6G的单分子检测,证明该新型银胶衬底有非常强的表面增强拉曼活性。
同时根据表面增强拉曼散射“热点”的增强机理,分析了获得超低浓度R6G的表面增强拉曼光谱的原因。
关键词:表面增强拉曼散射;银胶;单分子;罗丹明6G中图法分类号:O657137 文献标识码:AA Novel Silver Colloid as Substrate for Detection ofSingle-molecular Level of R6GMA Feng2ru,L IU Kun,ZHAN G Y i,PAN Shi3(Instit ute of Near-f iel d O ptics and N anotechnology,Depart ment of Physics,Dalian U niversity of Technology,Chi na,116023)Abstract:A novel gray silver colloid was prepared by silver nitrate solution reduced with sodi2 um citrate consisting of spherical silver particles which in narrow size distribution.The detec2 tion of single molecular level of R6G was obtained with the use of surface-enhanced Raman scattering.Solution of different concentration(10-12mol/L、10-13mol/L和10-14mol/L)was observed.The theory of“hot spots”is analyzed to explain the possible reasons why the single molecule was found.K ey w ords:SERS;silver colloid;single molecule;R6G引言随着光谱技术的发展,在单分子水平上研究物质的结构已经成为了可能。
材料科学与关键工程专业外语字母排序版
actuators 传感器,驱动器actuators致动器Advanced ceramics 先进陶瓷材料AFM(Atomic Force Microscope)原子力显微镜Agglomerates (or aggregates) and aerogels 凝聚物和气凝胶Alumina氧化铝Amorphous 非晶旳Anion 阴离子anisotropic各向异性旳annealing退火anode 阳极axial projection轴投影BAWs bulk acoustic waves (声体波)BCC body-centered cubic体心立方Bioceramics 生物陶瓷biodegradable 生物所能分解旳Biodegradable systems 生物可降解系统biodegradable可生物降解旳bio-inspired medical prostheses仿生医学人工器官biological tagging生物标记biomedical applications 生物医学应用biomimetic 仿生旳biomolecular single-electron devices 生物分子单电子器件Biotechnologybivalent/divalent 二价Bulk material 体材料Capacitor 电容器Catalyst 催化剂Cathode 阴极Cation 阳离子Cement水泥; 接合剂ceramic based composites 陶瓷基复合材料Ceramic coating 陶瓷涂层Chemical Composition化学成分Chemical reagent化学试剂civil engineering土木工程Cold isostatic pressing(CIPing) 冷等静压成形compacting equipment压实设备compatibilizer增容剂complementary metal-oxide semiconductor CMOS (互补金属氧化物半导体)Composition and structure 构成构造Condensed Matter Physics 凝聚态物理Considerable complexity相称复杂Consumer appliance 家电Container industry 集装箱业coordination number 配位数corrosion resistance耐(腐)蚀性, 耐蚀力, 抗腐(蚀)性cost-efficient automated computer-controlled looms造价低廉旳自动化电脑控制旳织机Covalent Valence共价:Covalent 共价键cross-disciplinary, 跨学科旳Crystal structure 晶体构造crystalline 结晶旳Crystallographic orientation 晶向degradable 可以自然分解旳; 可减少旳; 可降级旳Dielectric constant 介电常数Differential Thermal Analysis,(DTA)差热分析domain 范畴,领域,畴Ductility 延展性elastic modulus 弹性模量Elastodynamics 弹性动力学electrical conductivity电导率Electronegativity 电负性Electronic ceramics 电子陶瓷Electrostatic 静电旳; 静电学旳Energy levels 能级environmentally friendly环境和谐,对环境无危害旳fatigue resistance 抗疲劳强度fatigue resistance耐疲劳性FCC face-centered cubic 面心立方Ferrite 铁素体ferroconcrete钢筋混凝土; 钢骨水泥Ferroelasticity 铁弹性ferroelectric 铁电fine ceramics 精细陶瓷Fluorescent 萤光旳fracture toughness 断裂韧性free electron gas自由电子气functional ceramics 功能陶瓷Functional materialGMR giant magnetoresistive effect 巨磁阻效应Gradient 梯度graphene n. 石墨烯Graphite石墨hardness硬度HCP hexagonal close-packed 六方密堆积Heat capacity 热容heat treatment furnace热解决炉Heat treatment热解决Heterogeneous structure多相构造; 多相组织; 不均匀组织heterogenous异质旳heterojunction异质结high modulus fibre高模量纤维High-temperature superconductors 高温超导体homogenous同质旳HRTEM高辨别透射电子显微镜high resolution transmission electronmicroscopyImportant progress 重大进展Incoherent or coherent interfaces非持续和持续界面Index of refraction 折射率。
水热炭吸附Cr(Ⅵ)热-动力学行为及水热裂解时间的影响
水热炭吸附Cr(Ⅵ)热-动力学行为及水热裂解时间的影响刘雨嫣;周景尧;马少强;陈家玮【摘要】以花生壳为原材料,通过水热炭化法在200℃下以不同的水热裂解时间(1h、5h、10 h)制备出水热炭,开展去除水中Cr(Ⅵ)的实验研究.通过水热炭样品红外光谱FTIR表征、元素含量分析、扫描电镜SEM表征等对比分析,表明水热炭化法可以制备出多孔的碳材料,且随着水热裂解时间的增加,水热炭的产率逐渐降低、芳香性逐渐增强、极性官能团逐渐减少,这些性质的改变会影响其吸附能力.通过批实验进行水热炭对水中Cr(Ⅵ)的吸附研究,结果表明准二级动力学模型适用于该吸附过程,热力学Freundlich模型可以更好地描述吸附等温线.由热力学参数计算可知,水热炭吸附Cr(Ⅵ)属于优惠吸附(容易进行)和自发性、物理吸附,且为吸热过程.实验结果表明随着花生壳水热裂解时间的增加,水热炭吸附Cr(Ⅵ)的能力逐渐增强.因此,水热炭可以作为经济型吸附剂应用于水污染修复,相关成果对于综合利用农业废弃物具有重要实践价值.%The agricultural wastes of peanut shells were used as carbonaceous material precursors,which were heated under the hydrothermal temperature of 200 ℃ and kept for the desired time duration of 1 h,5 h or 10 h to prepare the hydrochars for the removal of Cr(Ⅵ) from aqueous solution.According to FT-IR spectrum,elemental analysis and SEM characterization of hydrochar samples,the results showed that hydrothermal carbonization method is feasible for porous carbon-based hydrochars,and the aromaticity increases with hydrothermal time,while the yield and the polar functional groups decrease.These properties would affect the adsorption performance of hydrochars.The batch experiments showed that the adsorption kinetics of Cr(Ⅵ) onhydrochars followed the pseudo-second-order model and the Freundlich model well fitted the isothermal adsorption.According to thermodynamic study,such sorption behavior belongs to a preferential easy process,which is also a spontaneous,endothermic and physical adsorption.The adsorption capacity of Cr (Ⅵ) on hydrochars were enhanced with the hydrothermal time on biomass of peanut shells.Therefore,hydrochars could be applied as an economic adsorbent in water remediation.The present study could also provide an important practical value for the comprehensive utilization of agricultural wastes.【期刊名称】《现代地质》【年(卷),期】2017(031)005【总页数】7页(P1039-1045)【关键词】生物质;水热炭;水热裂解时间;吸附;Cr(Ⅵ)【作者】刘雨嫣;周景尧;马少强;陈家玮【作者单位】中国地质大学(北京)生物地质与环境地质国家重点实验室,北京100083;中国地质大学(北京)地球科学与资源学院,北京100083;中国地质大学(北京)生物地质与环境地质国家重点实验室,北京100083;中国地质大学(北京)地球科学与资源学院,北京100083;中国地质大学(北京)生物地质与环境地质国家重点实验室,北京100083;中国地质大学(北京)地球科学与资源学院,北京100083;中国地质大学(北京)生物地质与环境地质国家重点实验室,北京100083;中国地质大学(北京)地球科学与资源学院,北京100083【正文语种】中文【中图分类】P595;X142农林废弃物等生物质材料的综合利用一直是世界各国环境保护和生态可持续发展的重要方向,近年生物炭研究与应用成为热点领域,引发了全球广泛关注。
冷喷涂技术及其在增材制造中的应用专题会将在广州召开
gical study of hydrogenated amorphous carbon films with tailored microstructure and composition produced by bias-enhanced plasma chemical vapour deposition[J]. Diamond & Related Materials, 2010, 19: 1093-1102.GUO G W, TANG G Z, WANG Y J, et al. Structure and hardness of a-C:H films prepared by middle frequency plasma chemical vapor deposition[J]. Applied Surface Sci-ence, 2011, 257: 4738-4742.[35]孙丽丽, 张栋, 陈仁德, 等. 不锈钢表面沉积DLC膜的结构和性能[J]. 材料研究学报, 2014, 28(9): 697-702.SUN L L, ZHANG D, CHEN R D, et al. Structure and prop-erties of diamond-like carbon films on stainless steel[J].Chinese Journal of Materials Research, 2014, 28(9): 697-702 (in Chinese).[36]DAMASCENO J, CAMARGO S, FREIRE F, et al. Depos-[37]ition of Si-DLC films with high hardness, low stress and high deposition rates[J]. Surface & Coatings Technology, 2000, 133-134: 247-252.LEYLAND A, MATTHEWS A. On the significance of the H/E, ratio in wear control: a nanocomposite coating ap-proach to optimized tribological behaviour[J]. Wear, 2000, 246(1-2): 1-11.[38]崔明君, 任思明, 樊小强, 等. 调制比对多层DLC薄膜摩擦及电化学行为的影响[J]. 机械工程学报, 2018, 54(6): 25-31.CUI M J, REN S M, FAN X Q, et al. Influence of modula-tion ratio on the tribological and electrochemical behaviors of multilayer DLC coatings[J]. Journal of Mechanical Engin-eering, 2018, 54(6): 25-31 (in Chinese).[39]• 本刊讯 •冷喷涂技术及其在增材制造中的应用专题会将在广州召开冷喷涂技术具有涂层厚度不受限制、加工效率高等特点,目前已逐渐发展成为一种快速增材制造技术,备受业界关注。
部分材料类专业术语的英文解释
Adsorb or AdsorptionThe adhesion of a layer of molecules (gas or liquid) to the surface of a solid.Adsorb is not the same as absorb, an action in which molecules are taken into pores in the surface of a solid. Fumed silica is non-porous.AgglomeratesA collection of smaller particles held together by weak forces, such as mechanical entanglement. For example, individual tree branches trimmed off a tree and thrown into a pile will form an agglomerate.The agglomerates formed in the fumed silica process are generally easy to disperse and can be broken down by proper dispersion equipment. The typical mean agglomerate size of Cabot's fumed silicas is 25 to 30 microns.AggregatesA collection of smaller particles that have been permanently joined together.In fumed silica, the primary particles have sintered together to form an aggregate, which is extremely strong. The typical mean aggregate size of Cabot's fumed silica is 0.2 to 0.3 microns. The aggregate is the smallest particle to which fumed silica can be dispersed.AmorphousNon-crystalline, not having a definite repeating structure.Glass is an example of amorphous silica. Examples of crystalline forms of silica are quartz, cristobalite and tridymite. Amorphous silica is very stable and it is impossible for it to crystallize, except after exposure to very high temperatures and pressure for extremely long periods of time.Anti-blockingThe prevention of fusion or sticking between two surfaces.Fumed silica prevents blocking by providing micro-roughness to the surface, thus preventing actual contact between the two surfaces. Applications for this are in coatings, plastic films and continuous metal casters.Anti-cakingThe ability to prevent the formation of clumps in a powder.Fumed silica prevents caking or acts as an anti-caking agent in dry powders such as those used in cosmetics, food, nutraceuticals and pharmaceuticals.Anti-mistingThe ability to prevent misting.In high speed printing processes, such as gravure and letterpress, small droplets of ink can be thrown from the rolls by centrifugal force, developing a mist. This mist of ink causes cleaning problems, and it can also cause dirty print. Fumed silica will reduce misting in inks by providing thixotropic behavior.Anti-sagThe ability to support a certain amount of material against the pull of gravity and not have the material flow.Fumed silica imparts sag resistance to liquids, which is important in applications such as coatings, sealants, adhesives and reinforced plastics.Anti-settlingPrevention of an accumulation of particles on the bottom a container from a dispersion of particles in liquid.Fumed silicas prevent settling by forming a network in liquid systems. This network can support most pigments and prevent them from being pulled to the bottom of the container by gravity. Anti-settling is important in paint, ink and cosmetic applications.ASTMAmerican Society for Testing and MaterialsThis organization sets the standards of measurement for many industries in the USA. ASTM measurement tests are categorized by industry and each is assigned a number.AtomizationTo be separated into very fine particles (solids) or a very fine spray (liquids).When paint is sprayed, the thixotropic action of fumed silica allows the viscosity to fall. This allows the liquid to be atomized easily into small droplets. These small droplets are easily conveyed to the substrate and can form a smooth continuous film.Bulk densityThe quantity or mass of a substance per unit volume.Fumed silicas are very light and fluffy and have bulk densities of 2 to 2.5 pounds per cubic foot (35 to 48 g/l), accounting for the large 10-pound bags and the dusty nature of fumed silicas.Calcine/CalciningTo heat a powder to a high temperature, but not hot enough to melt it.Fumed silica is calcined in a rotary kiln. Hot air is blown through the kiln to desorb the hydrochloric acid from the surface of the silica.ChlorosilanesSilanes are chemical compounds consisting of a single atom of silicon combined with other elements or chemical groups. Chlorosilanes have one or more of the four available positions occupied by chlorine.The chlorosilanes used by Cabot for the manufacture of fumed silica are mainly silicon tetrachloride (SiCl4), some methyl trichlorosilane (Si(CH3)Cl3) and trichlorosilane (SiHCl3). The exact blend used by each manufacturing facility varies due to local availability.Co-solventsAn organic solvent that is water miscible.Examples of co-solvents are ethyl and isopropyl alcohol, ethylene and propylene glycol, and most glycol ether solvents.Defoaming agentAn agent that makes bubbles burst and dissipate.Fumed silica can form an effective base for defoamers because of its small particle size.DensedMechanically compressed.Densed grades of fumed silica are formed by mechanically compressing the fumed silica. This increases the bulk density from 2.2 to 3 pounds per cubic foot (35 to 48 grams per liter) up to 4.5 to 5 pounds per cubic foot (72 to 80 grams per liter).DimerThe reaction product of two smaller units, monomers.In the TS-610 process, two molecules of hydrolyzed DiMeDi, dimethyl dihydroxy saline, condense together to form a dimer. One hydroxyl group on one monomer reacts with a hydroxyl group on the other monomer to create a Si-O-Si bond, jointing them together. A water molecule, H-O-H is also formed in this reaction.DimethyldichlorosilaneChemical with the formula (CH3)2SiCl2.Dimethyldichlorosilane is the treating agent for TS-610.DipoleA pair of equal and opposite electric charges or magnetic poles of opposite sign separated by a short distance.See van der Waals Forces.DispersibilityThe relative ease with which the agglomerates of fumed silica are broken into smaller sizes.The dispersibility of fumed silica is vital to its performance in the manufacturing process. If not dispersed properly, fumed silica may not exhibit its highest efficiency.Dry carrierAn agent that turns liquids into dry powders.Fumed silica is an excellent adsorbent and dry carrier for many substances, such as essential oils and stabilizers. These materials can easily be turned into free flowing dry powders, making them convenient to handle and mix into formulations.Durometer (Hardness)A measure of hardness based on the penetration of the indentor point of the durometer into the material under investigation.High values of durometer hardness indicate harder materials. Fumed silica improves measures of durometer hardness in elastomers and silicone rubbers.ElastomersA substance that can be stretched to at least twice its original length and can return very rapidly to its original length when released.Elastomeric applications that use fumed silica include automotive spark plug boots and gaskets, weatherstripping, O-rings and bathtub caulk.ElongationThe percentage increase in length of a test specimen when it is stretched until it breaks.Fumed silica improves the elongation properties of elastomers or silicone rubbers.EmulsificationPromoting the formation of a stable emulsion.Fumed silica performs well as an emulsification agent for oil in water systems. It acts as a surfactant, coating the oil droplets and forming a stable emulsion.Epoxy resinA class of thermosetting polymers based upon the reactivity of the epoxide group.The most common type is a condensation product of epichlorohydrin and bisphenol-A. Epoxy resins exhibit excellent adhesion, strength, chemical resistance and electrical properties.FlocculationThe coming together of many small particles to form a large mass.The particles of fumed silica flocculate together via hydrogen bonding to form a network in a liquid. Within this network of fumed silica, the other particles in the material, such as the color pigments in a coating, are prevented from flocculating together and settling to the bottom of the container.Flow and levelingThe ability to form a smooth surface.Flow and leveling behavior is in dynamic balance with sag resistance. Increasing one behavior generally decreases the other.FluidizationThe ability of a powder to be easily picked up, suspended and moved about by a stream of gas, such as air.Fumed silica can greatly improve the fluidization characteristics of fine powders, such as powder coatings. This greatly improves their application properties.Free-flowThe ability of a powder to move easily through orifices, pipes and other equipment without the application of external forces (only gravity is needed).Fumed silica improves the flowability of powders, allowing them to flow easily out of bins and tanks, through valves and piping and it prevents the formation of clumps and lumps of material. A commonly used method of quantifying the flowability of a powder is the angle of repose test.GelcoatThe topcoat applied to composites to provide a smooth high appearance surface; these are almost always pigmented to provide the final color.Fumed silica is used primarily as an anti-sag agent in gelcoat formulations. It also provides anti-settling behavior for the color pigments used in the gelcoat.GlidantA term used in the pharmaceutical industry to describe materials that improve the flow characteristics of powder particles and granulations by reducing the friction between the particles.Grade M-5P is recommended for use in pharmaceutical tablet manufacturing to improve the flow of powdered drug formulations from the feed hopper to the die cavity of the tablet press.GradesTerm used by Cabot to distinguish between the many fumed silica products we manufacture.The untreated grades are divided by surface area whether they are densed or not. The densed untreated grades have a "D" as the last letter in the name. The treated grades are divided by the treatment applied and all their names begin with the letters "TS".HexamethyldisilazaneChemical with the formula: (CH3)3-Si-NH-Si-(CH3)3.Hexamethyldisilazane is the treating agent for TS-500/TS-530. It is a volatile liquid at room temperature.HoldoutThe ability of a coating or ink to stay on the surface of the substrate it has been applied over and not to sink into or be drawn down into any pores in the substrate.The anti-sag behavior imparted by fumed silica prevents the coating from flowing into the pores of the substrate or being drawn into pores by capillary action.HydrolysisA chemical reaction where a substance reacts with water and changes into a new compound(s).In the fumed silica process, the chlorosilanes are hydrolyzed to form silica and hydrochloric acid.HydrolyzeTo convert by hydrolysis — see hydrolysis.HydrophilicCapable of being wetted by or taking up water.The surface chemistry of untreated fumed silica is hydrophilic. Untreated grades are easily wetted by water and will adsorb water from the humidity in the air.HydrophobicNot capable of being wetted by water or taking up water.The treated grades of fumed silica (the TS grades) cannot be wetted by water (they will float on water) without the use of surfactants or co-solvents and will not adsorb moisture from the humidity in the air during storage.HydrophobicityHaving hydrophobic characteristics — see hydrophobic.HygroscopicReadily taking up and retaining moisture.Fumed silica improves free flow and prevents clumps in hygroscopic materials. The untreated grades of fumed silica are hygroscopic and will adsorb moisture from the humidity in the air.Index of RefractionThe amount a beam of light is bent in a particular substance as compared with the light traveling in a vacuum.The index of refraction of fumed silica is 1.46. The index of refraction of air is 1.0. This index of refraction mismatch causes fumed silica to scatter light, giving it a white color in air. When fumed silica is incorporated into organic resins and elastomers, most of which have an index of refraction close to 1.46, it will be colorless.Laminating applicationIn composites, this is the resin that is used to bind together the reinforcing fibers, such as fiberglass.Fumed silica provides anti-sag behavior to these resins to prevent the resin from draining off the reinforcing fibers before the resin cures. It is used in both hand lay-up and sprayed chopped glass fabrication techniques.LSRLiquid Silicone Rubber.A class of silicone rubber compounds characterized by their low viscosity. They are able to cure via the addition of a metal catalyst (typically platinum) to form solid highly elastomeric solid polymers.MattingThe reduction in the gloss (shininess) of the surface of a coating or ink.Fumed silica can provide a matting effect in coatings or inks if it is deliberately underdispersed. Fumed silica is not cost effective against most other matting agents except in the satin range (30 to 40% specular gloss). Grade M-7D is recommended for this application.MistingFine droplets of inks flung off the rolls of high speed printing presses.Fumed silica can provide anti-misting. The thixotropic effect prevents the formation of very fine droplets that can carry long distances. These stray droplets will create a cleaning problem and may blemish final printed products.ModulusThe expression of the ratio of tensile strength to elongation.Modulus is a measure of the stiffness of an elastomer, or how easily the elastomer can be stretched. Adding fumed silica generally increases the modulus of the elastomer, making it stiffer and more difficult to deform.MorphologyThe structure or form of fumed silica at a particle or molecular level.The highly branched, chain-like aggregate structure of fumed silica gives it a unique morphology.Polydimethylsiloxane (Silicone Fluid or Silicone Oil)Chemical with the formula (CH3)3-Si-O- [(CH3)2-Si-O]n- Si-(CH3)2.Polydimethylsiloxane, also known as silicone oil, is the treating agent for TS-720.PolyolA substance that has more than one hydroxyl group per molecule.Low to medium molecular weight polyols are commonly used in making polyurethane elastomers, coatings and adhesives.PolyurethaneA class of polymers known for flexibility and chemical resistance.Polyurethanes come in one- and two-part formulas. In one-part polyurethanes, TS-720 should be used because these materials are sensitive to moisture. Both treated and untreated grades can be used in the polyol portion of two-part polyurethanes.PrecursorA substance, chemical, or chemical component from which another substance, chemical, or chemical component is formed.Chlorosilanes, such as silicon tetrachloride, are the precursor in the formation of fumed silica. Untreated fumed silicas are used as precursors for treated fumed silicas.Primary particleA particle that is the building block of an aggregate.Fumed silica primary particles are nearly spherical particles with diameters in the size range of 10 to 21 nanometers. These primary particles are fused together to form an aggregate. The typical mean aggregate size of Cabot's fumed silicas is 0.2 to 0.3 microns. The aggregate is the smallest particle to which fumed silica can be dispersed.PropertiesA characteristic trait or peculiarity, especially one serving to define or describe its possessor, as of a grade of fumed silica.The most influential fumed silica properties include surface area, surface treatment, moisture and bulk density.ReinforcementTo make stronger.Customers use fumed silica as a reinforcing agent to improve strength and durability in elastomers. Fumed silica reinforces these materials, enhancing tensile strength, tear resistance, durometer (hardness), elongation and modulus.Rheology controlThe ability to control the flow of a liquid or the deformation of a solid (elastomers).Fumed silica affects how substances flow, i.e., how they pour or spread. This effect is important in products that are fluid, such as paint, inks, adhesives, sealants and cosmetics.RTV-1One-component room temperature vulcanizing system.In RTV-1 silicones, fumed silica provides both rheology control and reinforcement. Examples of RTV-1 silicones are window and bathtub caulks.RTV-2Two-component room temperature vulcanizing system.In RTV-2 silicones, fumed silica provides both rheology control and reinforcement. RTV-2 silicones are used in industrial products and are not generally used as consumer products.Sag Resistance (Anti-sag)The ability to support a certain amount of material against the pull of gravity without flowing.Fumed silica imparts sag resistance (anti-sag) to liquids, which is important in applications such as coatings, sealants, adhesives and reinforced plastics.Shear forcesA force applied to a liquid or solid that results in movement.Shearing forces are important in the dispersion of fumed silica into our customer's formulations. Shearing forces are also generated in application methods such as spraying, extruding and brushing and also in pumping and mixing.Shear thinningThe viscosity of a material decreases under increasing shear force.This is also called pseudoplastic behavior. Fumed silica imparts shear-thinning behavior to paints, adhesives, sealants, reinforced plastics and cosmetics.Silicon dioxideA chemical with a formulation of SiO2, also known as silica.Silicon dioxide (silica) occurs naturally in the earth's crust. The most common form is quartz, a crystalline material that makes up most sand deposits. Synthetic silicas can be made by several industrial processes. Precipitation from a sodium silicatesolution is one method of forming silica. Flame hydrolysis of chlorosilanes, the fumed silica process, is another method. Fumed silica has higher purity, unique surface chemistry and structure as compared with the other synthetic silicas.Silicon TetrachlorideA chemical with a formulation of SiCl4.Silicon tetrachloride is a volatile liquid at room temperature. It is easily vaporized and will readily react with water to form silica and hydrochloric acid. Silicon tetrachloride is a byproduct of the manufacture of silicones, zirconium metal and high purity silicon metal for electronic applications.Silicone fluidSee Polydimethylsiloxane.SinterTo cause to become a coherent mass by heating without melting.During the fumed silica manufacturing process, primary particles collide and are sintered together to form aggregates.StericallyRelating to the arrangement of atoms in space; spatially.Because of the way they are positioned in space, groups of atoms (such as trimethylsilanols and silicone chains) sterically hinder other groups of atoms (such as hydroxyls) from reacting. Reactions are prevented physically as opposed to chemically.SurfactantSubstance that reduces interfacial tension between the surfaces of two materials (liquid-liquid or liquid-solid). Surfactants are used as detergents, emulsifiers, penetrants and wetting agents.Fumed silica acts as a surfactant in emulsions of oil and water that are used in personal care, cosmetics and household products.Tear strengthA measure of the resistance of a test specimen to tearing when it is stretched.Fumed silica improves the tear strength of elastomers or silicone rubbers.Tensile strengthA measure of the force required to break a test specimen when it is stretched.Fumed silica improves the tensile strength of elastomers or silicone rubbers.Thickening or Thickening agentTo increase the viscosity or consistency of a material.Fumed silica is used as a thickening agent in applications such as gels, greases, inks and silicone rubber.Thixotrope/ThixotropicExhibiting a time-dependent recovery of viscosity after shearing.When a shearing force is applied to a thixotropic system, the viscosity decreases (shear thinning). When the shearing force is eliminated, the viscosity returns over a period of time to its original "at-rest" value. Fumed silica induces thixotropic behavior in liquids.TribochargeThe generation of static electric charge from friction.In copier and laser printer toner systems, treated grades of fumed silica provide control of the level of tribocharging and provide proper flow control properties. This ensures a stable quality output from printers and copiers.UndensedNot compressed, the normal density for fumed silica.Undensed fumed silica is fumed silica at its normal density of 2.2 to 3 pounds per cubic foot (35 to 48 g/l).UrethaneA thermoplastic polymer resin (which can be made by thermosetting) used in elastomers, sealants, adhesives and coatings.Urethane resins generally exhibit excellent hardness, flexibility, adhesion and weathering resistance.van der Waals ForcesMolecular attractive forces.Van der Waals forces are the molecular attractive force between fumed silica aggregates. These forces occur when electrons of one molecule are in close proximity to electrons of another molecule, which creates dipoles of positive and negative charges and consequently, the attraction of the dipolar molecules to eachother.Vinyl ester resinA resin consisting of an epoxy backbone, combined with vinyl groups and ester linkages at the ends of each molecule.These resins are used in composites for corrosion resistant applications.ViscosityThe resistance to flow.Fumed silica affects the viscosity of liquid or semi-liquid substances. If the substance is more viscous, it is thicker and does not flow or pour easily. Viscosity affects a fluid's ability to spread or extrude.。
催化:古老却富有挑战性的石墨烯基材料(英文)
催化:古老却富有挑战性的石墨烯基材料(英文)Ljubisa R.Radovic;Camila Mora-Vilches;Adolfo J.A.Salgado-Casanova【期刊名称】《催化学报》【年(卷),期】2014(35)6【摘要】An assessment is offered regarding the progress made, and the remaining challenges, in the field of carbocatalysis. The fundamental principles that govern the preparation and performance of sp2-hybridized carbon materials in heterogeneous catalysis have been known for decades, and the level of understanding of key issues – especially the importance of textural and ion-exchange properties (i.e., surface area, pore size distribution, and proton transfer) – remains quite satisfactory. The opportunities for novel catalytic materials – especially graphene nanosheets and carbon nanotubes– are tremendous, especially when it comes to taking advantage of their structural order, such that electron transfer can be both better understood and controlled to enhance catalytic activity and selectivity.【总页数】6页(P792-797)【关键词】碳材料;石墨;催化剂;个旧;基础;碳纳米管;多相催化;离子交换【作者】Ljubisa R.Radovic;Camila Mora-Vilches;Adolfo J.A.Salgado-Casanova【作者单位】Department of Chemical Engineering, University of Concepción, Concepción, Chile;Department of Energy & Mineral Engineering, Penn State University, University Park, PA, USA【正文语种】中文【中图分类】O643.36;TQ127.11【相关文献】1.三维石墨烯基B-N-Fe/Co-G材料的制备及其氧还原催化性能研究 [J], 伍小波; 姜利民; 谢志勇; 梁美辰; 吴金波; 左祺; 黄佳帝; 彭海波2.石墨烯基催化材料的制备及其应用研究进展 [J], 覃荣华;曾丹林;王荣;杨媛媛;王光辉3.石墨烯基电磁功能材料(英文) [J], 疏金成;曹茂盛4.超声辅助法合成的石墨烯-TiO_2复合材料声催化降解罗丹明B(英文) [J], Trisha GHOSH;Chong-Yeon PARK;OH Won-Chun5.镍铁石墨烯基复合纳米材料的制备及其对高氯酸铵的催化分解性能 [J], 李胜楠;兰元飞;李国平;罗运军因版权原因,仅展示原文概要,查看原文内容请购买。
钢铁厂常用英文词组汇总
钢铁厂常用英文词组汇总一、炼焦 coking高温炭化 high temperature carbonization塑性成焦机理 plastic mechanism of coke formation中间相成焦机理 mesophase mechanism of coke formation 选煤 coal preparation, coal washing酉己煤 coal blending配煤试验 coal blending test炼焦煤 coking coal气煤 gas coal肥煤 fat coal瘦煤 lean coal焦炉 coke oven焦化室 oven chamber焦饼 coke cake结焦时间coking time周转时间cycle time装煤 coal charging捣固装煤 stamp charging推焦 coke pushing焦炭熄火 coke quenching干法熄焦 dry quenching of coke焦台 coke wharf装煤车 larry car推焦机 pushing machine拦焦机coke guide熄焦车 quenching car焦炉焖炉 banking for coke oven焦炭coke冶金焦 metallurgical coke铸造焦 foundry coke焦炭工业分析 proximate analysis of coke焦炭元素分析 ultimate analysis of coke焦炭落下指数 shatter index of coke焦炭转鼓指数drum index of coke焦炭热强度 hot strength of coke焦炭反应性 coke reactivity焦炭反应后强度 post-reaction strength of coke 焦炭显微强度 microstrength of coke焦炉煤气coke oven gas发热值 calorific value煤焦油coal tar粗苯 crude benzol苯 benzene甲苯 toluene二甲苯 xylene苯并吠喃-茚树脂 coumarone-indene resin精萘 refined naphthalene精蒽 refined anthracene煤[焦油]沥青 coal tar pitch沥青焦 pitch coke针状焦 needle coke型焦 formcoke耐火材料 refractory materials耐火粘土 fireclay高岭土 kaolin硬质粘土 flint clay轻质粘土 soft clay陶土 pot clay蒙脱石 montmorillonite叶蜡石 pyrophyllite膨润土 bentonite鳞石英tridymite方石英 cristobalite砂岩 sandstone耐火石firestone莫来石mullite氧化铝alumina烧结氧化铝sintered alumina电熔氧化铝fused alumina|刚玉 corundum红柱石 andalusite蓝晶石 kyanite,cyanite硅线石 sillimanite橄榄石olivine方镁石periclase镁砂 magnesia合成镁砂 synthetic sintered magnesia电熔镁砂 fused magnesia烧结白云石砂 sintered dolomite clinker合成镁铬砂 synthetic magnesia chromite clinker尖晶石spinel镁铬尖晶石 magnesia chrome spinel,magnesiochromite 硅藻土 diatomaceous earth, infusorial earth蛭石 vermiculite珍珠岩perlite碳化硅 silicon carbide氮化硅 silicon nitride氮化硼 boron nitride粘土熟料chamotte熟料grog轻烧 light burning,soft burning死烧 dead burning,hard burning 成型模注 shaping moulding机压成型 mechanical pressing 等静压成型 isostatic pressing 摩擦压砖机friction press液压压砖机hydraulic press捣打成型 ramming process熔铸成型 fusion cast process砖坯强度 green strength,dry strength隧道窑 tunnel kiln回转窑 rotary kiln倒焰窑 down draught kiln耐火砖 refractory brick标准型耐火砖standard size refractory brick 泡砂石 quartzite sandstone酸性耐火材料 acid refractory [material]硅质耐火材料 siliceous refractory [material] 硅砖 silica brick,dinas brick熔融石英制品 fused quartz product硅酸铝质耐火材料 aluminosillicate refractory 半硅砖 semisilica brick粘土砖 fireclay brick,chamotte brick石墨粘土砖 graphite clay brick高铝砖 high alumina brick硅线石砖 sillimanite brick莫来石砖 mullite brickI刚玉砖 corundum brick铝铬砖 alumina chrome brick熔铸砖 fused cast brick碱性耐火材料 basic refractory [material]镁质耐火材料 magnesia refractory [material] 镁砖 magnesia brick镁铝砖 magnesia alumina brick镁铬砖 magnesia chrome brick镁炭砖 magnesia carbon brick中性耐火材料 neutral refractory [material] 复合砖 composite brick铝炭砖 alumina carbon brick铝镁炭转 alumina magnesia brick锆炭砖 zirconia graphite brick镁钙炭砖 magnesia clacia carbon brick长水口 long nozzle浸入式水口 immersion nozzle,submerged nozzle 定径水口 metering nozzle氧化铝-碳化硅-炭砖 Al2O3-SiC-C brick透气砖 gas permeable brick,porous brick滑动水口 slide gate nozzle水口砖 nozzle brick塞头砖stopper绝热耐火材料 insulating refractory轻质耐火材料 light weight refractory袖砖 sleeve brick格子砖 checker brick,chequer brick陶瓷纤维ceramic fiber耐火纤维 refractory fiber耐火浇注料 refractory castable耐火混凝土 refractory concrete荷重耐火性 refractoriness under load抗渣性 slagging resistance耐磨损性 abrasion resistance[含]碳[元]素材料 carbon materials无定形碳 amorphous carbon金刚石diamond炭相[学]carbon micrography炭黑 carbon black石油沥青 petroleum pitch石油焦炭 petroleum coke石墨化 graphitization石墨化电阻炉 electric resistance furnace for graphitization 石墨纯净化处理 purification treatment of graphite炭砖 carbon brick炭块 carbon block碳化硅基炭块 SiC-based carbon block炭电极 carbon electrode连续自焙电极Soderberg electrode石墨电极 graphite electrode超高功率石墨电极 ultra-high power graphite electrode石墨电极接头 graphite electrode nipple石墨电极接头孔 graphite electrode socket plug电极糊 electrode paste石墨坩埚 graphite crucible石墨电阻棒 graphite rod resistor炭刷 carbon brush高纯石墨 high purity graphite铁合金 ferroalloy硅铁 ferrosilicon硅钙 calcium silicon金属硅 silicon metal锰铁 ferromangnanese低碳锰铁 low carbon ferromanganese硅锰 silicomanganese金属锰 manganese metal铬铁 ferrochromium低碳铬铁 low carbon ferrochromium微碳铬铁 extra low carbon ferrochromium硅铬 silicochromium金属铬 chromium metal钨铁 ferrotunsten钼铁 ferromolybdenum钛铁 ferrotitanium硼铁 ferroboron铌铁 ferroniobium磷铁 ferrophosphorus镍铁 ferronickel锆铁 ferrozirconium硅锆 silicozirconium稀土硅铁 rare earth ferrosilicon稀土镁硅铁 rare earth ferrosilicomagnesium成核剂 nucleater孕育剂 incubater,inoculant球化剂nodulizer蠕化剂 vermiculizer中间铁合金master alloy复合铁合金 complex ferroalloy电碳热法 electro-carbothermic process电硅热法 electro-silicothermic process铝热法 aluminothermic process,thermit process 电铝热法 electro-aluminothermic process开弧炉open arc furnace埋弧炉submerged arc furnace半封闭炉 semiclosed furnace封闭炉 closed furnace矮烟罩电炉 electric furnace with low hood矮炉身电炉 low-shaft electric furnace人造块矿 ore agglomerates烧结矿sinter压块矿briquette球团[矿]pellet针铁矿goethite自熔性铁矿self-fluxed iron ore复合铁矿 complex iron ore块矿lump ore粉矿 ore fines矿石混匀 ore blending酉己矿 ore proportioning矿石整粒 ore size grading返矿 return fines储矿场 ore stockyard矿石堆料机 ore stocker 匀矿取料机ore reclaimer 熔剂flux 消石灰 slaked lime 活性石灰 quickened lime有机粘结剂organic binder烧结混合料sinter mixture烧结铺底料 hearth layer for sinter烧结 sintering烧结热前沿 heat front in sintering烧结火焰前沿 flame front in sintering渣相粘结slag bonding扩散粘结 diffusion bonding带式烧结机 Dwight-Lloyd sintering machine环式烧结机 circular travelling sintering machine烧结梭式布料机shuttle conveyer belt烧结点火料 sintering ignition furnace烧结盘 sintering pan烧结锅 sintering pot烧结冷却机sinter cooler带式冷却机 straight-line cooler环式冷却机 circular cooler,annular cooler生球 green pellet,ball生球长大聚合机理ball growth by coalescence生球长大成层机理ball growth by layering生球长大同化机理ball growth by assimilation精矿成球指数 balling index for iron ore concentrates生球转鼓强度 drum strength of green pellet生球落下强度 shatter strength of green pellet生球抗压强度 compression strength of green pellet生球爆裂温度 cracking temperature of green pellet 圆筒造球机balling drum圆盘造球机balling disc竖炉陪烧球团 shaft furnace for pellet firing带式机陪烧球团 traveling grate for pellet firing 链算机-回转窑陪烧球团grate-kiln for pellet firing 环式机陪烧球团 circulargates for pellet firing 冷固结球团cold bound pellet维式体wustite铁橄榄石fayalite铁尖晶石hercynite铁黄长石 ferrogehlenite铁酸半钙 calcium diferrite铁酸钙 calcium ferrite铁酸二钙 dicalcium ferrite锰铁橄榄石knebelite钙铁橄榄石kirschsteinite钙铁辉石hedenbergite钙铁榴石andradite钙长石anorthite钙镁橄榄石monticellite钙钛矿 perovskite硅灰石 wollastonite硅酸二钙 dicalcium silicate硅酸三钙 tricalcium silicate镁橄榄石forsterite镁黄长石 akermanite镁蔷薇辉石manganolite钙铝黄长石gehlenite钛辉石 titanaugite枪晶石cuspidine预还原球团 pre-reduced pellet金属化球团 metallized pellet转鼓试验 drum test,tumbler test落下试验 shatter test二、炼铁iron making 高炉炼铁[法]blast furnace process高炉 blast furnace鼓风炉 blast furnace炉料 charge, burden矿料 ore charge焦料 coke charge炉料提升 charge hoisting小车上料 charge hoisting by skip吊罐上料 charge hoisting by bucket皮带上料 charge hoisting by belt conveyer装料 charging装料顺序 charging sequence储料漏斗hopper双料钟式装料 two-bells system charging无料钟装料 bell-less charging布料器 distributor炉内料线 stock line in the furnace探料尺 gauge rod利用系数 utilization coefficient冶炼强度 combustion intensity鼓风blast风压 blast pressure风温 blast temperature鼓风量 blast volume鼓风湿度 blast humidity全风量操作full blast慢风 under blowing休风delay喷吹燃料 fuel injection喷煤 coal injection喷油 oil injection富氧鼓风 oxygen enriched blast,oxygen enrichment 置换比 replacement ratio喷射器injector热补偿 thermal compensation焦比 coke ratio,coke rate燃料比 fuel ratio,fuel rate氧化带 oxidizing zone风口循环区raceway蒸汽鼓风 humidified blast混合喷吹 mixed injection脱湿鼓风 dehumidified blast炉内压差 pressure drop in furnace煤气分布 gas distribution煤气利用率 gas utilization rate炉况 furnace condition顺行 smooth running焦炭负荷 coke load,ore to coke ratio软熔带cohesive zone,softening zone渣比 slag to iron ratio,slag ratio上部[炉料]调节 burden conditioning下部[鼓风]调节 blast conditioning高炉作业率 operation rate of blast furnace休风率 delay ratio高炉寿命 blast furnace campaign 悬料 hanging崩料slip沟流 channeling结瘤 scaffolding炉缸冻结 hearth freeze-up开炉blow on停炉 blow off积铁 salamander炉型 profile,furnace lines炉喉throat炉身 shaft,stack炉腰belly炉腹bosh炉缸hearth炉底bottom炉腹角bosh angle炉身角 stack angle有效容积 effective volume工作容积 working bolume铁口 iron notch, slag notch渣口 cinder notch, slag notch 风口 tuyere窥视孔peep hole风口水套 tuyere cooler渣口水套 slag notch cooler风口弯头 tuyere stock热风围管bustle pipe堵渣机stopper泥炮 mud gun,clay gun开铁口机 iron notch drill铁水 hot metal铁[水]罐 iron ladle鱼雷车torpedo car主铁沟sow出铁沟 casting house铁沟 iron runner渣沟 slag runner渣罐 cinder ladle, slag ladle撇渣器skimmer冷却水箱cooling plate冷却壁 cooling stave汽化冷去却 vaporization cooling热风炉 hot blast stove燃烧室 combustion chamber燃烧器burner热风阀 hot blast valve烟道阀 chimney valve冷风阀 cold blast valve助燃风机burner blower切断阀 burner shut-off valve旁通阀 by-pass valve混风阀 mixer selector valve送风期 on blast of stove,on blast燃烧期 on gas of stove, on gas换炉 stove changing放散阀 blow off valve内燃式热风炉Cowper stove外燃式燃烧炉 outside combustion stove 顶燃式热风炉 top combustion stove炉顶放散阀bleeding valve放散管bleeder上升管 gas uptake放风阀 snorting valve均压阀 equalizing valve高压调节阀septum valve炉顶高压 elevated top pressure铸铁机 pig-casting machine铸铁模pig mold冲天炉cupola水渣 granulating slag水渣池 granulating pit渣场 slag disposal pit高炉煤气 top gas,blast furnace gas高炉煤气回收topgas recovery,TGR非焦炭炼铁non-coke iron making直接还原炼铁[法]direct reduction iron making直接还原铁 directly reduced iron,DRI竖炉直接炼铁direct reduction in shaft furnace流态化炼铁 fluidized-bed iron making转底炉炼铁 rotary hearth iron making米德雷克斯直接炼铁[法]Midrex processHYL直接炼铁[法]HYL process克虏伯回转窑炼铁[法]Krupp rotary kiln iron-making 熔态还原 smelting reduction铁溶法 iron-bath process科雷克斯法COREX process生铁 pig iron海绵铁 sponge iron镜铁 spiegel iron清铁法 H-rion process三、炼钢 steelmaking车冈水 liquid steel,molten steel车钢 semisteel沸腾钢 rimming steel,rimmed steel镇静钢 killed steel半镇静钢 semikilled steel压盖沸腾钢capped steel坩埚炼钢法 crucible steelmaking双联炼钢法 duplex steelmaking process连续炼钢法 continuous steelmaking process直接炼钢法 direct steelmaking process混铁炉 hot metal machine装料机 charging machine 装料期 charging machine 加热期 heating period 熔化期 melting period 造渣期 slag forming period 精炼期refining period 熔清 melting down 脱氧 deoxidation预脱氧 preliminary dexidation 还原渣 reducing slag 酸性渣acid slag碱性渣basic slag脱碳 decarburization增碳 recarburization脱磷 dephosphorization 回磷 rephosphorization 脱硫desulfurization 回硫 resulfurization 脱氮 denitrogenation过氧化 overoxidation 出钢 tapping冶炼时间 duration of heat 出钢样 tapping sample 浇铸样 casting sample 不合格炉次off heat熔炼损耗melting loss铁损 iron loss废钢scrap废钢打包 baling of scrap造渣材料 slag making materials 添力口剂 addition reagent 脱氧剂deoxidizer脱硫剂 desulfurizer冷却剂coolant回炉渣 return slag喷枪lance浸入式喷枪submerged lance钢包ladle出钢口 top hole出钢槽 pouring lining炉顶 furnace roof炉衬 furnace lining炉衬侵蚀 lining erosion渣线 slag line炉衬寿命lining life分区砌砖zoned lining补炉 fettling热修 hot repair喷补 gunning火焰喷补flame gunning转炉 converter底吹转炉 bottom-blown converter酸性空气底吹转炉 air bottom-blown acid converter碱性空气底吹转炉 air bottom-blown basic converter侧吹转炉 side-blown converter卡尔多转炉Kaldo converter氧气炼铁 oxygen steelmaking氧气顶吹转炉 top-blown oxygen converter,LI converter氧气底吹转炉 bottom-blown oxygen converter quiet basic oxygen furnace,QBOF顶底复吹转炉 top and bottom combined blown converter喷石灰粉顶吹氧气转炉法oxygen lime process底吹煤氧的复合吹炼法 Klockner-Maxhutte steelmaking process,KMS 住友复合吹炼法 Sumitomo top and bottom blowing process,STB LBE 复吹法 lance bubbling equilibrium process,LBE顶枪喷煤粉炼钢法 Arved lance carbon injection process,ALCI蒂森复合吹炼法 Thyssen Blassen Metallurgical process,TBM 面吹 surface blow软吹 soft blow硬吹 hard blow补吹reblow过吹 overblow后吹 after blow目标碳 aim carbon终点碳 end point carbon高拉碳操作 catch carbon practice增碳操作 recarburization practice单渣操作 single-slag operation双渣操作 double-slag operation渣乳化 slag emulsion二次燃烧 postcombustion吹氧时间 oxygen blow duration吹炼终点blow end point倒炉 turning down喷渣 slopping喷溅 spitting静态控制 static control动态控制 dynamic control氧枪 oxygen lance氧枪喷孔 nozzle of oxygen lance多孔喷枪 multi-nozzle lance转炉炉体 converter body炉帽upper cone炉口 mouth,lip ring装料大面impact pad活动炉底 removable bottom顶吹氧枪 top blow oxygen lance副枪 sublance多孔砖 nozzle brick单环缝喷嘴 single annular tuyere双环缝喷嘴 double annular tuyere挡渣器 slag stopper挡渣塞 floating plug电磁测渣器 electromagnetic slag detector废气控制系统 off gas control system,OGCS平炉 open-hearth furnace平炉炼钢 open-hearth steelmaking冷装法 cold charge practice热装法 hot charge practice碳沸腾 carbon boil石灰沸腾lime boil炉底沸腾bottom boil再沸腾reboil有效炉底面积effective hearth area酸性平炉 acid open-hearth furnace碱性平炉 basic open-hearth furnace固定式平炉 stationary open-hearth furnace倾动式平炉 tilting open-hearth furnace双床平炉 twin-hearth furnace顶吹氧气平炉 open-hearth furnace with roof oxygen lance蓄热室 regenerator沉渣室 slag pocket电炉炼钢 electric steelmaking电弧炉electric arc furnace超高功率电弧炉 ultra-high power electric arc furnace直流电弧炉 direct current electric arc furnace双电极直流电弧炉 double electrode direct current arc furnace 竖窑式电弧炉shaft arc furnace电阻炉 electric resistance furnace工频感应炉 line frequency induction furnace中频感应炉 medium frequency induction furnace高频感应炉 high frequency induction furnace电渣重熔 electroslag remelting,ESR电渣熔铸 electroslag casting,ESC电渣浇注 Bohler electroslag tapping,BEST真空电弧炉重熔 vacuum arc remelting,VAR真空感应炉熔炼 vacuum induction melting,VIM电子束炉重熔 electron beam remelting,EBR等离子炉重炼 plasma-arc remelting,PAR水冷模电弧熔炼cold-mold arc melting等离子感应炉熔炼 plasma induction melting,PIM等离子连续铸锭 plasma progressive casting,PPC等离子凝壳铸造 plasma skull casting,PSC能量优化炼钢炉 energy optimizing furnace,EOF氧燃喷嘴 oxygen-fuel burner氧煤助熔 accelerated melting by coal-oxygen burner氧化期 oxidation period还原期 reduction period长弧泡沫渣操作弧长控制long arc foaming slag operation 白渣 white slag电石渣 carbide slag煤氧喷吹 coal-oxygen injection炉壁热点hot spots on the furnace wall偏弧 arc bias透气塞 porous plug出钢到出钢时间tap-to-tap time虹吸出钢 siphon tapping偏心炉底出钢 eccentric bottom tapping,EBT中心炉底出钢 centric bottom tapping,CBT侧面炉底出钢 side bottom tapping,SBT滑动水口出钢 slide fate tapping四、精炼铁水预处理 hot metalpretreatment机械搅拌铁水脱硫法 KR process torpedo desulfurization鱼雷车铁水脱磷 torpedo dephosphorization二次精炼 secondary refining钢包精炼 ladle refining合成渣 synthetic slag微合金化 microalloying成分微调trimming钢洁净度 steel cleanness钢包炉 ladle furnace,LF直流钢包炉DC ladle furnace真空钢包炉LF-vacuum真空脱气 vacuum degassing真空电弧脱气 vacuum arc degassing,VAD真空脱气炉 vacuum degassing furnace,VDF真空精炼 vacuum refining钢流脱气 stream degassing提升式真空脱气法Dortmund Horder vacuum degassing process,DH 循环式真空脱气法Ruhstahl-Hausen vacuum degassing process,RH 真空浇铸 vacuum casting吹氧 RH 操作 RH-oxygen blowing,RH-OB川崎顶吹氧 RH 操作 RH-Kawasaki top blowing,RH-KTB喷粉 RH 操作 RH-poowder blowing,TH-PB喷粉法 powder injection process喷粉精炼 injection refining蒂森钢包喷粉法 Thyssen Niederhein process,TN瑞典喷粉法 Scandinavian Lancer process,SL君津真空喷粉法 vacuum Kimitsu injection process密封吹氩合金成分调整法 composition adjustment by sealed argon bubbling,CAS吹氧提温 CAS 法 CAS-OB process脉冲搅拌法 pulsating mixing process,PM电弧加热电磁搅拌钢包精炼法ASEA-SKF process真空吹氧脱碳法 vacuum oxygen decarburization process ,VOD 氩氧脱碳法 argon-oxygen decarburization process,AOD 蒸汽氧精炼法Creusot-Loire Uddelholm process,CLU无渣精炼 slag free refining摇包法 shaking ladle process铝弹脱氧法 aluminium bullet shooting,ABS钢锭ingot铸锭 ingot casting坑铸 pit casting车铸 car casting钢锭模ingot mold保温帽hot top下铸 bottom casting上铸 top casting补浇 back pour,back feeding浇注速度 pouring speed脱模 ingot stripping发热渣exoslag防再氧化操作 reoxidation protection连续浇注 continuous casting连铸机 continuous caster,CC,continuous casting machine,CCM弧形连铸机 bow-type continuous caster立弯式连铸机 vertical-bending caster立式连铸机vertical caster水平连铸机 horizontal caster小方坯连铸机billet caster大方坯连铸机bloom caster板坯连铸机slab caster薄板坯连铸机thin-slab casting薄带连铸机strip caster近终型浇铸 near-net-shape casting单辊式连铸机single-roll caster单带式连铸机 single-belt caster双带式连铸机 twin-belt caster倾斜带式连铸机 inclined conveyer type caster[连铸]流 strand铸流间距 strand distance注流对中控制 stream centering control钢包回转台ladle turret中间包tundish回转式中间包 swiveling tundish倾动式中间包tiltable tundish中间包挡墙 weir and dam in tundish弓1锭杆dummy bar刚性引锭杆rigid dummy bar挠性引锭杆 flexible dummy bar结晶器mold直型结晶器straight mold弧形结晶器curved mold组合式结晶器composite mold多级结晶器multi-stage mold调宽结晶器adjustable mold结晶器振动 mold oscillation结晶器内钢液顶面meniscus,steel level钢液面控制技术 steel level control technique 保护渣 casting powder,mold powder凝壳shell液芯liquid core空气隙air gap一次冷却区 peimary cooling zone二次冷却区 secondary cooling zone极限冷却速度 critical cooling rate浇铸半径 casting radius渗漏 bleeding拉坯速度 casting speed拉漏 breaking out振动波纹 oscillation mark水口堵塞 nozzle clogging气水喷雾冷去却 air mist spray cooling 分离环 separating ring 拉辊 withdrawal roll立式导辊 vertical guide roll 弯曲辊 bending roll 夹辊 pinch roll 矫直辊 straightening roll驱动辊 driving roll导向辊装置 roller apron切割定尺装置 cut-to-length device 钢流保护浇注 shielded casting practice 多点矫直multipoint straightening 电磁搅拌electromagnetic stirring,EMS 浇注周期casting cycle 多炉连浇sequence casting 事故溢流槽 emergercy launder 菜花头 cauliflower top 钢锭缩头piped top 表面缺陷 surface defect 内部缺陷 internal defect 缩孔 shrinkage cavity 中心缩孔 center line shrinkage 气孔 blowhole表面气孔 surface blowhole 皮下气孔 subskin blowhole 针孔 pinhole 铸疤 feather 冷隔 cold shut 炼钢缺陷lamination 发裂 flake,hair crack 纵裂 longitudinal crack横裂 transverse crack角部横向裂纹transverse corner crack角部纵向裂纹longitudinal corner crack收缩裂纹 shrinkage crack热裂 hot crack冷裂 cold crack冷脆 cold shortness热脆 hot shortness夹渣 slag inclusion皮下夹杂 subsurface inclusion正偏析 positive segregation负偏析 negative segregation,inverse seregationV 形偏析V -shaped segregation倒 V 形偏析A —shaped segregation中心偏析 center segregation中心疏松 center porosity鼓肚 bulging脱方 rhomboidity连铸一直接轧制 continuous casting-direct rolling 工艺CC-DR9钢铁材料铸铁cast iron熟铁 wrought iron电解铁 electrolytic iron 白口铸铁 white cast iron 灰口铸铁 grey cast iron麻口铸铁变性铸铁孕育铸铁冷硬铸铁mottled cast iron modified cast iron inoculated cast iron chilled cast iron球墨铸铁nodular cast iron蠕墨铸铁 vermicular cast iron可锻铸铁 malleable cast iron半可锻铸铁 semi-malleable cast iron奥氏体铸铁 austenitic cast iron 贝氏体铸铁bainitic cast iron 共晶白口铁 eutectic white iron 亚共晶白口铁 hypoeutectic white iron 过共晶白口铁 hypereutectic white iron 结构钢constructional steel软钢 mild steel普通碳素钢 plain carbon steel正火钢 normalized steel热轧钢 hot rolled steel高强度低合金钢 high-strength low-alloy steel 微合金钢 micro-alloy steel冷轧钢 cold rolled steel深冲钢 deep drawing steel双相钢 dual phase steel渗碳钢 carburizing steel渗氮钢 nitriding steel调质钢 quenched and tempered steel超高强度钢 ultra-high strength steel不锈钢 stainless steel奥氏体不锈钢 austenitic stainless steel 铁素体不锈钢 ferritic stainless steel 马氏体不锈钢martensitic stainless steel 双相不锈钢 duplex stainless steel 马氏体时效钢maraging steel耐蚀钢 corrosion-resisting steel耐热钢 heat-resisting steel弹簧钢 spring steel易切削钢 free-machining steel耐磨钢 abrasion-resistant steel工具钢tool steel高速钢 high-speed steel冷作模具钢 cold-work die steel热作模具钢 hot-work die steel钢筋钢 reinforced bar steel钢轨钢rail steel轮箍钢type steel管线钢 pipe line steel锅炉钢 boiler steel电工车冈 electrical steel五、机械加工厂maching plant 备件车间 spare parts workshop立车区 vertical lathe area划线平台 lineation platform翻转区 turn area待力口工区waiting maching area行车 traveling crane臣卜车区horizontal lathe area镗、铣区 boring &milling machine area钻床区 drill press area铣床区 milling machine area平衡区 balance area半成品区 semi-manufactured goods area磨床区 grinding machine热处理车间heat treatment workshop工件堆放区workpiece pile area工装区professional tools area渗碳淬火区carburizing quenching area预作业区pre-work area高中频区high and intermediate frequency area工件堆放区(铺铸铁板) workpiece pile area (layed cast iron plate) 调质氮化区quenching and tempering nitriding area备件车间 spare parts workshop待装区 waiting assembly area装配平台 assembly platform翻转区 turn area成品区 finished products area采购半成品区 purchasing semi-manufacture goods area齿轮车间gear workshop立车区 vertical lathe area待力口工区waiting maching area臣卜车区horizontal lathe area立体仓库 solid storehouse液插机群 hydraulic sharpping machine area磨床机群 grinding machine area划线平台lineation platform伞齿轮机群 bevel gear machine area钻铣机群 drilling & milling machine area配套件库 parts and components storehouse采购成品区purchasing finished products area线切割机群 line cutting machine area齿轮检测机群gear inspection machine area半成品区 semi-manufacture goods area检验区 inspection area力口工成品区 machining finished products area总装车间 assembly workshop工装区 professional tools area装配平台 assembly platform待力口工区waiting maching area修配区 repairs and supply replacements area翻转区 turn area龙门铣 plano-milling machine龙门镗铣力口工中心 plano-boring &milling machining center镗铣床 boring &milling machine涂装区 painting area其他低跨 low span高跨 high span厂房面积workshop area总装、齿轮车间 24192 平方米 assembly and gear workshop occupied 24,192 square meter热处理车间 5610 平方米heat treatment workshop occupied 5,610 square meter备件、成品车间 13014 平方米 spare parts and finished products workshop occupied 13,014 square meter总计面积:42186 平方米 total area: 42,186 square meter车间平面简易布置图the facility plane layout of workshop六、热处理 heating treatment1.indication 缺陷2.test specimen 试样3.bar棒材4.stock 原料5.billet方钢,钢方坯6.bloom钢坯,钢锭7.section 型材8.steel ingot 车钢锭9.blank坯料,半成品10.cast steel 铸钢11.nodular cast iron 球墨铸铁12.ductile cast iron 球墨铸铁13.bronze 青铜14.brass 黄铜15.copper 合金16.stainless steel 不锈钢17.decarburization 脱碳18.scale氧化皮19.anneal 退火20.process anneal 进行退火21.quenching 淬火22.normalizing 正火23.Charpy impact test 夏比冲击试验24.fatigue 疲劳25.tensile testing 拉伸试验26.solution 固溶处理27.aging时效处理28.Vickers hardness 维氏硬度29.Rockwell hardness 洛氏硬度30.Brinell hardness 布氏硬度31.hardness tester 硬度计32.descale除污,除氧化皮等33.ferrite 铁素体34.austenite 奥氏体35.martensite 马氏体36.cementite 渗碳体37.iron carbide 渗碳体38.solid solution 固溶体39.sorbite 索氏体40.bainite 贝氏体41.pearlite 珠光体42.nodular fine pearlite/ troostite 屈氏体43.black oxide coating 发黑44.grain 晶粒45.chromium 铬46.cadmium 专镉47.tungsten 钨48.molybdenum 钼49.manganese 锰51. silicon 硅53.sulfer/sulphur 硫54.phosphor/ phosphorus 磷55.nitrided 氮化的56.case hardening 表面硬化,表面淬硬57.air cooling 空冷58.furnace cooling 炉冷59.oil cooling 油冷60.electrocladding /plating 电镀61.brittleness 脆性62.strength 强度63.rigidity刚性,刚度64.creep 蠕变65.deflection 挠度66.elongation 延伸率67.yield strength 屈服强度68.elastoplasticity 弹塑性69.metallographic structure 金相组织70.metallographic test 金相试验71.carbon content 含碳量72.induction hardening 感应淬火73.impedance matching 感应淬火74.hardening and tempering 调质75.crack 裂纹76.shrinkage 缩孔,疏松77.forging 锻(件)78.casting 铸(件)79.rolling 轧(件)80.drawing 拉(件)81.shot blasting 喷丸(处理)82.grit blasting 喷钢砂(处理)83.sand blasting 喷砂(处理)84.carburizing 渗碳85.nitriding 渗氮86.ageing/aging 时效87.grain size 晶粒度88.pore 气孔89.sonim 夹砂90.cinder inclusion 夹渣ttice 晶格92.abrasion/abrasive/rub/wear/wearing resistance (property)耐磨性93.spectrum analysis 光谱分析94.heat/thermal treatment 热处理95.inclusion 夹杂物96.segregation 偏析97.picking酸洗,酸浸98.residual stress 残余应力99.remaining stress 残余应力100.relaxation of residual stress 消除残余应力101.stress relief 应力释放vanadium 钒。
材料科学与工程专业英语单词
abrade磨损abrasives研磨机acicular针状的activator催化剂additive添加剂adhesive粘合剂aerospace航空宇宙agglomerates团聚体alchemy乙醛alternative选择性的aluminium铝aluminosilicate铝硅酸盐amber琥珀amorphous无定性的angstrom埃anhydride酸酐anisotropic各向异性anneal退火anode阳极anodising阳极化apatite磷灰石aqueous chemistry液相化学aroma compound芳香族化合物astronomy天文学astrophysics天文物理学asymmetric不对称的austenitic奥氏体的bactericidal properties 杀菌性能bakeware 烘焙用具ballast 压舱物,沙囊beryllium 铍binary 二进位的,二元的bioassimilation 生物同化作用biodegradability 生物降解能力biomass 生物的数量,生物质、biomimetics 仿生学bioplast 原生体biopolymer 生物高聚物biosensor 生物传感器blade 刀刃,刀片blend 混合block copolymer 嵌段共聚物body fluids 体液boron 硼brittle 易碎的,脆性的bulk material 体相材料calcium hydroxyapatite胶原羟基磷灰石cancellous多孔的capacitor离散的carbide 碳化物carbon dioxide二氧化碳carboxylic acid羧酸cast 铸件cast浇铸castor oil蓖麻油catastrophic悲惨的cathode阴极cation正离子cellulose纤维素cementation黏固作用ceramic陶器的chromium铬cleaving裂开cluster丛生coalesce合并cobalt钴collagen形态colloid 胶体colloidal胶质的colorant着色剂complementary补充的composite合成物compostability肥料稳定性condensation浓缩configuration电容器contamination污染continual连续的contour 轮廓copolymer共聚物corrode 使腐蚀corrosion 腐蚀cortical皮层的cosmetic化妆品covalent共价地craft工艺creep corrosion裂隙腐蚀creep resistance蠕变阻力crevice裂缝critical shear stress 临界剪切应力crucial至关重要的crush碾碎cryogenic低温学的cupro-nickel alloys铜镍合金curing agent固化剂currency货币curvation弯曲data storage device 数据存储装置dealloying脱合金成分腐蚀deceptive欺骗性的degradation 退化delamination剥离depict描述detector 探测器deteriorate使恶化dezincification 脱锌diacid 二价酸diamine 二元胺dielectric电介质dilute稀释dimension scale尺寸比例discrete离散的discrete energy level 离散能级dispersion分散distinguished by以…为特征drainpipe 排水管drum击鼓ductile柔软的eco-friengly环境友好的elastomer弹性体electeomotive电动势的electrode电极electrooptical电子光学的electrostatic adsorption静电吸附elimination消除encapsulate压缩encapsulation包装encase围绕encountered遇到enrich使充足enzyme酶epoxy环氧基树脂etching蚀刻eutectic共熔得1evaporation蒸发exclusively唯一的exfoliation剥落extension延长extractive提取的extrusion挤出fatigue疲乏,疲劳,累活;femoral-head 股骨头ferrites陶铁磁体ferromagnetic铁磁材料,铁磁体ferromagnetic material铁磁性材料ferrous 含铁的filiform丝状的,纤维状的flexible柔韧性,易曲的floppy disk软盘fluorescent日光灯;a.荧光的folding可折叠的foodstuff食品,粮食forge稳步前进,铸造,伪造formaldehyde甲醛,蚁醛formula 公式,规则fraction小部分,片段,分数fracture破裂,骨折;fuel cell燃料电池fungi真菌类galvanic流电的,抽搐的,以流电所产的gas turbine燃气涡轮gecko壁虎getter吸气剂goggles护目镜,眼罩grind 磨碎,碾碎,折磨guillotine 断头台(切纸的)闸刀;hafnium铪hematite赤铁矿hierarchical分层的,体系的hockey sticks曲棍holographic technique全息摄影技术homopolymer均聚物horticulture园艺hybrid混合物;a.混合的imitate模仿,仿效,仿制immune免疫的impede妨碍,阻碍imperative紧急的,必要的impracticable不可行的impurity不纯,杂质indicator指示器,指示剂ingenious巧妙的,有独创性的inhale吸入inhibitor抑制剂injurious有害的,伤害的inomer离聚物,离子交联聚合物integrated circuit集成电路interfacial phenomena界面现象intergranular 晶粒间的,粒间的intricate复杂的,错综的investigation 调查ion implantation离子注入irreversible 不能撤回的,不能取消的isoprene橡胶机制isotropic等方性的,各向同性的ketone酮kevlar纤维Blamellar薄片状的,薄层状的lathe车床;v.用车床加工lattice晶格leach滤去lignin木质素lithium-aluminosilicate 锂铝硅酸盐lithography 光刻,石版印刷术lotus荷花lubricant滑润剂luster光泽macromolecule 巨大分子,高分子macroscopical宏观的,肉眼可见的magnetic有磁性的magnetic memory 磁存储器magnetoresistive effect 磁阻效应make advantage of利用malleability 可锻性,延展性malleable 有延展性的,可锻的marine turbine 船用汽轮机matrix.矩阵matrix material 基质材料mediate仲裁,调停memory存储器metalloid非金属;a.非金属的metallurgist冶金家,冶金学者metallurgy冶金,冶金术metalworking 属加工术,金属工methacrylate异丁烯酸盐microbe微生物,细菌microprocessor微处理器microstructure 微观结构,显微结构minic 模仿molten 熔化;a.熔铸的molybdenum 钼moment力矩monoclinic单斜的monolayer单层mould模具nannocomposite纳米复合的nanobiotechnolgy纳米生物技术nanoelectronics光电技术nanoonion纳米葱nanorod纳米管nanotubeconjugated纳米管共轭的negative底片niobium铌noble贵族nucleosynthesis核聚变nucleotide核苷numismatics古币nylon尼龙oleic acid 油酸on the verge of 接近于optimum 最适宜ore 矿石orientation 方向orthogonal 正交的orthopedic 整形外科的orthotropic 正交各向异性的oxidation 氧化oxide 氧化物oxidize 氧化,生锈percolation 过滤permeability 渗透性,磁导率peroxidation 过氧化反应persistence 坚持,持续petrochemical 石化的;石化产品phenol 苯酚photoresist 光阻材料physical law 物理法则physiological 生理的piezoelectric 压电的pin 将~用针别住,钉住pin 将~用针别住,钉住pitting 蚀损斑plasma etching 等离子腐蚀plasma 血浆,等离子体plasticizer 可塑性plating 电镀plating 电镀pliable 易曲折的,柔软的polyamide 聚酰胺polyelectrolyte 聚合电解质polyethylene terephthalate 聚乙烯对苯二酸脂polyethylene 聚乙烯polyhedron 多面体polynucleotide 多核苷酸polyolefin 聚烯烃polypeptide 多肽polyphase 多相polypropylene 聚丙烯polysaccharide 多糖polystyrene 聚苯乙烯polyvinylchloride 聚氯乙烯porosity 多孔性portable 轻便的possess 持有,拥有pottery 陶器precaution 预防措施,注意事项precipitate 沉淀物;使沉淀precipitation 沉淀法preferential 优先的prepolymer 预聚物principle 主要的,最重要的probabilistic 概率的,概率性的processing aid 加工助剂proliferation 增殖prominent 卓越的,显著的,突出的prone 倾向于prooxidant 氧化强化剂propagation 扩展propellers 螺旋桨pyrex 耐热玻璃pyrolysis 高温分解pyrolytic 热解的pyrometallurgy 火法冶金学quantum confinement量子限域效应quench淬火radar雷达radiolysis 射解,辐解rare earth稀土元素rarity稀有refractive index折射率refractories耐火材料regain 收回,恢复residue残余,剩余物resilient a.弹回的,有回弹力的resin n.树脂rhenium铼rigid刚硬的,严格的roll.滚动;v.辗,轧rotate(使)旋转rotor blades动叶片rupture strength 断裂强度rust铁锈ruthenium 钌sacrifice牺牲sanitaryware卫生洁具sanskrit梵文sapphire蓝宝石schematically原理性的sealability胶黏性segregate分离的self-assembly自组装的self-organization自组织semiconductor半导体shattering震动shellac虫漆single/multi-wall carbon nanotubes单/多臂碳纳米管sintered烧结sinter熔渣size parameter尺寸参数skeleton骨架sketch概括soft ferrites软性铁氧体soildification凝固solely单独的sol-gel溶胶凝胶spatial resolution空间分辨率spectrum光谱starch淀粉stiff僵硬的stoichiometric number化学计算值storage medium记录材料styrene苯乙烯sublattice子格submicron亚微米substrate基片successor下一代sucseptible易受影响的sulfur硫磺superalloy超耐合金钢superhydrophobic超疏水的superparamagnetism超顺磁性susceptibility磁化系数swellable可膨胀的synergetic effect协同作用tableware餐具tailing残渣,尾料take into account考虑,重视tantalum钽tendon腱,肌腱terminology术语学tetragonal四角形的,正方晶系的tetrahedral四面体的the electron mean free path电子平均自由行程the spin relaxation length自旋张弛长度the visible range可见光区thermoplastic热塑性的thermoset热固性的tiles瓷砖tire cord 轮胎帘布titanium钛tonne 公吨toxic residue 残毒trabeculae 骨小梁transcribe转录transistor 晶体管transmutation变形,变化tumor肿块,肿瘤tungsentungsten钨,钨锰铁矿turbine涡轮,涡轮机turbocharger涡轮增压器ultrasonic treatment超声波处理unit mass单位质量unpainted未上漆的unsealed打开的uppermost最高的usage使用valance bands 价带variant不同的;n.变体,变异体ventilation通风,换气versatile 通用的,万能的viability生存能力vice versa反之亦然vinyl 乙烯基viscous粘的vulcanization 硫化vulcanize 硫化wax 蜡,蜡状物,增加;v.变大yield stress屈服应力zirconium 锆。
钢铁行业专业英语词汇大全 收藏学习
1 炼焦炼焦coking高温炭化high temperature carbonization 塑性成焦机理plastic mechanism of coke formation 中间相成焦机理mesophase mechanism of coke formation 选煤coal preparation, coal washing配煤coal blending配煤试验coal blending test炼焦煤coking coal气煤gas coal肥煤fat coal瘦煤lean coal焦炉coke oven焦化室oven chamber焦饼coke cake结焦时间coking time周转时间cycle time装煤coal charging捣固装煤stamp charging推焦coke pushing焦炭熄火coke quenching干法熄焦dry quenching of coke焦台coke wharf装煤车larry car推焦机pushing machine拦焦机coke guide熄焦车quenching car焦炉焖炉banking for coke oven焦炭coke冶金焦metallurgical coke铸造焦foundry coke焦炭工业分析proximate analysis of coke焦炭元素分析ultimate analysis of coke 焦炭落下指数shatter index of coke焦炭转鼓指数drum index of coke焦炭热强度hot strength of coke焦炭反应性coke reactivity焦炭反应后强度post-reaction strength of coke 焦炭显微强度microstrength of coke焦炉煤气coke oven gas发热值calorific value煤焦油coal tar粗苯crude benzol苯benzene甲苯toluene二甲苯xylene苯并呋喃-茚树脂coumarone-indene resin 精萘refined naphthalene精蒽refined anthracene煤[焦油]沥青coal tar pitch沥青焦pitch coke针状焦needle coke型焦formcoke2 耐火材料耐火材料refractory materials耐火粘土fireclay高岭土kaolin硬质粘土flint clay轻质粘土soft clay陶土pot clay蒙脱石montmorillonite叶蜡石pyrophyllite膨润土bentonite鳞石英tridymite方石英cristobalite砂岩sandstone耐火石firestone莫来石mullite氧化铝alumina烧结氧化铝sintered alumina电熔氧化铝fused alumina刚玉corundum红柱石andalusite蓝晶石kyanite,cyanite硅线石sillimanite橄榄石olivine方镁石periclase镁砂magnesia合成镁砂synthetic sintered magnesia电熔镁砂fused magnesia烧结白云石砂sintered dolomite clinker 合成镁铬砂synthetic magnesia chromite clinker尖晶石spinel镁铬尖晶石magnesia chrome spinel,magnesiochromite 硅藻土diatomaceous earth, infusorial earth蛭石vermiculite珍珠岩perlite碳化硅silicon carbide氮化硅silicon nitride氮化硼boron nitride粘土熟料chamotte熟料grog轻烧light burning,soft burning死烧dead burning,hard burning成型模注shaping moulding机压成型mechanical pressing等静压成型isostatic pressing摩擦压砖机friction press液压压砖机hydraulic press捣打成型ramming process熔铸成型fusion cast process砖坯强度green strength,dry strength隧道窑tunnel kiln回转窑rotary kiln倒焰窑down draught kiln耐火砖refractory brick标准型耐火砖standard size refractory brick 泡砂石quartzite sandstone 酸性耐火材料acid refractory [material]硅质耐火材料siliceous refractory [material]硅砖silica brick,dinas brick熔融石英制品fused quartz product硅酸铝质耐火材料aluminosillicate refractory 半硅砖semisilica brick粘土砖fireclay brick,chamotte brick石墨粘土砖graphite clay brick高铝砖high alumina brick硅线石砖sillimanite brick莫来石砖mullite brick刚玉砖corundum brick铝铬砖alumina chrome brick熔铸砖fused cast brick碱性耐火材料basic refractory [material]镁质耐火材料magnesia refractory [material]镁砖magnesia brick镁铝砖magnesia alumina brick镁铬砖magnesia chrome brick镁炭砖magnesia carbon brick中性耐火材料neutral refractory [material]复合砖composite brick铝炭砖alumina carbon brick铝镁炭转alumina magnesia brick锆炭砖zirconia graphite brick 镁钙炭砖magnesia clacia carbon brick长水口long nozzle浸入式水口immersion nozzle,submerged nozzle 定径水口metering nozzle氧化铝-碳化硅-炭砖Al2O3-SiC-C brick透气砖gas permeable brick,porous brick滑动水口slide gate nozzle水口砖nozzle brick塞头砖stopper绝热耐火材料insulating refractory轻质耐火材料light weight refractory袖砖sleeve brick格子砖checker brick,chequer brick陶瓷纤维ceramic fiber耐火纤维refractory fiber耐火浇注料refractory castable耐火混凝土refractory concrete荷重耐火性refractoriness under load抗渣性slagging resistance耐磨损性abrasion resistance3 碳素材料[含]碳[元]素材料carbon materials无定形碳amorphous carbon金刚石diamond炭相[学]carbon micrography炭黑carbon black石油沥青petroleum pitch石油焦炭petroleum coke石墨化graphitization石墨化电阻炉electric resistance furnace for graphitization 石墨纯净化处理purification treatment of graphite炭砖carbon brick炭块carbon block碳化硅基炭块SiC-based carbon block炭电极carbon electrode连续自焙电极Soderberg electrode石墨电极graphite electrode超高功率石墨电极ultra-high power graphite electrode 石墨电极接头graphite electrode nipple石墨电极接头孔graphite electrode socket plug电极糊electrode paste石墨坩埚graphite crucible石墨电阻棒graphite rod resistor炭刷carbon brush高纯石墨high purity graphite4 铁合金铁合金ferroalloy硅铁ferrosilicon硅钙calcium silicon金属硅silicon metal锰铁ferromangnanese低碳锰铁low carbon ferromanganese硅锰silicomanganese金属锰manganese metal铬铁ferrochromium低碳铬铁low carbon ferrochromium微碳铬铁extra low carbon ferrochromium硅铬silicochromium金属铬chromium metal钨铁ferrotunsten钼铁ferromolybdenum钛铁ferrotitanium硼铁ferroboron铌铁ferroniobium磷铁ferrophosphorus镍铁ferronickel锆铁ferrozirconium硅锆silicozirconium稀土硅铁rare earth ferrosilicon稀土镁硅铁rare earth ferrosilicomagnesium成核剂nucleater孕育剂incubater,inoculant球化剂nodulizer蠕化剂vermiculizer中间铁合金master alloy复合铁合金complex ferroalloy电碳热法electro-carbothermic process电硅热法electro-silicothermic process铝热法aluminothermic process,thermit process 电铝热法electro-aluminothermic process开弧炉open arc furnace埋弧炉submerged arc furnace半封闭炉semiclosed furnace封闭炉closed furnace矮烟罩电炉electric furnace with low hood 矮炉身电炉low-shaft electric furnace5 烧结与球团人造块矿ore agglomerates烧结矿sinter压块矿briquette球团[矿] pellet针铁矿goethite自熔性铁矿self-fluxed iron ore 复合铁矿complex iron ore块矿lump ore粉矿ore fines矿石混匀ore blending配矿ore proportioning矿石整粒ore size grading返矿return fines储矿场ore stockyard矿石堆料机ore stocker匀矿取料机ore reclaimer熔剂flux消石灰slaked lime活性石灰quickened lime有机粘结剂organic binder烧结混合料sinter mixture烧结铺底料hearth layer for sinter烧结sintering烧结热前沿heat front in sintering烧结火焰前沿flame front in sintering渣相粘结slag bonding扩散粘结diffusion bonding带式烧结机Dwight-Lloyd sintering machine 环式烧结机circular travelling sintering machine 烧结梭式布料机shuttle conveyer belt烧结点火料sintering ignition furnace烧结盘sintering pan烧结锅sintering pot烧结冷却机sinter cooler带式冷却机straight-line cooler环式冷却机circular cooler,annular cooler生球green pellet,ball生球长大聚合机理ball growth by coalescence生球长大成层机理ball growth by layering 生球长大同化机理ball growth by assimilation精矿成球指数balling index for iron ore concentrates 生球转鼓强度drum strength of green pellet生球落下强度shatter strength of green pellet生球抗压强度compression strength of green pellet 生球爆裂温度cracking temperature of green pellet圆筒造球机balling drum圆盘造球机balling disc竖炉陪烧球团shaft furnace for pellet firing带式机陪烧球团traveling grate for pellet firing 链算机-回转窑陪烧球团grate-kiln for pellet firing环式机陪烧球团circular gates for pellet firing 冷固结球团cold bound pellet维式体wustite铁橄榄石fayalite铁尖晶石hercynite铁黄长石ferrogehlenite铁酸半钙calcium diferrite铁酸钙calcium ferrite铁酸二钙dicalcium ferrite锰铁橄榄石knebelite钙铁橄榄石kirschsteinite钙铁辉石hedenbergite钙铁榴石andradite钙长石anorthite钙镁橄榄石monticellite钙钛矿perovskite硅灰石wollastonite硅酸二钙dicalcium silicate硅酸三钙tricalcium silicate镁橄榄石forsterite镁黄长石akermanite镁蔷薇辉石manganolite钙铝黄长石gehlenite钛辉石titanaugite枪晶石cuspidine预还原球团pre-reduced pellet金属化球团metallized pellet转鼓试验drum test,tumbler test落下试验shatter test6 高炉炼铁炼铁iron making高炉炼铁[法] blast furnace process 高炉blast furnace鼓风炉blast furnace炉料charge, burden矿料ore charge焦料coke charge炉料提升charge hoisting小车上料charge hoisting by skip吊罐上料charge hoisting by bucket皮带上料charge hoisting by belt conveyer装料charging装料顺序charging sequence储料漏斗hopper双料钟式装料two-bells system charging 无料钟装料bell-less charging布料器distributor炉内料线stock line in the furnace探料尺gauge rod利用系数utilization coefficient冶炼强度combustion intensity鼓风blast风压blast pressure风温blast temperature鼓风量blast volume鼓风湿度blast humidity全风量操作full blast慢风under blowing休风delay喷吹燃料fuel injection喷煤coal injection喷油oil injection富氧鼓风oxygen enriched blast,oxygen enrichment置换比replacement ratio喷射器injector热补偿thermal compensation焦比coke ratio,coke rate燃料比fuel ratio,fuel rate氧化带oxidizing zone风口循环区raceway蒸汽鼓风humidified blast混合喷吹mixed injection脱湿鼓风dehumidified blast炉内压差pressure drop in furnace煤气分布gas distribution煤气利用率gas utilization rate炉况furnace condition顺行smooth running焦炭负荷coke load,ore to coke ratio软熔带cohesive zone,softening zone渣比slag to iron ratio,slag ratio上部[炉料]调节burden conditioning下部[鼓风]调节blast conditioning高炉作业率operation rate of blast furnace休风率delay ratio高炉寿命blast furnace campaign悬料hanging崩料slip沟流channeling结瘤scaffolding炉缸冻结hearth freeze-up开炉blow on停炉blow off积铁salamander炉型profile,furnace lines炉喉throat炉身shaft,stack炉腰belly炉腹bosh炉缸hearth炉底 bottom炉腹角bosh angle炉身角stack angle有效容积effective volume工作容积working bolume铁口iron notch, slag notch 渣口cinder notch, slag notch风口tuyere窥视孔peep hole风口水套tuyere cooler渣口水套slag notch cooler 风口弯头tuyere stock热风围管bustle pipe堵渣机stopper泥炮mud gun,clay gun 开铁口机iron notch drill铁水hot metal铁[水]罐iron ladle鱼雷车torpedo car主铁沟sow出铁沟casting house铁沟iron runner渣沟slag runner渣罐cinder ladle, slag ladle撇渣器skimmer冷却水箱cooling plate冷却壁cooling stave汽化冷却vaporization cooling热风炉hot blast stove燃烧室combustion chamber燃烧器burner热风阀hot blast valve烟道阀chimney valve冷风阀cold blast valve助燃风机burner blower切断阀burner shut-off valve旁通阀by-pass valve混风阀mixer selector valve 送风期on blast of stove,on blast燃烧期on gas of stove, on gas换炉stove changing放散阀blow off valve内燃式热风炉Cowper stove外燃式燃烧炉outside combustion stove 顶燃式热风炉top combustion stove 炉顶放散阀bleeding valve放散管bleeder上升管gas uptake放风阀snorting valve均压阀equalizing valve高压调节阀septum valve炉顶高压elevated top pressure铸铁机pig-casting machine铸铁模pig mold冲天炉cupola水渣granulating slag水渣池granulating pit渣场slag disposal pit高炉煤气top gas,blast furnace gas高炉煤气回收topgas recovery,TGR非焦炭炼铁non-coke iron making 直接还原炼铁[法]direct reduction iron making直接还原铁directly reduced iron,DRI竖炉直接炼铁direct reduction in shaft furnace 流态化炼铁fluidized-bed iron making转底炉炼铁rotary hearth iron making米德雷克斯直接炼铁[法]Midrex processHYL直接炼铁[法] HYL process克虏伯回转窑炼铁[法] Krupp rotary kiln iron-making熔态还原smelting reduction铁溶法iron-bath process科雷克斯法COREX process生铁pig iron海绵铁sponge iron镜铁spiegel iron清铁法H-rion process7 炼钢钢steel炼钢steelmaking钢水liquid steel,molten steel钢semisteel沸腾钢rimming steel,rimmed steel镇静钢killed steel半镇静钢semikilled steel压盖沸腾钢capped steel坩埚炼钢法crucible steelmaking 双联炼钢法duplex steelmaking process 连续炼钢法continuous steelmaking process 直接炼钢法direct steelmaking process混铁炉hot metal machine装料机charging machine装料期charging machine加热期heating period熔化期melting period造渣期slag forming period 精炼期refining period熔清melting down脱氧deoxidation预脱氧preliminary dexidation 还原渣reducing slag酸性渣acid slag碱性渣basic slag脱碳decarburization增碳recarburization脱磷dephosphorization回磷rephosphorization脱硫desulfurization回硫resulfurization脱氮denitrogenation过氧化overoxidation出钢tapping冶炼时间duration of heat 出钢样tapping sample浇铸样casting sample不合格炉次off heat熔炼损耗melting loss铁损iron loss废钢scrap废钢打包baling of scrap造渣材料slag making materials 添加剂addition reagent脱氧剂deoxidizer脱硫剂desulfurizer冷却剂coolant回炉渣return slag喷枪lance浸入式喷枪submerged lance钢包ladle出钢口top hole出钢槽pouring lining炉顶furnace roof炉衬furnace lining炉衬侵蚀lining erosion渣线slag line炉衬寿命lining life分区砌砖zoned lining补炉fettling热修hot repair喷补gunning火焰喷补flame gunning转炉converter底吹转炉bottom-blown converter酸性空气底吹转炉air bottom-blown acid converter碱性空气底吹转炉air bottom-blown basic converter侧吹转炉side-blown converter卡尔多转炉Kaldo converter氧气炼铁oxygen steelmaking氧气顶吹转炉top-blown oxygen converter,LI converter氧气底吹转炉bottom-blown oxygen converter quiet basic oxygenfurnace,QBOF顶底复吹转炉top and bottom combined blown converter 喷石灰粉顶吹氧气转炉法oxygen lime process底吹煤氧的复合吹炼法Klockner-Maxhutte steelmaking process,KMS 住友复合吹炼法Sumitomo top and bottom blowing process,STB LBE复吹法lance bubbling equilibrium process,LBE 顶枪喷煤粉炼钢法Arved lance carbon injection process,ALCI 蒂森复合吹炼法Thyssen Blassen Metallurgical process,TBM面吹surface blow软吹soft blow硬吹hard blow补吹reblow过吹overblow后吹after blow目标碳aim carbon终点碳end point carbon高拉碳操作catch carbon practice 增碳操作recarburization practice 单渣操作single-slag operation 双渣操作double-slag operation 渣乳化slag emulsion二次燃烧postcombustion 吹氧时间oxygen blow duration 吹炼终点blow end point倒炉turning down喷渣slopping喷溅spitting静态控制static control动态控制dynamic control氧枪oxygen lance氧枪喷孔nozzle of oxygen lance多孔喷枪multi-nozzle lance转炉炉体converter body炉帽upper cone炉口mouth,lip ring装料大面impact pad活动炉底removable bottom顶吹氧枪top blow oxygen lance副枪sublance多孔砖nozzle brick单环缝喷嘴single annular tuyere双环缝喷嘴double annular tuyere挡渣器slag stopper挡渣塞floating plug电磁测渣器electromagnetic slag detector 废气控制系统off gas control system,OGCS 平炉open-hearth furnace平炉炼钢open-hearth steelmaking冷装法cold charge practice热装法hot charge practice碳沸腾carbon boil石灰沸腾lime boil炉底沸腾bottom boil再沸腾reboil有效炉底面积effective hearth area酸性平炉acid open-hearth furnace碱性平炉basic open-hearth furnace固定式平炉stationary open-hearth furnace倾动式平炉tilting open-hearth furnace双床平炉twin-hearth furnace顶吹氧气平炉open-hearth furnace with roof oxygen lance蓄热室regenerator沉渣室slag pocket电炉炼钢electric steelmaking电弧炉electric arc furnace超高功率电弧炉ultra-high power electric arc furnace 直流电弧炉direct current electric arc furnace双电极直流电弧炉double electrode direct current arc furnace竖窑式电弧炉shaft arc furnace电阻炉electric resistance furnace工频感应炉line frequency induction furnace中频感应炉medium frequency induction furnace高频感应炉high frequency induction furnace电渣重熔electroslag remelting,ESR电渣熔铸electroslag casting,ESC电渣浇注Bohler electroslag tapping,BEST真空电弧炉重熔vacuum arc remelting,VAR真空感应炉熔炼vacuum induction melting,VIM电子束炉重熔electron beam remelting,EBR等离子炉重炼plasma-arc remelting,PAR水冷模电弧熔炼cold-mold arc melting等离子感应炉熔炼plasma induction melting,PIM等离子连续铸锭plasma progressive casting,PPC 等离子凝壳铸造plasma skull casting,PSC 能量优化炼钢炉energy optimizing furnace,EOF氧燃喷嘴oxygen-fuel burner氧煤助熔accelerated melting by coal-oxygen burner氧化期oxidation period还原期reduction period长弧泡沫渣操作弧长控制 long arc foaming slag operation白渣white slag电石渣carbide slag煤氧喷吹coal-oxygen injection炉壁热点hot spots on the furnace wall偏弧arc bias透气塞porous plug出钢到出钢时间tap-to-tap time虹吸出钢siphon tapping偏心炉底出钢eccentric bottom tapping,EBT中心炉底出钢centric bottom tapping,CBT侧面炉底出钢side bottom tapping,SBT滑动水口出钢slide fate tapping8 精炼、浇铸及缺陷铁水预处理hot metal pretreatment机械搅拌铁水脱硫法KR process torpedo desulfurization 鱼雷车铁水脱磷torpedo dephosphorization二次精炼secondary refining钢包精炼ladle refining合成渣synthetic slag微合金化microalloying成分微调trimming钢洁净度steel cleanness钢包炉ladle furnace,LF直流钢包炉DC ladle furnace真空钢包炉LF-vacuum真空脱气vacuum degassing真空电弧脱气vacuum arc degassing,VAD真空脱气炉vacuum degassing furnace,VDF真空精炼vacuum refining钢流脱气stream degassing提升式真空脱气法 Dortmund Horder vacuum degassing process,DH 循环式真空脱气法 Ruhstahl-Hausen vacuum degassing process,RH真空浇铸vacuum casting吹氧RH操作RH-oxygen blowing,RH-OB川崎顶吹氧RH操作RH-Kawasaki top blowing,RH-KTB喷粉RH操作RH-poowder blowing,TH-PB喷粉法powder injection process喷粉精炼injection refining蒂森钢包喷粉法Thyssen Niederhein process,TN瑞典喷粉法Scandinavian Lancer process,SL君津真空喷粉法vacuum Kimitsu injection process密封吹氩合金成分调整法composition adjustment by sealed argonbubbling,CAS吹氧提温CAS法CAS-OB process脉冲搅拌法pulsating mixing process,PM电弧加热电磁搅拌钢包精炼法ASEA-SKF process 真空吹氧脱碳法vacuum oxygen decarburization process ,VOD 氩氧脱碳法argon-oxygen decarburization process,AOD蒸汽氧精炼法Creusot-Loire Uddelholm process,CLU无渣精炼slag free refining摇包法shaking ladle process铝弹脱氧法aluminium bullet shooting,ABS钢锭ingot铸锭ingot casting坑铸pit casting车铸car casting钢锭模ingot mold保温帽hot top下铸bottom casting上铸top casting补浇back pour,back feeding浇注速度pouring speed脱模ingot stripping发热渣exoslag防再氧化操作reoxidation protection连续浇注continuous casting连铸机continuous caster,CC,continuous casting machine,CCM 弧形连铸机bow-type continuous caster立弯式连铸机vertical-bending caster立式连铸机vertical caster水平连铸机horizontal caster小方坯连铸机billet caster大方坯连铸机bloom caster板坯连铸机slab caster薄板坯连铸机thin-slab casting薄带连铸机strip caster近终型浇铸near-net-shape casting单辊式连铸机single-roll caster单带式连铸机single-belt caster双带式连铸机twin-belt caster倾斜带式连铸机inclined conveyer type caster[连铸]流strand铸流间距strand distance注流对中控制stream centering control钢包回转台ladle turret中间包tundish回转式中间包swiveling tundish倾动式中间包tiltable tundish中间包挡墙weir and dam in tundish引锭杆dummy bar刚性引锭杆rigid dummy bar挠性引锭杆flexible dummy bar结晶器mold直型结晶器straight mold弧形结晶器curved mold组合式结晶器composite mold多级结晶器multi-stage mold调宽结晶器adjustable mold结晶器振动mold oscillation结晶器内钢液顶面meniscus,steel level钢液面控制技术steel level control technique 保护渣casting powder,mold powder凝壳shell液芯liquid core空气隙air gap一次冷却区peimary cooling zone二次冷却区secondary cooling zone极限冷却速度critical cooling rate浇铸半径casting radius渗漏bleeding拉坯速度casting speed拉漏breaking out振动波纹oscillation mark水口堵塞nozzle clogging气水喷雾冷却air mist spray cooling分离环separating ring拉辊withdrawal roll立式导辊vertical guide roll弯曲辊bending roll夹辊pinch roll矫直辊straightening roll驱动辊driving roll导向辊装置roller apron切割定尺装置cut-to-length device钢流保护浇注shielded casting practice 多点矫直multipoint straightening电磁搅拌electromagnetic stirring,EMS 浇注周期casting cycle多炉连浇sequence casting事故溢流槽emergercy launder菜花头cauliflower top钢锭缩头piped top表面缺陷surface defect内部缺陷internal defect缩孔shrinkage cavity中心缩孔center line shrinkage气孔blowhole表面气孔surface blowhole皮下气孔subskin blowhole针孔pinhole铸疤feather冷隔cold shut炼钢缺陷lamination发裂flake,hair crack纵裂longitudinal crack横裂transverse crack角部横向裂纹transverse corner crack角部纵向裂纹longitudinal corner crack收缩裂纹shrinkage crack热裂hot crack冷裂cold crack冷脆cold shortness热脆hot shortness夹渣slag inclusion皮下夹杂subsurface inclusion正偏析positive segregation负偏析negative segregation,inverse seregation V形偏析∨-shaped segregation倒V形偏析∧-shaped segregation中心偏析center segregation中心疏松center porosity鼓肚bulging脱方rhomboidity连铸-直接轧制continuous casting-direct rolling工艺CC-DR9 钢铁材料铸铁cast iron熟铁wrought iron电解铁electrolytic iron白口铸铁white cast iron灰口铸铁grey cast iron麻口铸铁mottled cast iron变性铸铁modified cast iron孕育铸铁inoculated cast iron冷硬铸铁chilled cast iron球墨铸铁nodular cast iron蠕墨铸铁vermicular cast iron可锻铸铁malleable cast iron 半可锻铸铁semi-malleable cast iron 奥氏体铸铁austenitic cast iron贝氏体铸铁bainitic cast iron共晶白口铁eutectic white iron亚共晶白口铁hypoeutectic white iron过共晶白口铁hypereutectic white iron结构钢constructional steel软钢mild steel普通碳素钢plain carbon steel正火钢normalized steel热轧钢hot rolled steel高强度低合金钢high-strength low-alloy steel 微合金钢micro-alloy steel冷轧钢cold rolled steel深冲钢deep drawing steel双相钢dual phase steel渗碳钢carburizing steel渗氮钢nitriding steel调质钢quenched and tempered steel超高强度钢ultra-high strength steel不锈钢stainless steel奥氏体不锈钢austenitic stainless steel铁素体不锈钢ferritic stainless steel马氏体不锈钢martensitic stainless steel 双相不锈钢duplex stainless steel马氏体时效钢maraging steel耐蚀钢corrosion-resisting steel耐热钢heat-resisting steel弹簧钢spring steel易切削钢free-machining steel耐磨钢abrasion-resistant steel工具钢tool steel高速钢high-speed steel冷作模具钢cold-work die steel热作模具钢hot-work die steel钢筋钢reinforced bar steel钢轨钢rail steel轮箍钢type steel管线钢pipe line steel锅炉钢boiler steel电工钢electrical steel10、冶金英语采矿mining地下采矿underground mining露天采矿open cut mining, open pit mining, surface mining采矿工程mining engineering选矿(学)mineral dressing, ore beneficiation, mineral processing矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy化学冶金(学)chemical metallurgy物理冶金(学)physical metallurgy金属学Metallkunde冶金过程物理化学physical chemistry of process metallurgy 冶金反应工程学metallurgical reaction engineering冶金工程metallurgical engineering钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel有色冶金(学)nonferrous metallurgy真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensive utilization ofmineralresources中国金属学会The Chinese Society for Metals 中国有色金属学会The Nonferrous Metals Society of China采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw materials矿床mineral deposit特殊采矿specialized mining海洋采矿oceanic mining, marine mining矿田mine field矿山mine露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity开采强度mining intensity矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics选矿厂concentrator, mineral processing plant 工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle 粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine, crude精矿concentrate粗精矿rough concentrate 混合精矿bulk concentrate 最终精矿final concentrate尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening, sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation, gravity concentration 磁选magnetic separation电选electrostatic separation浮选flotation化学选矿chemical mineral processing自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite铁燧石taconite褐铁矿limonite菱铁矿siderite镜铁矿specularite硬锰矿psilomelane软锰矿pyrolusite铬铁矿chromite黄铁矿pyrite钛铁矿ilmennite金红石rutile萤石fluorite高岭石kaolinite菱镁矿magnesite重晶石barite石墨graphite石英quartz方解石calcite石灰石limestone白云石dolomite云母mica石膏gypsum硼砂borax石棉asbestos蛇纹石serpentine阶段破碎stage crushing 粗碎primary crushing 中碎secondary crushing细碎fine crushing对辊破碎机roll crusher粉磨机pulverizer震动筛vibrating screen筛网screen cloth筛孔screen opening筛上料oversize筛下料undersize粗磨coarse grinding细磨fine grinding球磨机ball mill衬板liner分级机classifier自由沉降free setting沉积sedimentation石灰lime松油pine oil硫化钠sodium sulfide硅酸钠(水玻璃)sodium silicate, water glass过滤filtration过滤机filter给矿,给料feeding给矿机feeder在线分析仪on line analyzer在线粒度分析仪on line size analyzer超声粒度计ultrasonic particle sizer, supersonic particle sizer。
Ag_SiO_2纳米复合物金属增强荧光释放法检测葡萄糖_夏晓东
Ag @S iO 2纳米复合物金属增强荧光释放法检测葡萄糖夏晓东 易平贵3 于贤勇(湖南科技大学化学化工学院 湘潭411201)摘 要 制备了Ag@Si O 2纳米复合物,罗丹明B 通过物理掺杂结合在Si O 2壳层。
由于金属增强荧光效应,罗丹明B 的荧光增强到417倍。
Ag 核易被H 2O 2氧化,Ag 核氧化后产生荧光增强释放效应。
基于金属增强荧光释放建立了一种新型葡萄糖检测方法,采用交联法在罗丹明B 掺杂的Ag@Si O 2纳米复合物的Si O 2壳层固定葡萄糖氧化酶。
检测浓度范围为012~618mmol/L,检测限可达0106mmol/L 。
由于H 2O 2氧化Ag 核反应迅速,检测体系对葡萄糖的响应快。
关键词 Ag@Si O 2,纳米复合物,金属增强荧光,金属增强荧光释放,葡萄糖检测中图分类号:O655 文献标识码:A 文章编号:100020518(2009)12214562052008211212收稿,2009205220修回国家重点基础研究发展规划“九七三”项目子项目(2003CB716005)、国家自然科学基金(20772027)资助项目通讯联系人:易平贵,男,博士,教授;E 2mail:pgyi@hnust .edu .cn;研究方向:分子构效和分子检测贵金属纳米粒子可使荧光体的荧光得到增强的现象称为金属增强荧光效应。
金属增强荧光效应具有增加荧光量子产率、减小荧光寿命、提高光稳定性等特点[1]。
金属增强荧光效应与荧光基团到金属表面的距离有关[1]。
纳米银常用来构造金属增强荧光器件[1~5],并发展了一些应用研究[4,5]。
A slan 等[6]制备了Ag@Si O 2纳米复合物,掺杂不同种类的荧光物质后,荧光物质的荧光强度增强了数倍,采用氰化物溶解银核后,荧光强度恢复。
然而其应用研究还未见报道。
目前,临床上最常用的葡萄糖检测方法是葡萄糖氧化酶(G Ox )分析法,它具有专一性好、反应速率快和抗尿酸、抗坏血酸干扰的特点[7]。
类普鲁士蓝的制备及其活化PMS降解双酚S
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 12 期类普鲁士蓝的制备及其活化PMS 降解双酚S杨有威1,2,3,曾亦婷1,2,郭昌胜3,罗玉霞1,2,高艳1,2,王春英1,2(1 矿冶环境污染防控江西省重点实验室,江西 赣州 341000;2 江西理工大学资源与环境工程学院, 江西 赣州341000;3 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012)摘要:通过简单共沉淀法合成了类普鲁士蓝化合物(CoFe-PBA ),用于活化过一硫酸盐(PMS )降解有机污染物双酚S (BPS )。
使用扫描电镜、X 射线衍射、X 射线光电子能谱等手段对CoFe-PBA 进行表征,结果表明CoFe-PBA 由紧密结合的Co 3[Fe(CN)6]2构成,为纳米级,表面均匀分布着C 、Fe 、Co 、O 元素,具有丰富的活性位点。
催化剂投加量300mg/L 、PMS 投加量400mg/L 、pH=5.89条件下,CoFe-PBA/PMS 降解体系40min 内去除73.77%的BPS ,对酸性和共存离子(SO 42−、NO 3−和Cl −)敏感,碱性环境能促进PMS 快速活化,重复实验显示该体系具有良好稳定性,使用4次后仅下降26.70%,活化性能优于其他材料。
机理分析表明,CoFe-PBA 与PMS 相互作用,作用过程中改变了金属位点价态,发生电子转移,产生各种活性物质降解BPS ,其主要作用活性物种为1O 2;产物分析表明,在CoFe-PBA 活化PMS 系统中,BPS 可历经三种路径最终转化为开环产物及CO 2和H 2O 。
本研究通过低耗能、低成本、快速简易的方法制备CoFe-PBA ,可为活化PMS 绿色降解BPS 提供思路。
关键词:双酚S ;过硫酸盐活化;类普鲁士蓝;过渡金属中图分类号:X703 文献标志码:A 文章编号:1000-6613(2023)12-6676-11Preparation of Prussian blue and its activation of PMS fordegrading bisphenol SYANG Youwei 1,2,3,4,ZENG Yiting 1,2,GUO Changsheng 3,LUO Yuxia 1,2,GAO Yan 1,2,WANG Chunying 1,2(1 Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy,Ganzhou 341000, Jiangxi, China; 2 School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China; 3 State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences, Beijing 100012, China)Abstract: A Prussian blue-like compound (CoFe-PBA) was synthesized by a simple co -precipitation method for activating permonosulfate (PMS) to degrade organic pollutant bisphenol S (BPS). CoFe-PBA showed high activity on the removal of bisphenol S from activated PMS. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize CoFe-PBA. The results showed that CoFe-PBA was composed of Co 3[Fe(CN)6]2, which was in nanometer scale. The surface was evenly distributed with C, Fe, Co, O elements, with abundant active sites. Under the conditions of catalyst研究开发DOI :10.16085/j.issn.1000-6613.2023-0803收稿日期:2023-05-15;修改稿日期:2023-07-21。
一种热解炭在金属钠中的相变
一种热解炭在金属钠中的相变徐子颉*吉涛王玮衍夏炳忠马超甘礼华(同济大学化学系,上海200092)摘要:通过酚醛树脂的裂解和碳化所形成的热解炭与金属钠在氩气保护气氛中加热,得到一种无定形碳在常压和较低温度下进行石墨化的方法,并研究了热解炭在金属钠熔体中的相变.对所得样品用X 射线粉末衍射(XRD)、光散射拉曼光谱、透射电子显微镜(TEM)以及Brunauer-Emmett-Teller (BET)法氮气吸附进行表征与分析.结果表明:热解炭在金属钠熔体中于800°C 加热24h,发生明显的石墨化;于900°C 加热24h,所得样品的石墨化度为40%,石墨化碳的平均厚度约为40nm,孔结构由微孔转变为介孔.探讨了金属钠在无定形碳中的渗透扩散导致其相变的原因.关键词:酚醛树脂;热解炭;石墨化;金属钠;相变中图分类号:O642;O792Phase Transformation of Pyrocarbon in Molten Sodium MetalXU Zi-Jie *JI TaoWANG Wei-YanXIA Bing-ZhongMA ChaoGAN Li-Hua(Department of Chemistry,Tongji University,Shanghai 200092,P .R.China )Abstract :A method to graphitize amorphous carbon was carried out by annealing pyrocarbon from crackedphenolic resin in molten sodium metal at a lower temperature and ambient pressure and the phase transformation of pyrocarbon from amorphous carbon to crystallized carbon was studied.X-ray diffraction (XRD),Raman scattering spectroscopy,transmission electron microscopy (TEM),and nitrogen gas physisorption by the Brunauer-Emmett-Teller (BET)method were used to probe the prepared samples for carbon composition,particle size,and morphology.The graphitization of amorphous carbon was obvious when being annealed in molten sodium metal in argon atmosphere at 800°C for 24h.For the sample annealed at 900°C for 24h,the degree of graphitization was 40%and the average thickness of the graphitized carbon layers was about 40nm.The effect of sodium metal infiltration into the matrix of amorphous carbon on the graphitization is also discussed.Key Words :Phenol resin;Pyrocarbon;Graphitization;Sodium metal;Phase transformation[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .,2011,27(1):262-266JanuaryReceived:August 9,2010;Revised:September 12,2010;Published on Web:November 15,2010.∗Corresponding author.Email:xuzijie-tj@;Tel:+86-21-65982654-8430ⒸEditorial office of Acta Physico ⁃Chimica Sinica炭/炭复合材料是一种多相非均质混合物,因其具有高比强度、高比模量等显著的材料结构性能,逐渐成为新一代航空航天材料的发展方向.然而炭/炭复合材料的石墨化,会影响该类材料的力学性能、物理性能和化学性能,是最重要的结构控制因素之一,通过调整该类材料的石墨化状态,可改善其综合性能,从而满足不同的使用要求.因此,开展无定形碳材料在较低温度下的石墨化研究对炭/炭复合材料的应用具有重要的意义.无定形碳的石墨化就是在一定的二维平面范围内有序的乱层结构碳的残片进行定向重排的相变过程.由于在该相变过程中,无定形碳容易形成亚稳态,使得这种相变的阻力增大,因此商品化石墨的生产一般都在2700°C 左右进行.但是,在如此高温条件下进行石墨化,使得材料的力学和电学性能受到损害,如无定形碳材料在2700°C 经石墨化262No.1徐子颉等:一种热解炭在金属钠中的相变所得样品的放电容量为74mAh·g-1,而在1000℃温度条件下石墨化后,所得样品的放电容量为250 mAh·g-1[1].目前,基于溶解再析出和碳化物转化机理的催化石墨化方法可以有效地降低石墨化温度,具体方法主要有两类:其一,在碳基质中加入过渡金属及其氧化物,如Fe、Mn、Cr等过渡金属及其氧化物[2-3];其二,在碳基质中形成三组分的插层化合物,如Tanaike等[4]将金属Li、Na和K溶于四氢呋喃中,获得相应的有机金属化合物,结果表明所得材料的石墨化度很低.Rojas-Cervantes[5]和Oya[6]等合成了分别含有金属Na、K、Mg和Zr的碳的干凝胶,在1000°C氮气气氛中烧结,没有发现这些金属的催化活性,得到的仍然是无定形碳.由于酚醛树脂产碳量高,常被用作制备先进碳材料的先驱物.选用酚醛树脂类物质作为碳源,经热解后得到热解炭,开展其石墨化的研究近年来已引起人们的重视.张福勤等[7]研究了化学气相沉积热解炭的可石墨化性;王永刚等[8]采用化学气相渗透对泡沫碳进行复合处理,在2500°C得到石墨化泡沫碳;周德凤等[9]报道了在酚醛树脂中加入氯化锌,可以改变热解炭的微观结构及石墨化程度;Chen等人[10-11]使用硝酸镨作催化剂研究其对酚醛树脂热解炭的石墨化作用,在催化剂含量为15%(w)以及2400°C时获得最优化的石墨化条件,他们还用含量为29%(w)的石墨氧化物作催化剂在2400°C时获得较完整的石墨结构;Cai等[12]使用含量为5%(w)的铁镍催化剂,在外加磁场以及1200°C时实现酚醛树脂的石墨化.除此之外,还有文章报道[13]使用金属钇作催化剂研究酚醛树脂的催化石墨化.本文通过将酚醛树脂裂解和碳化后形成的热解炭与金属钠在氩气保护下加热,开展无定形碳在金属钠熔体中的相变研究.采用X射线粉末衍射(XRD)以及激光散射拉曼光谱技术,对所得样品碳组成的相态以及层内、层间碳原子的状态进行表征;通过透射电子显微镜(TEM)观察碳组成的形貌,通过比表面积分析研究热解炭在石墨化前后孔结构特征的变化.探讨了金属钠在无定形碳基质中的渗透与扩散对无定形碳相变产生的影响.该方法可用于新型结构的炭/炭复合材料的石墨化研究中.1实验1.1热解炭的制备将市售酚醛树脂(2130型,无锡久耐防腐材料有限公司)放入烘箱(102A-2型,上海试验仪器总厂)中,调节温度到80°C,保温10h,再升温至120°C,保温10h,继续升温至140°C并保温24h,使酚醛树脂完全固化.将固化后的酚醛树脂放入管式炉(SK2-15-13T型,上海实验电阻炉厂)中,通入氩气保护,以10°C·min-1的升温速率升温至200°C,保温3 h,再以相同的升温速率升温至800°C并保温4h,得到热解炭.1.2石墨化方法称取5g按上述方法制备的热解炭,放入带盖的坩埚中,在充有氩气的手套箱(ZKX1型,南京南大仪器厂)内切割金属钠块,并称取3g放置其表面,再将坩埚置于管式炉(SK2-15-13T型,上海实验电阻炉厂)中并通入氩气保护,以10°C·min-1的升温速率升温至所设定温度并保温24h,本实验所设定的温度分别是600、700、800和900°C;将所得样品用蒸馏水超声清洗,直至洗液的pH值为7,再将清洗后的用品在烘箱(102A-2型,上海试验仪器总厂)内于120℃干燥.1.3表征方法使用D8FOCUS型X射线粉末衍射仪(德国, Bruker AXS)对样品进行XRD表征,测试条件为40 kV,40mA,Cu Kα射线;使用Renishaw inVia激光拉曼光谱仪(英国,Renishaw)对所得样品进行拉曼光谱分析;使用S-TWIN F20型场发射透射电镜(荷兰, FEI)对样品进行TEM形貌表征;使用Micromeritics Tristar3000比表面积测定仪(美国,Micromeritics),采用Brunauer-Emmett-Teller(BET)法分析样品的比表面积、孔径分布以及孔结构特征.2结果与讨论选用酚醛树脂作为碳源,经800°C热解、碳化后得到热解炭,用以研究无定形碳材料在金属钠熔体中的相变.由于残存于样品中的金属钠在样品的后处理中遇到空气被氧化,形成的氧化钠成分在XRD检测时会产生很强的衍射峰,干扰了对碳组成的表征,因此,样品在表征前必须经蒸馏水洗涤,去除氧化钠组分.2.1不同温度条件下热解炭在金属钠中的相变图1是热解炭在不同温度条件下进行热处理所得样品的XRD谱.图谱(1)为在没有金属钠存在的条件下,将热解炭在900°C保温24h,所得样品的碳组成仍然是典型的无定形碳,表明无定形碳在此温263Vol.27Acta Phys.⁃Chim.Sin.2011度时没有发生相变.当热解炭与金属钠在600°C 加热24h,得到谱(2),根据文献[6]的解释,表明金属粒子已经渗透和扩散在无定形碳的基质中,使得其中的乱碳结构残片开始在局部进行重新取向,导致2θ分别在25°和45°附近出现较为明显的漫衍射峰.当热解炭与金属钠中的加热温度为700°C 时,得到谱(3),从中可见其特征衍射峰已经明显锐化,表明此时热解炭中的无定形碳已经晶格化.当加热温度升高至900°C ,得到谱(4),显示石墨化碳的特征衍射峰更加锐化.当样品的加热温度从700°C 升高至900°C 时,样品的衍射数据也相应发生变化,其中2θ值从25.9°增加至26.3°,相应的d 002值从0.3433nm 变为0.3406nm.根据Mering 和Maire 公式[14],样品的石墨化度可由G =((0.3440-d 002)/(0.3440-0.3354))×100%计算得到,当加热温度从700°C 升高至900°C 时,所得样品的石墨化度分别从8.5%增加至40%.对一系列样品的XRD 表征结果的分析表明,在金属钠熔体中,无定形碳的碳组成发生明显的变化,随着加热温度的升高,热解炭的石墨化特征愈加明显.图2是所选样品的拉曼谱图.在1350、1570和2700cm -1处的谱峰被分别称为D 、G 和G ′峰.图谱中D 峰是发生于相同碳原子间的拉曼振动模式,G 峰则表示两种不同碳原子之间的光子振动模式,而G ′峰表示一种源自晶面之间的碳原子所发生的光子振动模式,是一种二阶拉曼散射过程.谱图(1)是酚醛树脂裂解碳在没有金属钠存在的条件下,经过900°C 加热后所得样品的拉曼谱图,图谱中D 峰强度高于G 峰并且两峰没有完全分离,另外,图谱中无G ′峰,表明样品对激光的漫散射分别在乱碳结构残片内部的碳原子以及乱碳结构残片间进行,这种光子振动模式证明了热解炭中的无定形碳含有二维有序的乱碳结构而且呈现杂乱无章地堆积.图谱(2)是热解炭在金属钠中,经过700°C 加热所得样品的拉曼谱图,此时D 峰强度降低,G 峰强度增加并呈现两峰分离的迹象,表明激光在样品中不同碳原子间的光子振动模式加强.另外,图谱中同时呈现一个明显的G ′峰,表明光子振动发生在石墨化层间的碳原子之间,进一步说明乱碳结构残片在此时已经发生明显的定向重排.图谱(3)是热解炭在金属钠中,经过900°C 加热所得样品的拉曼谱图,此时D 峰强度明显降低,G 峰强度明显增加而且两峰完全分离,表明光子的振动模式主要发生在晶面之间的碳原子中,说明该样品中的碳原子已经转变为石墨结构.2.2金属钠在无定形碳中的渗透与扩散对其相变的影响根据对所得样品进行的XRD 和拉曼谱分析知,在没有金属钠存在时,热解炭在900°C 加热条件下没有发生相变,而有金属钠存在的条件下,无定形碳在700°C 加热24h 后,观察到无定形碳开始向结晶态碳转化,随着加热温度的升高,这种相态转化更加明显.因此,金属钠的存在是导致热解炭在加热条件下发生相变的必要因素.虽然目前对金属钠与碳组成的相互作用机制进行原位的实时表征和分析还比较困难,但是,根据XRD 和拉曼的表征结果,不仅证实了这种相变的发生,而且揭示金属钠对该相变的重要影响,即金属钠原子在无定形碳中的渗透与扩散引起了其中乱碳结构残片的重排与取向.当金属图1热解炭在不同条件下退火24h 的XRD 图谱Fig.1XRD patterns of pyrocarbons annealed at differentconditions for 24h(1)900°C without sodium metal;(2)600°C,(3)700°C,and(4)900°C in molten sodiummetal2热解炭在900°C (1)以及在金属钠中于700°C (2)和900°C (3)加热24h 的拉曼图谱Fig.2Raman spectra of pyrocarbons annealed at 900°Cwithout sodium metal (1)and at 700°C (2),900°C(3)in molten sodium metal for 24hNo.1徐子颉等:一种热解炭在金属钠中的相变钠原子渗入到乱碳结构残片间,钠原子外层电子的高活泼性,影响了残片中碳原子周围的电场环境,同时渗透与扩散在其中的钠原子可以形成金属钠的连续相,并充当优良的导热介质,使得无定形碳在石墨化过程中的结晶潜热能够通过导热介质及时地向周围环境释放,从而有利于无定形碳在较低温度条件下发生相变.金属钠在无定形碳中的渗透、扩散与加热温度密切相关.随着加热温度的升高,对所得样品的XRD 和拉曼表征结果都表现出了高度的一致性,即石墨化度增加.无定形碳在金属钠中的相变过程示意图如图3所示.对样品形貌学的观察进一步证实了金属钠对热解炭在其中发生相变的影响.图4(a)是热解炭与金属钠在700°C 加热24h 所得样品的TEM 照片,图中“A ”所在区域为无定形碳,“T ”所在区域显现出湍流碳的形貌特征,“G ”区域则显现出石墨化碳的形貌特征.通过对样品不同区域进行TEM 观察,发现湍流碳总是出现在无定形碳和石墨化碳的过渡区域,其形貌特征显示出无定形碳中的乱碳结构残片已在有限范围内进行了定向重排,但不够完整.在700°C 加热条件下,金属钠在无定形碳中的渗透与扩散不完全,没有形成均匀的金属钠连续相,使得乱碳结构残片的定向重排过程不能在长程范围内连续进行.湍流碳的出现使得无定形碳向石墨化碳转化的阻力增加,这也是商品化石墨必须在高温条件下生产的主要原因.图4(b)是热解炭与金属钠在900°C 加热24h 所得样品的TEM 照片,随着加热温度的升高,石墨化碳的厚度与长度显著增加,所得样品中石墨化碳的平均厚度约为40nm,显然升高温度加速了金属钠在碳基质中的渗透与扩散,有利于无定形碳向石墨化碳的转化.2.3在金属钠作用下热解炭中孔结构特征的变化图5是热解炭在金属钠中发生相变前后样品的对氮气的吸附-脱附等温线.从图中可见,热解炭样品的吸附-脱附等温线属于类型I,插图所示的孔分布曲线表明热解炭中存在大量孔径小于2nm 的微孔,等温线中很小的滞后环表明热解炭中的微孔对氮气的吸附与脱附具有良好的可逆性,这些孔结构特征反映出热解炭中的微孔分布在无定形的乱碳结构残片之间并具有良好的连通性.然而当热解炭与金属钠在900°C 加热24h 所得石墨化热解炭样品的氮气吸附-脱附等温线出现一个较大的滞后环(如等温线2所示),插图中的孔分布曲线显示样品中的孔径尺寸主要集中在4-5nm 之间,属于介孔尺寸,表明热解炭在石墨化前后孔结构发生由微孔向介孔发生转变.导致孔结构转化的原因是由于热解炭中图3无定形碳在金属钠中的相变过程示意图Fig.3Sketch map of the phase transformation of amorphous carbons in molten sodium metalThe conditions of (1)-(4)are the same as those inFig.1.图4热解炭与金属钠在700(a)和900°C (b)加热24h 所得样品的TEM 照片Fig.4TEM image of pyrocarbons annealed in molten sodium metal at 700°C (a)and 900°C (b)for 24hArea A denotes amorphous carbons,aera T denotes turbostraticcarbons,and area G denotes graphitic carbons.图5样品的氮气吸附-脱附等温线Fig.5Nitrogen adsorption desorption isotherms ofselected samplesIsotherm 1represents the sample of pyrocarbon and isotherm 2represents the sample of graphitized pyrocarbon.Inset is pore sizedistributioncurve.265Vol.27 Acta Phys.⁃Chim.Sin.2011的乱碳结构残片在金属钠原子的作用下定向重排,使得原先分布在其中的相互连通的微孔发生合并增大,形成了分布在石墨化碳层间的插层状孔,由于此时毛细管作用力的增强,导致样品对氮气的脱附滞后.另外,从图中可见,热解炭发生石墨化后,随着乱碳结构残片的定向重排使得石墨化热解炭样品的比表面积有所下降.酚醛树脂热解炭在金属钠作用下,其孔结构特征的改变是碳组成发生相变的结果,同时也进一步证实了金属钠原子在乱碳结构残片间的渗透与扩散有利于其发生定向重排,从而导致热解炭能够在较低的温度条件下实现石墨化.催化石墨化是通过在碳基质中引入催化剂,以降低石墨化温度,但是,目前的方法对于一些新型碳材料的石墨化显现出一定的缺陷.首先,在材料的制备阶段必须将催化剂加到碳材料的基质中,这势必增加了材料制备的难度,甚至对材质特性产生不良影响.例如,对碳气凝胶材料的石墨化,如果采用现有的催化石墨化方法,就需要在碳气凝胶制备所必经的溶胶-凝胶过程中加入催化剂,它可能改变胶体离子的微环境,继而影响了碳气凝胶的结构特性.其次,目前所采用的催化剂多数是过渡金属的氧化物,在碳材料石墨化以后,很难将催化剂从碳材料的基质中去除干净,这可能对转型后碳材料的电学特性或电化学催化特性等产生影响.再者,现有催化石墨化方法[4-6]对于碳气凝胶的石墨化效果仍不理想.酚醛树脂热解炭在金属钠作用下发生相变进行石墨化,该方法不仅具有操作简单的特点,而且可以避免在碳基质中加入催化剂给材质纯度、特性带来的不利影响并且可以降低材料的制备难度.另外,该方法有利于一些新型多孔性碳材料的石墨化,因为多孔性结构十分有利于金属钠在碳基质中的渗透与扩散.而实现这类材料的低温石墨化,可以使无定形碳材料的多孔特性与石墨晶体材料的材质特性相结合,有助于扩展碳材料在传感器、探测器、航天以及新能源电池等领域的应用范围.我们以自制的碳气凝胶通过文中方法进行石墨化研究,初步结果表明在800°C实现了碳气凝胶的石墨化,相关研究工作正在进行中.3结论由酚醛树脂经过裂解碳化后得到的热解炭,通过与金属钠一起在氩气保护下,在800°C加热24h 可以观察到明显的石墨化现象.金属钠在无定形碳中的渗透与扩散引起乱碳结构残片的定向重排,湍流碳的形成是金属钠在其中的渗透与扩散不均匀所致,是无定形碳向石墨化碳转化的中间相态,通过升高加热温度,可以改善金属钠在其中的扩散,从而提高了石墨化程度.热解炭在金属钠作用下发生石墨化使得样品中的孔结构由微孔转化为介孔,在900°C时石墨化度达到40%,样品中石墨化碳层的平均厚度达到40nm.致谢:本文实验研究过程中的部分分析测试工作得到同济大学化学系实验中心的支持.References1Skowroński,J.M.;Knofczyński,K.;Inagaki,M.Solid State Ionics,2007,178:1372Oya,A.;Otani,S.Carbon,1979,17:1313Curtis,B.J.Carbon,1966,4:4834Tanaike,O.;Inagaki,M.Carbon,1997,35:8315Rojas-Cervantes,M.L.;Alonso,L.;Díaz-Terán,J.;López-Peinado,A.J.;Martín-Aranda,R.M.;Gómez-Serrano,V.Carbon,2004,42:15756Oya,A.;Mochizuki,M.;Otani,S.;Tomizuka,I.Carbon,1979, 17:717Zhang,F.Q.;Huang,Q.Z.;Zou,L.H.;Huang,B.Y.;Xiong,X.;Zhang,C.F.Journal of Inorganic Materials,2004,19(5):1118[张福勤,黄启忠,邹林华,黄伯云,熊翔,张传福.无机材料学报,2004,19(5):1118]8Wang,Y.G.;Lin,X.C.;Yang,H.J.;Zhang,J.S.;Xu,D.P.Journal of Materials Science&Engineering,2008,26(3):365[王永刚,林雄超,杨慧君,张江松,许德平.材料科学与工程学报,2008,26(3):365]9Zhou,D.F.;Xie,H.M.;Zhao,Y.L.;Wang,R.S.Journal of Functional Material,2005,36(1):83[周德凤,谢海明,赵艳玲,王荣顺.功能材料,2005,36(1):83]10Yi,S.J.;Chen,J.H.;Xiao,X.;Liu,L.;Fan,Z.J.Rare Earths, 2010,28(1):6911Yi,S.J.;Chen,J.H.;Li,H.Y.;Liu,L.;Xiao,X.;Zhang,X.H.Carbon,2010,48:91212Xu,S.H.;Zhang,F.Y.;Kang,Q.;Liu,S.H.;Cai,Q.Y.Carbon, 2009,47:323313Ni,Z.C.;Li,Q.T.;Yan,L.;Gong,I.L.;Zhu,D.Z.Carbon,2008, 46:36514Zou,L.H.;Huang,Q.Z.;Zou,Z.Q.Carbon(China),1998,93(1): 8[邹林华,黄启忠,邹志强.炭素,1998,93(1):8]266。
锂电池导电剂介绍carbon additives for Li 2005
3. Electrode manufacturing process (slurry preparation)电极生产过程(制浆) - dispersibility in the liquid media分散在液体介质中 - viscosity control of the slurry (solvent absorption)浆料的粘度控制
r [W*cm]
1 Resistivity level of the electrode material电极的导电
Percolation curve 渗透曲线
Slope 斜率 Ultimate resistivity level最终的电阻率
0.1510 Nhomakorabea15
vol.% C
Limits for thin film electrodes, but suitable for material comparisons 对薄膜电极有局限性,但适用材料的比较
CIBF2005, April 3rd, 2005
Graphite manufacturing process石墨生产过程 Primary synthetic graphite原生石墨
Carbon precursor 碳前体
selection, crushing Mixing,筛选,粉碎,和混合
Natural graphite天然石墨
Graphite material properties石墨性能
Graphite porosity
10 8 Vads. [[cm3]] 6 4 2 0 0.0 0.2 0.4 0.6 0.8 1.0 Pressure [p/760 Torr]
聚乙烯基咔唑共价接枝还原氧化石墨烯的制备及其宽带光限幅性能
Vol. 35 No. 5功 能 高 分 子 学 报2022 年 10 月Journal of Functional Polymers425文章编号: 1008-9357(2022)05-0425-10DOI: 10.14133/ki.1008-9357.20211025001聚乙烯基咔唑共价接枝还原氧化石墨烯的制备及其宽带光限幅性能沈希彬, 白 婷, 车 强, 陈 彧(华东理工大学化学与分子工程学院, 教育部结构可控先进功能材料及其制备重点实验室, 上海 200237)摘 要: 用表面带负电荷的还原氧化石墨烯(RGO)作为阴离子聚合引发剂,在RGO表面使N-乙烯基咔唑(NVK)原位聚合,生成可溶性聚乙烯基咔唑(PVK)共价功能化的RGO非线性光学材料(RGO-PVK)。
采用红外光谱、X光电子能谱和紫外-可见吸收光谱等对RGO-PVK进行了表征。
将RGO-PVK嵌埋在非光学活性的聚甲基丙烯酸甲酯(PMMA)中制备了具有良好光学性能的RGO-PVK/PMMA薄膜,并利用开孔Z-扫描技术研究了RGO、RGO-PVK、退火处理的RGO-PVK薄膜在532、1 064 nm激光辐照下的非线性光学(NLO)和光限幅(OL)性能。
结果表明:与RGO相比,PVK在RGO表面的共价键合显著增强了材料的宽带NLO性能和OL效应。
与没有经过退火处理的RGO-PVK/PMMA薄膜相比,退火后的RGO-PVK/PMMA薄膜展现出更加优良的NLO性能。
在532、1 064 nm的激光激发下,退火后的RGO-PVK/PMMA薄膜的非线性吸收系数(βeff)分别为306.17、350.32 cm/GW,相应的光限幅阈值分别为0.37、0.31 GW/cm2。
关键词: 还原氧化石墨烯;共价接枝;聚乙烯基咔唑;非线性光学;光限幅中图分类号: O437 文献标志码: APreparation and Broadband Optical Limiting Performance of Reduced Graphene Oxide Covalently Functionalized with Poly(N-vinylcarbazole)SHEN Xibin, BAI Ting, CHE Qiang, CHEN Yu(Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University ofScience and Technology, Shanghai 200237, China)Abstract:Graphene shows ultrafast carrier relaxation dynamics and ultra-broadband resonate nonlinear optical (NLO) response due to its extended π-conjugate system and the linear dispersion relation holding for its electronic band structure. In comparison with graphene, functionalized graphene derivatives would be expected to show more excellent NLO and optical limiting (OL) performance. By using as-synthesized graphene carbanions as initiator in the anionic polymerization, poly(N-vinylcarbazole)-covalently functionalized reduced graphene oxide (RGO) derivative (RGO-PVK) was in situ synthesized. RGO-PVK was characterized by infrared spectroscopy, X-ray electron spectroscopy and UV-Vis absorption spectroscopy. This soluble material was embedded into an optically nonactive transparent polymethylmethlacrylate (PMMA) matrix to收稿日期: 2021-10-25基金项目: 国家自然科学基金 (61378072)作者简介: 沈希彬(1997—),男,山东淄博人,硕士生,从事激光防护材料的研究。
铑催化剂催化烯烃不对称加氢反应研究进展
2016年第35卷第2期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·485·化工进展铑催化剂催化烯烃不对称加氢反应研究进展王红琴,蒋丽红,王亚明(昆明理工大学化学工程学院,云南昆明 650500)摘要:不对称催化氢化反应具有完美的原子经济性和清洁高效等特点,是最受青睐的不对称合成方法之一。
C=C、C=O、C=N的不对称加氢反应仍主要依赖过渡金属催化剂。
过渡金属催化剂,尤其是铑催化剂,催化碳碳双键的不对称加氢反应仍是一个不断发展的领域。
本文对近年来利用铑催化剂催化烯烃进行不对称氢化反应的研究进展进行了综述,着重介绍了铑-双膦配体催化体系催化烯烃不对称加氢反应的催化机理,以及铑催化剂在烯胺、不饱和羧酸及衍生物、烯醇酯和非官能团烯烃不对称氢化中的应用,并通过对现有文献的总结指出了今后铑催化剂催化烯烃氢化反应的研究重点,即:①铑-单膦配体催化烯烃不对称氢化反应的作用机理须待提出;②非官能化底物不对称催化氢化反应的手性配体亟待拓宽。
关键词:催化剂;选择性;加氢;烯烃;催化机理;配合物中图分类号:O 643 文献标志码:A 文章编号:1000–6613(2016)02–0485–08DOI:10.16085/j.issn.1000-6613.2016.02.021Research progress of olefins asymmetric hydrogenation catalyzed byrhodium catalystsWANG Hongqin,JIANG Lihong,WANG Yaming(Faculty of Chemical Engineering,Kunming University of Science and Technology,Kunming 650500,Yunnan,China)Abstract:Asymmetric hydrogenation has the advantage of cleanliness,perfect atom economy,and is one of the hottest methods of asymmetric synthesis. The asymmetric hydrogenation in C=C,C=O,C=N are still primarily dependent on the use of transition metal catalysts. The study of transition metal catalysts,especially the asymmetric hydrogenation of carbon-carbon double bond catalyzed by rhodium catalysts is still an evolving field. In the present review,the progress on asymmetric hydrogenation of olefins catalyzed by rhodium catalysts are described,including the catalytic mechanism of rhodium-diphosphine ligand catalyst system,the application of asymmetric hydrogenation of enamines,unsaturated carboxylic acids and their derivatives,enol ester as well as unfunctionalized olefins catalyzed by rhodium catalysts. The development trend of rhodium catalysts for asymmetric hydrogenation of olefins was pointed out. For instance:①the catalytic mechanism of asymmetric hydrogenation of olefins by rhodium-monophosphine ligand needs to be understood; ② more chiral ligands for asymmetric hydrogenation of unfunctionalized olefins are still wanted.Key words:catalyst; selectivity; hydrogenation; olefin; catalytic mechanisms; complexes不对称催化加氢技术是不对称催化合成技术中发展最早、应用最成熟的手性化合物合成技术,其具有完美的原子经济性和环境友好等特点。
材料科学与工程专业英语单词
abrade磨损abrasives研磨机acicular针状的activator催化剂additive添加剂adhesive粘合剂aerospace航空宇宙agglomerates团聚体alchemy乙醛alternative选择性的aluminium铝aluminosilicate铝硅酸盐amber琥珀amorphous无定性的angstrom埃anhydride酸酐anisotropic各向异性anneal退火anode阳极anodising阳极化apatite磷灰石aqueous chemistry液相化学aroma compound芳香族化合物astronomy天文学astrophysics天文物理学asymmetric不对称的austenitic奥氏体的bactericidal properties 杀菌性能bakeware 烘焙用具ballast 压舱物,沙囊beryllium 铍binary 二进位的,二元的bioassimilation 生物同化作用biodegradability 生物降解能力biomass 生物的数量,生物质、biomimetics 仿生学bioplast 原生体biopolymer 生物高聚物biosensor 生物传感器blade 刀刃,刀片blend 混合block copolymer 嵌段共聚物body fluids 体液boron 硼brittle 易碎的,脆性的bulk material 体相材料calcium hydroxyapatite胶原羟基磷灰石cancellous多孔的capacitor离散的carbide 碳化物carbon dioxide二氧化碳carboxylic acid羧酸cast 铸件cast浇铸castor oil蓖麻油catastrophic悲惨的cathode阴极cation正离子cellulose纤维素cementation黏固作用ceramic陶器的chromium铬cleaving裂开cluster丛生coalesce合并cobalt钴collagen形态colloid 胶体colloidal胶质的colorant着色剂complementary补充的composite合成物compostability肥料稳定性condensation浓缩configuration电容器contamination污染continual连续的contour 轮廓copolymer共聚物corrode 使腐蚀corrosion 腐蚀cortical皮层的cosmetic化妆品covalent共价地craft工艺creep corrosion裂隙腐蚀creep resistance蠕变阻力crevice裂缝critical shear stress 临界剪切应力crucial至关重要的crush碾碎cryogenic低温学的cupro-nickel alloys铜镍合金curing agent固化剂currency货币curvation弯曲data storage device 数据存储装置dealloying脱合金成分腐蚀deceptive欺骗性的degradation 退化delamination剥离depict描述detector 探测器deteriorate使恶化dezincification 脱锌diacid 二价酸diamine 二元胺dielectric电介质dilute稀释dimension scale尺寸比例discrete离散的discrete energy level 离散能级dispersion分散distinguished by以…为特征drainpipe 排水管drum击鼓ductile柔软的eco-friengly环境友好的elastomer弹性体electeomotive电动势的electrode电极electrooptical电子光学的electrostatic adsorption静电吸附elimination消除encapsulate压缩encapsulation包装encase围绕encountered遇到enrich使充足enzyme酶epoxy环氧基树脂etching蚀刻eutectic共熔得1evaporation蒸发exclusively唯一的exfoliation剥落extension延长extractive提取的extrusion挤出fatigue疲乏,疲劳,累活;femoral-head 股骨头ferrites陶铁磁体ferromagnetic铁磁材料,铁磁体ferromagnetic material铁磁性材料ferrous 含铁的filiform丝状的,纤维状的flexible柔韧性,易曲的floppy disk软盘fluorescent日光灯;a.荧光的folding可折叠的foodstuff食品,粮食forge稳步前进,铸造,伪造formaldehyde甲醛,蚁醛formula 公式,规则fraction小部分,片段,分数fracture破裂,骨折;fuel cell燃料电池fungi真菌类galvanic流电的,抽搐的,以流电所产的gas turbine燃气涡轮gecko壁虎getter吸气剂goggles护目镜,眼罩grind 磨碎,碾碎,折磨guillotine 断头台(切纸的)闸刀;hafnium铪hematite赤铁矿hierarchical分层的,体系的hockey sticks曲棍holographic technique全息摄影技术homopolymer均聚物horticulture园艺hybrid混合物;a.混合的imitate模仿,仿效,仿制immune免疫的impede妨碍,阻碍imperative紧急的,必要的impracticable不可行的impurity不纯,杂质indicator指示器,指示剂ingenious巧妙的,有独创性的inhale吸入inhibitor抑制剂injurious有害的,伤害的inomer离聚物,离子交联聚合物integrated circuit集成电路interfacial phenomena界面现象intergranular 晶粒间的,粒间的intricate复杂的,错综的investigation 调查ion implantation离子注入irreversible 不能撤回的,不能取消的isoprene橡胶机制isotropic等方性的,各向同性的ketone酮kevlar纤维Blamellar薄片状的,薄层状的lathe车床;v.用车床加工lattice晶格leach滤去lignin木质素lithium-aluminosilicate 锂铝硅酸盐lithography 光刻,石版印刷术lotus荷花lubricant滑润剂luster光泽macromolecule 巨大分子,高分子macroscopical宏观的,肉眼可见的magnetic有磁性的magnetic memory 磁存储器magnetoresistive effect 磁阻效应make advantage of利用malleability 可锻性,延展性malleable 有延展性的,可锻的marine turbine 船用汽轮机matrix.矩阵matrix material 基质材料mediate仲裁,调停memory存储器metalloid非金属;a.非金属的metallurgist冶金家,冶金学者metallurgy冶金,冶金术metalworking 属加工术,金属工methacrylate异丁烯酸盐microbe微生物,细菌microprocessor微处理器microstructure 微观结构,显微结构minic 模仿molten 熔化;a.熔铸的molybdenum 钼moment力矩monoclinic单斜的monolayer单层mould模具nannocomposite纳米复合的nanobiotechnolgy纳米生物技术nanoelectronics光电技术nanoonion纳米葱nanorod纳米管nanotubeconjugated纳米管共轭的negative底片niobium铌noble贵族nucleosynthesis核聚变nucleotide核苷numismatics古币nylon尼龙oleic acid 油酸on the verge of 接近于optimum 最适宜ore 矿石orientation 方向orthogonal 正交的orthopedic 整形外科的orthotropic 正交各向异性的oxidation 氧化oxide 氧化物oxidize 氧化,生锈percolation 过滤permeability 渗透性,磁导率peroxidation 过氧化反应persistence 坚持,持续petrochemical 石化的;石化产品phenol 苯酚photoresist 光阻材料physical law 物理法则physiological 生理的piezoelectric 压电的pin 将~用针别住,钉住pin 将~用针别住,钉住pitting 蚀损斑plasma etching 等离子腐蚀plasma 血浆,等离子体plasticizer 可塑性plating 电镀plating 电镀pliable 易曲折的,柔软的polyamide 聚酰胺polyelectrolyte 聚合电解质polyethylene terephthalate 聚乙烯对苯二酸脂polyethylene 聚乙烯polyhedron 多面体polynucleotide 多核苷酸polyolefin 聚烯烃polypeptide 多肽polyphase 多相polypropylene 聚丙烯polysaccharide 多糖polystyrene 聚苯乙烯polyvinylchloride 聚氯乙烯porosity 多孔性portable 轻便的possess 持有,拥有pottery 陶器precaution 预防措施,注意事项precipitate 沉淀物;使沉淀precipitation 沉淀法preferential 优先的prepolymer 预聚物principle 主要的,最重要的probabilistic 概率的,概率性的processing aid 加工助剂proliferation 增殖prominent 卓越的,显著的,突出的prone 倾向于prooxidant 氧化强化剂propagation 扩展propellers 螺旋桨pyrex 耐热玻璃pyrolysis 高温分解pyrolytic 热解的pyrometallurgy 火法冶金学quantum confinement量子限域效应quench淬火radar雷达radiolysis 射解,辐解rare earth稀土元素rarity稀有refractive index折射率refractories耐火材料regain 收回,恢复residue残余,剩余物resilient a.弹回的,有回弹力的resin n.树脂rhenium铼rigid刚硬的,严格的roll.滚动;v.辗,轧rotate(使)旋转rotor blades动叶片rupture strength 断裂强度rust铁锈ruthenium 钌sacrifice牺牲sanitaryware卫生洁具sanskrit梵文sapphire蓝宝石schematically原理性的sealability胶黏性segregate分离的self-assembly自组装的self-organization自组织semiconductor半导体shattering震动shellac虫漆single/multi-wall carbon nanotubes单/多臂碳纳米管sintered烧结sinter熔渣size parameter尺寸参数skeleton骨架sketch概括soft ferrites软性铁氧体soildification凝固solely单独的sol-gel溶胶凝胶spatial resolution空间分辨率spectrum光谱starch淀粉stiff僵硬的stoichiometric number化学计算值storage medium记录材料styrene苯乙烯sublattice子格submicron亚微米substrate基片successor下一代sucseptible易受影响的sulfur硫磺superalloy超耐合金钢superhydrophobic超疏水的superparamagnetism超顺磁性susceptibility磁化系数swellable可膨胀的synergetic effect协同作用tableware餐具tailing残渣,尾料take into account考虑,重视tantalum钽tendon腱,肌腱terminology术语学tetragonal四角形的,正方晶系的tetrahedral四面体的the electron mean free path电子平均自由行程the spin relaxation length自旋张弛长度the visible range可见光区thermoplastic热塑性的thermoset热固性的tiles瓷砖tire cord 轮胎帘布titanium钛tonne 公吨toxic residue 残毒trabeculae 骨小梁transcribe转录transistor 晶体管transmutation变形,变化tumor肿块,肿瘤tungsentungsten钨,钨锰铁矿turbine涡轮,涡轮机turbocharger涡轮增压器ultrasonic treatment超声波处理unit mass单位质量unpainted未上漆的unsealed打开的uppermost最高的usage使用valance bands 价带variant不同的;n.变体,变异体ventilation通风,换气versatile 通用的,万能的viability生存能力vice versa反之亦然vinyl 乙烯基viscous粘的vulcanization 硫化vulcanize 硫化wax 蜡,蜡状物,增加;v.变大yield stress屈服应力zirconium 锆。
外文翻译(英文)陶瓷颗粒细度对氧化锆-莫来石复合材料性能的影响.
Refractories and Industrial Ceramics Vol. 52, No. 1, May, 2011EFFECT OF CERAMIC POWDER FINENESSON MULLITE-ZIRCONIUM CERAMIC PROPERTIESG . P. Sedmale, 1A. V . Khmelev, 1and I. É.Shperberga 1Translated from Novye Ogneupory , No. 1, pp. 41–46, January 2011.Original article submitted October 29, 2010.Results are provided for a study of the development of high-temperature mullite-zirconium ceramic with use of activated ceramic powders prepared by grinding for different times with addition of illite clay, and from pure oxide powders. It is shown that increased activity and amorphicity of ground particles considerably pro-motes formation of mullite phase at 1200°C,and also transition of the monoclinic modification of ZrO 2to tetragonal, particularly with an increase in firing temperature. It is proposed that as a result of rapid “freezing”the structure retains the high-temperature modification of ZrO 2, having a tendency with slow ceramic cooling to transform into the monoclinic modification.Keywords:mullite-zirconium ceramic, illite clay, grinding, particle size.INTRODUCTIONMullite-zirconia (mullite-corundumceramic is one of the materials used extensively in high-temperature produc-tion processes. A distinguishing feature of mullite-zirconia ceramic is the retention of high strength, including at ele-vated temperature and with temperature falls. The set of these properties predetermines further application of the ce-ramic and use of it in high-temperature production processes.It has been established [1]that mullite-zirconia ceramic may be prepared from mixed starting compositions, includ-ing g-Al 2O 3, silica-gel, ZrO 2mon, Y 2O 3with addition of 7.75–8.75wt.%illite clay, promoting sintering and forma-tion of a mullite phase at lower temperatures [2].On the other hand, the importance is indicated in [3,4]of the degree of grinding of the starting powders. It has been established grinding ceramic powders leads to destruction of the particle crystal lattice, and as a consequence to amorphization. Here higher sintering indices are achieved for ceramic material and correspondingly density, and ultimate strength in bend-ing and compression. However, a distinguishing feature of rapid grinding [3]is formation of coarse agglomerates con-sisting of particles strongly sintered to each other. It has been proposed that agglomeration is due to heat liberated during grinding. Therefore, as indicated in [5],the duration of grind-ing should severely limited and determined by experiment1for each specific case. According to the authors of the pres-ent articles, grinding duration for starting powders is 5–6h.It is also noted [6]that grinding of starting powder pro-motes crystallization of mullite and tegtragonal ZrO 2in ce-ramic material. After a short period of grinding (4–6h rapid mullite formation during firing is observed at 1180–1280°C;further mullite formation occurs over the ex-tent of the next 350°C.It has been established [7]that with an average content of particles with a size of0.5mm in the starting powder the increase in ultimate strength in compression and even elas-ticity modulus was about 30%compared with a specimen containing particles with a size of more than 5mm. It has been noted that the size of mullite crystal particle that form, which are 50–70nm, and sometimes 80–95nm, is of con-siderable importance.The aim of this work includes determining the effect of ceramic powder fineness, including with addition of illite clay, on formation and development of high-temperaturecrystalline phases (mulliteand ZrO 2, and the mechanical properties of mullite-zirconia ceramic. STUDY METHODSThe starting powder was prepared from a mixture con-sisting of synthetic materials, i.e., g-Al2O 3prepared from calcined Al(OH3at 550°C,amorphous SiO 2, ZrO 2mon, and Y 2O 3. A mineral raw material was used in one part of the 351083-4877/11/05201-0035©2011Springer Science+BusinessMedia, Inc.Riga Technical University, Institute of Silicate Materials, Riga, Latvia.36Fig. 1. Schematic image of diffraction maximum with marked value for calcu-lating crystal particle size by the Sherrer equation.starting powder as an additional component, i.e. illite clay containing about65%illite fraction. The starting powder compositions are provided in Table 1.The chemical and mineral compositions, and also the av-erage grain size of illite clay are provided below:Chemical composition, %:SiO 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50.5Al 2O3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.8Fe 2O 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.5TiO 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.2CaO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.9MgO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6K2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0Na2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1Dm cal(1000°C. . . . . . . . . . . . . . . . . . . . . . . . . . 8.4Mineral composition, wt. p:illite K 0.5(H3O 0.5Al 2(OH. . . 2[(Al,Si. . . . 4O . . 10]·n H . . . 2O . . . . . . . 65–70quartz SiO 2. . . . . . . . . . . . . . 18–20calcite CaCO 3. . . . . . . . . . . . . . . . . . . . . . . . . . 5–6goethite a-FeOOH . . . . . . . . . . . . . . . . . . . . . . . 7–8kaolinite Al 2(OH4[Si2O5]. . . . . . . . . . . . . . . . . . . 5–7Content, %,particles with sizes, mm:63–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.520–6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.56.3–2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . .28.5<2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.5The starting powder mixes were ground and homoge-nized in a laboratory planetary mill for 4, 10and 24h, using corundum balls as the grinding bodies. The size of ground powder particles was determined by means of an SEM mi-croscope (modelJSM-T200, Japan, and the average particle distribution was evaluated by means of a photon correlation spectrometer using a strongly diluted suspension of 10–2N KCl (40mg KCl +100ml H 2O; the surfactant used was Fairy washing substance. In order to determine the crystal-line particle size an x-ray diffractometer (modelRigaku, Ja-pan, with Cu Ka-radiation with a scanning interval 2è=10–60°and a speed of 4°/minwas used. The size of crystal particles D , nm, in the original ground powders was determined by the Sherrer equation [8]:D =k l/B cos q,where k is Bolzmann constant (k =0.87–1.0; lis x-ray beam wavelength, nm(l=0.15418nm. The value of B , rad, was calculated from the difference in x-ray beam reflection angles, B =èwith 2–èa 1. A schematic image of the diffraction maximum note of the values required for calculation is shown in Fig. 1.G. P. Sedmale, A. V . Khmelev, and I. É.ShperbergaTABLE 1. Starting Powder Compositions for Preparing Mullite-Zirconia Ceramic, wt.%Powder compositiong-Al 2O 3SiO 2·n H 2OZrO 2Y 2O 3Illite clay1062.3028.005.204.50–10i 57.3025.854.704.158.00Specimens for phase composition, structure and proper-ties of the prepared ceramic materials were manufactured in the form of disks 30mm in diameter and 3mm thick, cylin-ders with a diameter of 35mm and a height of 45mm, and rods 55mm long and3mm thick from powders by axial compaction (pressure120MPa. Firing was carried outin an air atmosphere in the range from 1200to 1500°Cafter each 100°C(ina laboratory muffle furnace Nabertherm 3000, Germany, with a heating rate of 6°C/minwith soaking at the maximum temperature for 30min. Specimen density after firing was evaluated according to apparent density from the ratio of specimen weight to its volume, and also from deter-mination of open porosity and overall shrinkage according to EN 63-2:2001.The composition of phases, as for the size of crystals, and also microstructure of fired specimens were determined from x-ray phase analysis (XPAdata and scanning a scan-ning electron microscope (JSM-T200,Japan data after each firing temperature cycle. Thermal shock resistance was de-termined according to EN820-3:2004,using ceramic rod specimens fired at 1400°C.Specimens were studied after each 200°Cin the range 500–1000°C.Thermal shock resis-tance after firing cycle was evaluated from the change in elasticity modulus and ultimate strength in bending.Elasticity modulus was determined in a Buzz-o-sonic in-strument (firmBuzz-Mac International LLC, USA accord-ing tot eh principle of measuring shock wave propagation with a ceramic specimens placed perpendicular to two paral-lel installed metal bases, covered with a thin polymer layer. Shock waves within a specimen were created by means of small polymer hammer, in one end of which there was a steel ball4mm in diameter, recorded by a special microphone and analyzed by means of a Fourier arrangement.Elasticity modulus E , GPa, was calculated by the equa-tionE =0.9465rf 2L 4T 1/t 2,where ris specimen density, g/cm3; f is frequency, Hz; L is specimen length, mm; T test specimen dimensions; 1is correlation value which depends on t is specimen thickness, mm.The ultimate strength in compression of ceramic speci-mens was determined according to EN 658-2:2003using a TONI Technik Controller TG0995instrument, and ultimate strength in bending was determined by a three-point method according to EN 843-1:2006using a Zwick/Rolemodel 1486instrument.Effect of Ceramic Powder Fineness on Mullite-Zirconium Ceramic Properties37Fig. 2. Microstructure of starting powder composites 10and 10i re-spectively after grinding for 4(a and 20h (b.Fig. 3. Change in crystal dimensions in relation to starting powder grinding duration for composites 10and 10i:¯and ¡ baddeleyite (correspondinglycompositions 10and 10i; tion 10i; r and ´ Y * corundum (composi-2O 3(correspondinglycompositions 10and 10i; + quartz (composition10i.Fig. 4. Most possible distribution of particles P and their aggregates in starting powder compositions 10and 10i after grinding for 4and 10h.RESULTS AND DISCUSSIONMicrophotographs are shown in Fig. 2of ceramic pow-der compositions 10and 10i, ground for 4and 24h. After 4h of grinding powder composition 10is represented by densely compacted amorphous particles of circular shape with sizes of about 3to 7–10mm, being both individual formations and in the form of agglomerates. At the same time thestruc-ture of ceramic powder 10i with additions of illite clay, ground for 24h, is in the from of amorphous agglomerates of finer particles.According to XPA data, the average size of ZrO 2mon, Y 2O 3and quartz SiO2crystals (introducedwith illite clay in powders after 4, 10and 24h of grinding with an without ad-dition of clay varies within limits 55–100nm (Fig.3. It may seen that additions of clay affects the dispersion of crys-tals in the original powder. There is especially a reduction in crystal size of baddeleyite after 24h of grinding powder and Y 2O3(lessmarkedly; a sharp reduction in the size of quartz and ZrO 2crystals in composition 10i, reaching 55–59nm (seeFig. 3. On the other hand, from the results of determin-ing the size of particles an agglomerates in ground powder using a correlation spectrometer it follows that the size of the maximum amount of particles is seen within the limits 200–520nm (Fig.4.Formation of mullite and corundum phases, and also tetragonal and monoclinic ZrO 2(accordingto XPA data in specimens sintered at different temperatures, is shown in Fig.5. It may be seen that mullite formation commences at 1200°Cand it develops actively up to 1600°C,although the first mullite phase nuclei possibly form at 1100°Cdue to the activity and amorphicity of particles in the original powder. Crystalline phases of SiO2(cristobaliteand quartz are pres-ent up to 1250°C,and at higher temperatures (1330and 1400°Ca reaction sets in promoting further mullite and also corundum formation.It should be noted that over the whole temperature range apart from a diffraction maximum from ZrO 2mon, there is formation of a clearly expressed maximum from ZrO 2tetr,Fig. 5. X-ray patterns of crystalline phase formation in a 10i speci-men in relation to sintering temperature:M is mullite 3Al 2O 3·2SiO2; C is corundum a-Al 2O 3; Q is quartz; Cr is cristobalite; Z m is ZrO 2mon; Z t is ZrO 2tetr.38Fig. 6. Microstructure of specimens of compositions 10i (a and 10(b , fired at1300°C.which points to partial stabilization of zirconium dioxide due to introduction of Y2O 3into the ZrO 2structure.The microstructure of a specimen of this ceramic, shown in Fig. 6a , is represented by densely packed crystalline for-mations, mainly mullite of prismatic and pseudo-prismatic habit; for a specimen without a clay addition (Fig.6b the shape of mullite is more clearly observed.As may be seen from data for shrinkage of specimens of composition 10i (Fig.7, the effect of grinding duration t, i.e., increase in fineness of the starting powder, is quite marked. Specimen shrinkage increases from 15to 25%with an increase in tfor the starting powder for each temperature. Such a marked difference in development of shrinkage with an increase in tmay be explained by assuming that with presence of a liquid phase there is “contraction”(drawingto-gether of particles followed by sintering by a solid-phase mechanism. An increase in shrinkage with an increase in sintering temperature to 1500°Ccauses a reduction in liquid phase viscosity and consequently acceleration of ion diffu-sion, leading to specimen contraction during cooling. A simi-lar observation is also given by the authors in [4].By analyzing the change in apparent density rapp and ul-timate strength in compression sco (Fig.8 it may be noted that a significant role in increasing specimen rapp (upto 3.0and ~2.6g/cm3correspondingly for compositions 10i and 10 is played byaddition of illite clay, which is particularly typical for specimens ground for 10and 24h. This is ex-plained by more active diffusion and reaction of particles in the presence fo a liquid phase, whose formation is pro-moted by addition of illite clay. A positive role is also pro-posed for addition of illite clay on the transformation ZrO 2tetr ®ZrO 2mon on cooling specimens. At the sameG. P. Sedmale, A. V . Khmelev, and I. É.ShperbergaFig. 7. Change in shrinkage Y for specimens of composition 10i:t is temperature; tis starting powder grinding time.Fig. 8. Change in apparent density rapp (––and strength in com-pression sco (——.time, ceramic specimens without addition of illite clay have lower values of rapp since in this case sintering is determined mainly by the activity and amorphicity of particles in the starting powder.A more intense increase in rfirst 4h of grinding app and sshould co of specimens of powders after the also be noted. A further increase in grinding duration (t>10h is less effec-tive, which is probably due to agglomeration of particles. Addition of illite clay at a high level promotes an increase in the value of sco , reaching a maximum value of165MPa. An increase in saddition co to 98MPa is also demonstrated by specimens without of illite clay from powders after 24h of grinding, although the lower values of this index are due to presence of internal pores within specimens, which is indi-cated by the power values of rapp .The elasticity modulus E of specimens after thermal shock DT , particularly with an increase in the temperature range during thermal shock, and also specimens prepared from finer powders, has a tendency to increase (Fig.9. Such a clear difference in the value of E for specimens is appar-ently connected mainly with phase transformations of ZrO [6,11](ZrOwith im-2provement and 2mon >ZrO growth 2tetr, and in all probability of prismatic crystalline mullite for-mations. For specimens with addition of clay the value of E increased by 2–3GPa or more uniformly, particularly with a sharper temperature drop (800/20and 1000/20.For speci-Effect of Ceramic Powder Fineness on Mullite-Zirconium Ceramic Properties39Fig. 9. Change in elasticity modulus E for specimens of composi-tion 10in relation to difference in temperature interval DT with ther-mal shock. Specimen firing temperature1400°C.Fig. 10. Change in ultimate strength in bending sben of specimens without addition (a and with addition of illite clay (b made from powders ground for 4, 10and 24h in relation to temperature DT . Specimen firing temperature 1400°C.mens after the first thermal shock cycle (500/20a similar tendency is retained.A similar tendency is observed for the ultimate strength in bending sben of specimens after thermal shock. As may be seen from Fig. 10a, the overall tendency of a change in sben involves a marked increase after thermal shock. For exam-ple, whereas for an original specimens (after24h grinding of starting powder the value of sben is25MPa, with an in-crease in DT sben reaches 42.5MPa. It may be proposed that compliance of specimen to a sharp change in temperature followed by rapid b rapid “freezing”of the structure pro-motes a marked or total transfer ZrO 2mon >ZrO 2tetr, and to a certain extent agrees with expressions provided in [10].Changes of sben of specimens with addition of clay (Fig.10b are more uniform. The previous tendency is ob-served towards a more marked increase in sof powders after 24h of grinding, and also ben of specimens with an increase in DT , which is also explained by ZrO 2polymorphic transfor-mation. CONCLUSIONResults of development of high-temperature mullite-zir-conia ceramic using activated powders, ground for different times without or with addition of illite clay, showed that the particle size of the starting powder is determined by grinding duration. Use of different methods for evaluating powder particle size, and also particle agglomeration in a powder, gives different results. It is clear that the size of crystal parti-cles is ~50–100nm, whereas for amorphous particles and aggregates it is 200–500nm. An increase in activity and amorphicity of ground particles markedly promotes forma-tion of mullite phase starting from 1200°C,and also a transi-tion of the monoclinic modification of ZrO 2into tetragonal, particularly with a high firing temperature.It has been established that specimens have relatively high shrinkage (15–25%,which increases considerably with an increase in temperature and starting powder grinding duration.The apparent density and ultimate strength in compres-sion of specimens are governed both by the duration of start-ing powder grinding and also presence of illite clay within it. After 24h of starting powder grinding these indices for spec-imens without addition of illite clay reach 2.55g/cm3and 80MPa; for specimens with additions they increase to 2.95g/cm3and 15MPa respectively.Elasticity modulus and ultimate strength in bending for specimens with an increased temperature difference during thermal shock, both for specimens of powder with prolonged grinding (10and 24h have a tendency towards a marked in-crease, particularly for specimens without illite clay.It is assumed that the tendency of ceramic specimens to-wards a sharp temperature drop leads to rapid “freezing”of the structure, promoting retention of the high-temperature tetragonal modification of ZrO 2. REFERENCES1. G. P. Sedmali, I. É.Sperberger, A. V . Khmelev, et al., “F orma-tion of ceramic in the system Al Tekhn. 2O 3–SiOKeram. 2–ZrO, 2in the presence ofmineralizers,”Ogneupory No. 5, 18–23(2008.2. G. Sedmale, I. Sperberga, U. Sedmalis, et al., “Formationof high-temperature crystalline phases in ceramics from illite cla y and dolomite,”J. Eur. Ceram. Soc. , 26, No. 15, 3351–3355(2006.40 G. P. Sedmale, A. V. Khmelev, and I. É. Shperberga 3. N. Behmanesh and S. H. Manesh, “Role of mechanical activation of precursors in solid-state processing of nano-structured mullite phas e,” J. of Alloys and Compounds, 450, 421 – 425 (2008. 4. Y. Lin and Yi. Chen, “Fabrication of mullite composites by cyclic infiltration and reactionsintering,” Materials Science and Engineering A, 298, 179 – 186 (2001. 5. L. B. Kong, T. S. Zhang, J. Marr, et al., “Anisotropic grain growth of mullite in high-energy ball milling powders doped with transition metal oxides,”,” J. Eur. Ceram. Soc., 23, 2247 – 2256 (2003. 6. E. Medvedovski, “Alumina-mullite ceramics for structuring applications,” Ceramics International, 32, 369 –375 (2006. 7. C. Aksel, “The effect of mullite on mechanical properties and thermal shock behavior of alumina-mullite refractory materials,” Ceramics International, 29, 183 – 188 (2003. 8. S. Junaid, S. Quazi, and R. Andrian, “Use of wid e-angle x-ray diffraction to measure shape and size of dispersed colloidal particles,” J. of Colloid and Interface Science, 338, No. 1, 105 – 110 (2009. 9. W. Yoon, P. Sarin, and W. M. Kriven, “Growth of textured mullite fibers using a quadrupole lamp furn ace,”,” J. Eur. Ceram. Soc., 28, 455 – 463 (2008. 10. N. M. Rendtorft, L. B. Garrido, and E. F. Aglietti, “Thermal shock behavior of dense mullite-zirconia composites obtained by two processing routes,” Ceramics International, 34, 2017 – 2024 (2008.。
New Perspectives on the Structure of Graphitic Carbons
Critical Reviews in Solid State and Materials Sciences,30:235–253,2005 Copyright c Taylor and Francis Inc.ISSN:1040-8436printDOI:10.1080/10408430500406265New Perspectives on the Structure of Graphitic CarbonsPeter J.F.Harris∗Centre for Advanced Microscopy,University of Reading,Whiteknights,Reading,RG66AF,UKGraphitic forms of carbon are important in a wide variety of applications,ranging from pollutioncontrol to composite materials,yet the structure of these carbons at the molecular level ispoorly understood.The discovery of fullerenes and fullerene-related structures such as carbonnanotubes has given a new perspective on the structure of solid carbon.This review aims toshow how the new knowledge gained as a result of research on fullerene-related carbons canbe applied to well-known forms of carbon such as microporous carbon,glassy carbon,carbonfibers,and carbon black.Keywords fullerenes,carbon nanotubes,carbon nanoparticles,non-graphitizing carbons,microporous carbon,glassy carbon,carbon black,carbonfibers.Table of Contents INTRODUCTION (235)FULLERENES,CARBON NANOTUBES,AND CARBON NANOPARTICLES (236)MICROPOROUS(NON-GRAPHITIZING)CARBONS (239)Background (239)Early Models (241)Evidence for Fullerene-Like Structures in Microporous Carbons (242)New Models for the Structure of Microporous Carbons (242)Carbonization and the Structural Evolution of Microporous Carbon (243)GLASSY CARBON (244)CARBON FIBERS (245)CARBON BLACK (248)Background (248)Structure of Carbon Black Particles (249)Effect of High-Temperature Heat Treatment on Carbon Black Structure (250)CONCLUSIONS (250)ACKNOWLEDGMENTS (251)REFERENCES (251)INTRODUCTIONUntil quite recently we knew for certain of just two allotropes of carbon:diamond and graphite.The vast range of carbon ma-∗E-mail:p.j.f.harris@ terials,both natural and synthetic,which have more disordered structures have traditionally been considered as variants of one or other of these two allotropes.Because the great majority of these materials contain sp2carbon rather than sp3carbon,their struc-tures have been thought of as being made up from tiny fragments235236P.J.F.HARRISFI G.1.(a)Model of PAN-derived carbon fibres from the work of Crawford and Johnson,1(b)model of a non-graphitizing carbon by Ban and colleagues.2of crystalline graphite.Examples of models for the structures of carbons in which the basic elements are graphitic are reproduced in Figure 1.The structure shown in Figure 1(a)is a model for the structure of carbon fibers suggested by Crawford and Johnson in 1971,1whereas 1(b)shows a model for non-graphitizing car-bon given by Ban and colleagues in 1975.2Both structures are constructed from bent or curved sheets of graphite,containing exclusively hexagonal rings.Although these models probably provide a good first approximation of the structures of these car-bons,in many cases they fail to explain fully the properties of the materials.Consider the example of non-graphitizing carbons.As the name suggests,these cannot be transformed into crystalline graphite even at temperatures of 3000◦C and above.I nstead,high temperature heat treatments transform them into structures with a high degree of porosity but no long-range crystalline order.I n the model proposed by Ban et al.(Figure 1(b)),the structure is made up of ribbon-like sheets enclosing randomly shaped voids.It is most unlikely that such a structure could retain its poros-ity when subjected to high temperature heat treatment—surface energy would force the voids to collapse.The shortcomings of this and other “conventional”models are discussed more fully later in the article.The discovery of the fullerenes 3−5and subsequently of re-lated structures such as carbon nanotubes,6−8nanohorns,9,10and nanoparticles,11has given us a new paradigm for solid car-bon structures.We now know that carbons containing pentago-nal rings,as well as other non-six-membered rings,among the hexagonal sp 2carbon network,can be highly stable.This new perspective has prompted a number of groups to take a fresh look at well-known forms of carbon,to see whether any evidence can be found for the presence of fullerene-like structures.12−14The aim of this article is to review this new work on the structure of graphitic carbons,to assess whether models that incorporate fullerene-like elements could provide a better basis for under-standing these materials than the conventional models,and to point out areas where further work is needed.The carbon ma-terials considered include non-graphitizing carbon,glassy car-bon,carbon fibers,and carbon black.The article begins with an outline of the main structural features of fullerenes,carbon nanotubes,and carbon nanoparticles,together with a brief dis-cussion of their stability.FULLERENES,CARBON NANOTUBES,AND CARBON NANOPARTICLESThe structure of C 60,the archetypal fullerene,is shown in Figure 2(a).The structure consists of twelve pentagonal rings and twenty hexagons in an icosahedral arrangement.I t will be noted that all the pentagons are isolated from each other.This is important,because adjacent pentagonal rings form an unstable bonding arrangement.All other closed-cage isomers of C 60,and all smaller fullerenes,are less stable than buck-minsterfullerene because they have adjacent pentagons.For higher fullerenes,the number of structures with isolated pen-tagonal rings increases rapidly with size.For example,C 100has 450isolated-pentagon isomers.16Most of these higher fullerenes have low symmetry;only a very small number of them have the icosahedral symmetry of C 60.An example of a giant fullerene that can have icosahedral symmetry is C 540,as shown in Figure 2(b).There have been many studies of the stability of fullerenes as a function of size (e.g.,Refs.17,18).These show that,in general,stability increases with size.Experimentally,there is evidence that C 60is unstable with respect to large,multiwalled fullerenes.This was demonstrated by Mochida and colleagues,who heated C 60and C 70in a sublimation-limiting furnace.19They showed that the cage structure broke down at 900◦C–1000◦C,although at 2400◦C fullerene-like “hollow spheres”with diameters in the range 10–20nm were formed.We now consider fullerene-related carbon nanotubes,which were discovered by Iijima in 1991.6These consist of cylinders of graphite,closed at each end with caps that contain precisely six pentagonal rings.We can illustrate their structure by considering the two “archetypal”carbon nanotubes that can be formed by cutting a C 60molecule in half and placing a graphene cylinder between the two halves.Dividing C 60parallel to one of the three-fold axes results in the zig-zag nanotube shown in Figure 3(a),whereas bisecting C 60along one of the fivefold axes produces the armchair nanotube shown in Figure 3(b).The terms “zig-zag”and “armchair”refer to the arrangement of hexagons around the circumference.There is a third class of structure in which the hexagons are arranged helically around the tube axis.Ex-perimentally,the tubes are generally much less perfect than the idealized versions shown in Figure 3,and may be eitherNEW PERSPECTIVES ON GRAPHITIC CARBONS STRUCTURE237FI G.2.The structure of (a)C 60,(b)icosahedral C 540.15multilayered or single-layered.Figure 4shows a high resolu-tion TEM image of multilayered nanotubes.The multilayered tubes range in length from a few tens of nm to several microns,and in outer diameter from about 2.5nm to 30nm.The end-caps of the tubes are sometimes symmetrical in shape,but more often asymmetric.Conical structures of the kind shown in Fig-ure 5(a)are commonly observed.This type of structure is be-lieved to result from the presence of a single pentagon at the position indicated by the arrow,with five further pentagons at the apex of the cone.Also quite common are complex cap struc-tures displaying a “bill-like”morphology such as thatshownFI G.3.Drawings of the two nanotubes that can be capped by one half of a C 60molecule.(a)Zig-zag (9,0)structure,(b)armchair (5,5)structure.20in Figure 5(b).21This structure results from the presence of a single pentagon at point “X”and a heptagon at point “Y .”The heptagon results in a saddle-point,or region of negative curvature.The nanotubes first reported by Iijima were prepared by va-porizing graphite in a carbon arc under an atmosphere of helium.Nanotubes produced in this way are invariably accompanied by other material,notably carbon nanoparticles.These can be thought of as giant,multilayered fullerenes,and range in size from ∼5nm to ∼15nm.A high-resolution image of a nanopar-ticle attached to a nanotube is shown in Figure 6(a).22In this238P.J.F.HARRISFI G.4.TEM image of multiwalled nanotubes.case,the particle consists of three concentric fullerene shells.A more typical nanoparticle,with many more layers,is shown in Figure 6(b).These larger particles are probably relatively im-perfect instructure.FI G.5.I mages of typical multiwalled nanotube caps.(a)cap with asymmetric cone structure,(b)cap with bill-like structure.21Single-walled nanotubes were first prepared in 1993using a variant of the arc-evaporation technique.23,24These are quite different from multilayered nanotubes in that they generally have very small diameters (typically ∼1nm),and tend to be curledNEW PERSPECTIVES ON GRAPHITIC CARBONS STRUCTURE239FI G.6.I mages of carbon nanoparticles.(a)small nanoparticle with three concentric layers on nanotube surface,22(b)larger multilayered nanoparticle.and looped rather than straight.They will not be considered further here because they have no parallel among well-known forms of carbon discussed in this article.The stability of multilayered carbon nanotubes and nanopar-ticles has not been studied in detail experimentally.However,we know that they are formed at the center of graphite electrodes during arcing,where temperatures probably approach 3000◦C.I t is reasonable to assume,therefore,that nanotubes and nanopar-ticles could withstand being re-heated to such temperatures (in an inert atmosphere)without significant change.MICROPOROUS (NON-GRAPHITIZING)CARBONS BackgroundIt was demonstrated many years ago by Franklin 25,26that carbons produced by the solid-phase pyrolysis of organic ma-terials fall into two distinct classes.The so-called graphitizing carbons tend to be soft and non-porous,with relatively high den-sities,and can be readily transformed into crystalline graphite by heating at temperatures in the range 2200◦C–3000◦C.I n con-trast,“non-graphitizing”carbons are hard,low-densitymateri-FI G.7.(a)High resolution TEM image of carbon prepared by pyrolysis of sucrose in nitrogen at 1000◦C,(b)carbon prepared bypyrolysis of anthracene at 1000◦C.I nsets show selected area diffraction patterns.30als that cannot be transformed into crystalline graphite even at temperatures of 3000◦C and above.The low density of non-graphitizing carbons is a consequence of a microporous struc-ture,which gives these materials an exceptionally high internal surface area.This high surface area can be enhanced further by activation,that is,mild oxidation with a gas or chemical pro-cessing,and the resulting “activated carbons”are of enormous commercial importance,primarily as adsorbents.27−29The distinction between graphitizing and non-graphitizing carbons can be illustrated most clearly using transmission elec-tron microscopy (TEM).Figure 7(a)shows a TEM image of a typical non-graphitizing carbon prepared by the pyrolysis of sucrose in an inert atmosphere at 1000◦C.30The inset shows a diffraction pattern recorded from an area approximately 0.25µm in diameter.The image shows the structure to be disordered and isotropic,consisting of tightly curled single carbon layers,with no obvious graphitization.The diffraction pattern shows symmetrical rings,confirming the isotropic structure.The ap-pearance of graphitizing carbons,on the other hand,approxi-mates much more closely to that of graphite.This can be seen in the TEM micrograph of a carbon prepared from anthracene,240P.J.F.HARRI Swhich is shown in Figure 7(b).Here,the structure contains small,approximately flat carbon layers,packed tightly together with a high degree of alignment.The fragments can be considered as rather imperfect graphene sheets.The diffraction pattern for the graphitizing carbon consists of arcs rather than symmetrical rings,confirming that the layers are preferentially aligned along a particular direction.The bright,narrow arcs in this pattern correspond to the interlayer {0002}spacings,whereas the other reflections appear as broader,less intense arcs.Transmission electron micrographs showing the effect of high-temperature heat treatments on the structure of non-graphitizing and graphitizing carbons are shown in Figure 8(note that the magnification here is much lower than for Figure 7).I n the case of the non-graphitizing carbon,heating at 2300◦C in an inert atmosphere produces the disordered,porous material shown in Figure 8(a).This structure is made up of curved and faceted graphitic layer planes,typically 1–2nm thick and 5–15nm in length,enclosing randomly shaped pores.A few somewhat larger graphite crystallites are present,but there is no macroscopic graphitization.n contrast,heat treatment of the anthracene-derived carbon produces large crystals of highly or-dered graphite,as shown in Figure 8(b).Other physical measurements also demonstrate sharp dif-ferences between graphitizing and non-graphitizing carbons.Table 1shows the effect of preparation temperature on the sur-face areas and densities of a typical graphitizing carbon prepared from polyvinyl chloride,and a non-graphitizing carbon prepared from cellulose.31It can be seen that the graphitizing carbon pre-pared at 700◦C has a very low surface area,which changes lit-tle for carbons prepared at higher temperatures,up to 3000◦C.The density of the carbons increases steadily as thepreparationFI G.8.Micrographs of (a)sucrose carbon and (b)anthracene carbon following heat treatment at 2300◦C.TABLE 1Effect of temperature on surface areas and densities of carbonsprepared from polyvinyl chloride and cellulose 31(a)Surface areas Specific surface area (m 2/g)for carbons prepared at:Starting material 700◦C 1500◦C 2000◦C 2700◦C 3000◦C PVC 0.580.210.210.710.56Cellulose 4081.601.172.232.25(b)Densities Helium density (g/cm 3)for carbons prepared at:Starting material 700◦C 1500◦C 2000◦C 2700◦C 3000◦C PVC 1.85 2.09 2.14 2.21 2.26Cellulose1.901.471.431.561.70temperature is increased,reaching a value of 2.26g/cm 3,which is the density of pure graphite,at 3000◦C.The effect of prepara-tion temperature on the non-graphitizing carbon is very different.A high surface area is observed for the carbon prepared at 700◦C (408m 2/g),which falls rapidly as the preparation temperature is increased.Despite this reduction in surface area,however,the density of the non-graphitizing carbon actually falls when the temperature of preparation is increased.This indicates that a high proportion of “closed porosity”is present in the heat-treated carbon.NEW PERSPECTIVES ON GRAPHITIC CARBONS STRUCTURE241FI G.9.Franklin’s representations of(a)non-graphitizing and(b)graphitizing carbons.25Early ModelsThefirst attempt to develop structural models of graphitizingand non-graphitizing carbons was made by Franklin in her1951paper.25In these models,the basic units are small graphitic crys-tallites containing a few layer planes,which are joined togetherby crosslinks.The precise nature of the crosslinks is not speci-fied.An illustration of Franklin’s models is shown in Figure9.Using these models,she put forward an explanation of whynon-graphitizing carbons cannot be converted by heat treatmentinto graphite,and this will now be summarized.During car-bonization the incipient stacking of the graphene sheets in thenon-graphitizing carbon is largely prevented.At this stage thepresence of crosslinks,internal hydrogen,and the viscosity ofthe material is crucial.The resulting structure of the carbon(at ∼1000◦C)consists of randomly ordered crystallites,held to-gether by residual crosslinks and van der Waals forces,as inFigure9(a).During high-temperature treatment,even thoughthese crosslinks may be broken,the activation energy for themotion of entire crystallites,required for achieving the struc-ture of graphite,is too high and graphite is not formed.Onthe other hand,the structural units in a graphitizing carbon areapproximately parallel to each other,as in Figure9(b),and thetransformation of such a structure into crystalline graphite wouldbe expected to be relatively facile.Although Franklin’s ideason graphitizing and non-graphitizing carbons may be broadlycorrect,they are in some regards incomplete.For example,thenature of the crosslinks between the graphitic fragments is notspecified,so the reasons for the sharply differing properties ofgraphitizing and non-graphitizing carbons is not explained.The advent of high-resolution transmission electron mi-croscopy in the early1970s enabled the structure of non-graphitizing carbons to be imaged directly.n a typical study,Ban,Crawford,and Marsh2examined carbons prepared frompolyvinylidene chloride(PVDC)following heat treatments attemperatures in the range530◦C–2700◦C.I mages of these car-bons apparently showed the presence of curved and twistedgraphite sheets,typically two or three layer planes thick,enclos-ing voids.These images led Ban et al.to suggest that heat-treatednon-graphitizing carbons have a ribbon-like structure,as shownin Figure1(b).This structure corresponds to a PVDC carbonheat treated at1950◦C.This ribbon-like model is rather similar to an earlier model of glassy carbon proposed by Jenkins andKawamura.32However,models of this kind,which are intendedto represent the structure of non-graphitizing carbons follow-ing high-temperature heat treatment,have serious weaknesses,as noted earlier.Such models consist of curved and twistedgraphene sheets enclosing irregularly shaped pores.However,graphene sheets are known to be highlyflexible,and wouldtherefore be expected to become ever more closely folded to-gether at high temperatures,in order to reduce surface energy.Indeed,tightly folded graphene sheets are quite frequently seenin carbons that have been exposed to extreme conditions.33Thus,structures like the one shown in Figure1(b)would be unlikelyto be stable at very high temperatures.It has also been pointed out by Oberlin34,35that the modelsput forward by Jenkins,Ban,and their colleagues were basedon a questionable interpretation of the electron micrographs.In most micrographs of partially graphitized carbons,only the {0002}fringes are resolved,and these are only visible when they are approximately parallel to the electron beam.Therefore,such images tend to have a ribbon-like appearance.However,because only a part of the structure is being imaged,this appear-ance can be misleading,and the true three-dimensional structuremay be more cagelike than ribbon-like.This is a very importantpoint,and must always be borne in mind when analyzing imagesof graphitic carbons.Oberlin herself believes that all graphiticcarbons are built up from basic structural units,which comprisesmall groups of planar aromatic structures,35but does not appearto have given a detailed explanation for the non-graphitizabilityof certain carbons.The models of non-graphitizing carbons described so farhave assumed that the carbon atoms are exclusively sp2and arebonded in hexagonal rings.Some authors have suggested thatsp3-bonded atoms may be present in these carbons(e.g.,Refs.36,37),basing their arguments on an analysis of X-ray diffrac-tion patterns.The presence of diamond-like domains would beconsistent with the hardness of non-graphitizing carbons,andmight also explain their extreme resistance to graphitization.Aserious problem with these models is that sp3carbon is unsta-ble at high temperatures.Diamond is converted to graphite at1700◦C,whereas tetrahedrally bonded carbon atoms in amor-phousfilms are unstable above about700◦C.Therefore,the242P.J.F.HARRI Spresence of sp 3atoms in a carbon cannot explain the resistance of the carbon to graphitization at high temperatures.I t should also be noted that more recent diffraction studies of non-graphitizing carbons have suggested that sp 3-bonded atoms are not present,as discussed further in what follows.Evidence for Fullerene-Like Structures in Microporous CarbonsThe evidence that microporous carbons might have fullerene-related structures has come mainly from high-resolution TEM studies.The present author and colleagues initiated a series of studies of typical non-graphitizing microporous carbons using this technique in the mid 1990s.30,38,39The first such study in-volved examining carbons prepared from PVDC and sucrose,after heat treatments at temperatures in the range 2100◦C–2600◦C.38The carbons subjected to very high temperatures had rather disordered structures similar to that shown in Figure 8(a).Careful examination of the heated carbons showed that they often contained closed nanoparticles;examples can be seen in Figure 10.The particles were usually faceted,and often hexagonal or pentagonal in shape.Sometimes,faceted layer planes enclosed two or more of the nanoparticles,as shown in Figure 10(b).Here,the arrows indicate two saddle-points,similar to that shown in Figure 5(b).The closed nature of the nanoparticles,their hexagonal or pentagonal shapes,and other features such as the saddle-points strongly suggest that the parti-cles have fullerene-like structures.I ndeed,in many cases the par-ticles resemble those produced by arc-evaporation in a fullerene generator (see Figure 6)although in the latter case the particles usually contain many more layers.The observation of fullerene-related nanoparticles in the heat treated carbons suggested that the original,freshly prepared car-bons may also have had fullerene-related structures (see next section).However,obtaining direct evidence for this is diffi-cult.High resolution electron micrographs of freshly prepared carbons,such as that shown in Figure 7(a),are usuallyratherFI G.10.(a)Micrograph showing closed structure in PVDC-derived carbon heated at 2600◦C,(b)another micrograph of same sample,with arrows showing regions of negative curvature.38featureless,and do not reveal the detailed structure.Occasion-ally,however,very small closed particles can be found in the carbons.30The presence of such particles provides circumstan-tial evidence that the surrounding carbon may have a fullerene-related structure.Direct imaging of pentagonal rings by HRTEM has not yet been achieved,but recent developments in TEM imaging techniques suggest that this may soon be possible,as discussed in the Conclusions.As well as high-resolution TEM,diffraction methods have been widely applied to microporous and activated carbons (e.g.,Refs.40–44).However,the interpretation of diffraction data from these highly disordered materials is not straightforward.As already mentioned,some early X-ray diffraction studies were interpreted as providing evidence for the presence of sp 3-bonded atoms.More recent neutron diffraction studies have suggested that non-graphitizing carbons consist entirely of sp 2atoms.40It is less clear whether diffraction methods can establish whether the atoms are bonded in pentagonal or hexagonal rings.Both Petkov et al .42and Zetterstrom and colleagues 43have interpreted neutron diffraction data from nanoporous carbons in terms of a structure containing non-hexagonal rings,but other interpreta-tions may also be possible.Raman spectroscopy is another valuable technique for the study of carbons.45Burian and Dore have used this method to analyze carbons prepared from sucrose,heat treated at tem-peratures from 1000◦C–2300◦C.46The Raman spectra showed clear evidence for the presence of fullerene-and nanotube-like elements in the carbons.There was also some evidence for fullerene-like structures in graphitizing carbons prepared from anthracene,but these formed at higher temperatures and in much lower proportions than in the non-graphitizing carbons.New Models for the Structure of Microporous Carbons Prompted by the observations described in the previous section,the present author and colleagues proposed a model for the structure of non-graphitizing carbons that consists ofNEW PERSPECTIVES ON GRAPHITIC CARBONS STRUCTURE243FI G.11.Schematic illustration of a model for the structure of non-graphitizing carbons based on fullerene-like elements.discrete fragments of curved carbon sheets,in which pentagons and heptagons are dispersed randomly throughout networks of hexagons,as illustrated in Figure11.38,39The size of the micropores in this model would be of the order of0.5–1.0nm, which is similar to the pore sizes observed in typical microp-orous carbons.The structure has some similarities to the“ran-dom schwarzite”network put forward by Townsend and col-leagues in1992,47although this was not proposed as a model for non-graphitizing carbons.I f the model we have proposed for non-graphitizing carbons is correct it suggests that these carbons are very similar in structure to fullerene soot,the low-density, disordered material that forms on walls of the arc-evaporation vessel and from which C60and other fullerenes may be ex-tracted.Fullerene soot is known to be microporous,with a sur-face area,after activation with carbon dioxide,of approximately 700m2g−1,48and detailed analysis of high resolution TEM mi-crographs of fullerene soot has shown that these are consis-tent with a structure in which pentagons and heptagons are dis-tributed randomly throughout a network of hexagons.49,50It is significant that high-temperature heat treatments can transform fullerene soot into nanoparticles very similar to those observed in heated microporous carbon.51,52Carbonization and the Structural Evolutionof Microporous CarbonThe process whereby organic materials are transformed into carbon by heat treatment is not well understood at the atomic level.53,54In particular,the very basic question of why some organic materials produce graphitizing carbons and others yield non-graphitizing carbons has not been satisfactorily answered. It is known,however,that both the chemistry and physical prop-erties of the precursors are important in determining the class of carbon formed.Thus,non-graphitizing carbons are formed, in general,from substances containing less hydrogen and more oxygen than graphitizing carbons.As far as physical properties are concerned,materials that yield graphitizing carbons usu-ally form a liquid on heating to temperatures around400◦C–500◦C,whereas those that yield non-graphitizing carbons gen-erally form solid chars without melting.The liquid phase pro-duced on heating graphitizing carbons is believed to provide the mobility necessary to form oriented regions.However,this may not be a complete explanation,because some precursors form non-graphitizing carbons despite passing through a liquid phase.The idea that non-graphitizing carbons contain pentagons and other non-six-membered rings,whereas graphitizing car-bons consist entirely of hexagonal rings may help in understand-ing more fully the mechanism of carbonization.Recently Kumar et al.have used Monte Carlo(MC)simulations to model the evo-lution of a polymer structure into a microporous carbon structure containing non-hexagonal rings.55They chose polyfurfuryl al-cohol,a well-known precursor for non-graphitizing carbon,as the starting material.The polymer was represented as a cubic lattice decorated with the repeat units,as shown in Figure12(a). All the non-carbon atoms(i.e.,hydrogen and oxygen)were then removed from the polymer and this network was used in the。
阳离子促进的Semipinacol重排反应及合成应用
分类号: 密级:研 究 生 学 位 论 文校址:甘肃省兰州市论文题目(中文) 阳离子促进的Semipinacol 重排反应及合成应用论文题目(外文) Cation-induced Semipinacol Rearrangement and Synthetic Application研究生姓名 李 诚 学科、专业 化学·有机化学研究方向 有机合成 学位级别硕 士 导师姓名、职称 涂永强 教授论文工作 起止年月2016 年 4 月至 2017 年 12 月论文提交日期 2018 年 06 月 论文答辩日期 2018 年 06 月 学位授予日期2018 年 06 月学 院: 化学化工学院 学 号: 220150913681 学生姓名: 李诚导师姓名: 涂永强学科名称: 化学·有机化学论文题目: 阳离子促进的semipinacol 重排反应 及合成研究原 创 性 声 明本人郑重声明:本人所呈交的学位论文,是在导师的指导下独立进行研究所取得的成果。
学位论文中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。
除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。
对本文的研究成果做出重要贡献的个人和集体,均已在文中以明确方式标明。
本声明的法律责任由本人承担。
论文作者签名: 日 期:关于学位论文使用授权的声明本人在导师指导下所完成的论文及相关的职务作品,知识产权归属兰州大学。
本人完全了解兰州大学有关保存、使用学位论文的规定,同意学校保存或向国家有关部门或机构送交论文的纸质版和电子版,允许论文被查阅和借阅;本人授权兰州大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存和汇编本学位论文。
本人离校后发表、使用学位论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为兰州大学。
本学位论文研究内容: □可以公开□不宜公开,已在学位办公室办理保密申请,解密后适用本授权书。
共轭高分子改性TiO_2在自然光下催化降解亚甲基蓝水溶液 (1)
36
应用化学
第 25卷
合物的降解。 2. 5. 2 T iO2含量 对 T iO 2 /CPFA 催化性 能的 影响 图 6 为纯 T iO2以 及在 相同条 件下 ( 460 处 理 15 m in) 制得的 CPFA 和不同 T iO2含量的 T iO2 /CPFA 复合催化剂的催化活性随反应时间的变化。结果 表明, T iO2 /CPFA 复合催化剂的活性较纯的 T iO2和 CPFA 有明显改善。当 T iO 2质量分数在 21 50% ~ 58 75% 时, 反应 5 m in就可使 MB 的脱色率达到 100% 。
原子数越少, 以至不能再近似看成具有多晶面的理想晶体, 这样无序的晶间结构及晶体中的缺陷使点阵 间距变化, 导致 X 射线衍射峰变宽 [ 12] 。 2. 3 T iO2 /CPFA 纳米复合催化剂的 IR 光谱图
460 下处理 15 m in所得 T iO2 /CPFA 的 IR 光谱图 ( 图略 ) 在 3 495 ~ 3 000 cm - 1处有 N ∃ H 或 O ∃ H的吸收峰, 也可能二者同时存在; 2 217 cm - 1处的弱吸收峰为 C N 的特征吸收; 1 593 cm- 1处为 C C的伸缩振动峰, 与乙烯分子 C C的对称伸缩振动吸收峰相比, 该吸收峰向低波数方向发生了位 移, 这说明该复合微粒中的 CPFA 有较 长的共轭链段 存在; 1 238 cm- 1处的 宽吸收峰为 C∃ O ∃ T i或 C∃ N ∃ T i的特征吸收或二者同时存在 [ 13] ; 518 cm- 1左右的红外吸收为 T i∃ O 的特征吸收; 与 CPFA 的 IR谱图相比, 复合微粒中 CPFA 的特征吸收峰发生了明显的变化, 且吸收强度也都减弱。因此, 通过适 当的热处理可以使 PFA 变为含有极性基团 C N、C C、∃ OH 的共轭高分子, 并且与 T iO2以化学键相
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Agglomerates of amorphous carbon nanoparticles synthesized by a solution-phase methodBoyang Liu a ,⁎,Haipeng Huang b ,Fuhua Zhang a ,Yun Zhou a ,Wenge Li a ,Jingwei Zhang ca Institute of Marine Materials Science and Engineering,Shanghai Maritime University,Shanghai 201306,Chinab Xiamen Products Quality Supervision &Inspection Institute,Xiamen 361004,China cLogistics Engineering College,Shanghai Maritime University,Shanghai 201306,Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 23March 2011Accepted 31August 2011Available online xxxx Keywords:Amorphous materials Carbon materials Colloidal processing OxidationA novel solution-phase method is developed for preparation of agglomerates of amorphous carbon nanopar-ticles under ambient atmosphere by the reaction of ferrocene and ammonium chloride in diglycol at 200°C.Samples are characterized by X-ray diffraction,field-emission scanning electron microscopy,transmission electron microscopy and N 2adsorption –desorption isotherms.It is found that the nanoparticles are complete amorphous and agglomerate together due to the strong surface tension.The agglomerates of amorphous car-bon nanoparticles with a diameter of 20–50nm have a wide size distribution of mesopores with a Brunauer –Emmett –Teller surface area of 75.2m 2g −1.It is proposed that the dissolved reactants uniformly dispersing in the solutions could react at a molecular level to form uniform carbon nanoparticles.©2011Elsevier B.V.All rights reserved.1.IntroductionOver the past few decades,porous nanocarbons with speci fic mor-phology have attracted much attention due to their distinctive prop-erties,like sorption ability,chemical stability,low density,suitability for large scale production and wide variety of structural forms.These advantages bring a series of opportunities for the potential technological applications of the porous nanocarbons in hydrogen storage,electric double-layer capacitor,catalysis and drug delivery [1–4].The morphology and structure of porous nanocarbons are very sensitive to the synthesis method,processing,carbonization and activation conditions [5].Therefore,various synthesis methods,such as vapor-phase growth,carbonization of organic aerogels,template-assisted and solvothermal method,have been carried out for direct and controlled synthesis of porous nanocarbons with-out further activation.Vapor-phase synthesis,such as chemical vapor deposition (CVD)and flame synthesis,is a powerful technique for large scale nanocar-bon preparation with shape controlling.However these methods not only require complicated and expensive equipment,but also have dif ficulty in producing uniform samples.Carbon aerogel,con-sisting of interconnected uniform nanoparticles,is usually prepared by polycondensation of resorcinol with formaldehyde and carboniza-tion of the resulting organic gel [6],which involves a time-consuming and costly supercritical drying step.The template-assisted method can be adopted to fabricate ordered porous carbon materials [7].However,the complicated process makes it unsuitable for large-scale production for industrial applications.On the other hand,the synthesis temperature is still relatively high in these methods mentioned above.The solvothermal method can evidently lower the synthesis temperature,but the preparation should be completed in an autoclave with high pressure resistance and the reaction time is long [8].All the methods cannot be carried out in ambient atmo-sphere because oxygen should be avoided during preparation in order to prevent oxidation of carbon.Considering the disadvantages in these methods aforementioned and the close relationship between the wide application and the ef ficient synthesis,a new strategy for porous nanocarbons is still worthy of investigation.In the present paper,a novel method is developed to synthesize amorphous carbon nanoparticles in solution under ambient atmosphere.2.Experimental detailsIn a typical synthesis process,20g ammonium chloride was first dissolved in 500ml of diglycol in a four-necked round-bottomed flask equipped with an air condenser,magnetic stir bar,dropping funnel,thermometer,gas inlet tube,heating and stirring mantle.Then the solution was heated to 200°C,and 10g ferrocene dissolved by 500ml of ethanol was added drop by drop under strong magnetic stirring for 2h with a 50sccm air flow.Fig.1is the scheme of the ex-perimental setup.After the resulting black homogeneous suspension was cooled down to room temperature,2.14g of amorphous carbon nanoparticles were collected by filtration,washed with HCl solution and deionized water for several sequential times,and finally dried in an oven at 100°C for 12h.Phase characterization was performed with an X'Pert PRO X-ray diffractometer (XRD)with Cu K αradiationMaterials Letters 66(2012)199–202⁎Corresponding author.Tel.:+862138284803;fax:+862138284800.E-mail address:byliu@ (B.Liu).0167-577X/$–see front matter ©2011Elsevier B.V.All rights reserved.doi:10.1016/j.matlet.2011.08.111Contents lists available at SciVerse ScienceDirectMaterials Lettersj o u r n a l h om e p a g e :ww w.e l s e v i e r.c o m /l o c a t e /m a t l e t(λ=0.15418nm).The microstructure analysis was conducted with a JEOL JSM 7500F field emission scanning electron microscope (SEM)and a JEOL JEM 2010transmission electron microscope (TEM),oper-ating at 5and 200kV,respectively.The N 2adsorption and desorption isotherms were determined on a JW-BK-112speci fic surface area and pore size distribution analyzer (Beijing JWGB Sci.&Tech.Co.,Ltd.)at 77.4K with a sample outgassed for 5h at 200°C.Surface areas were calculated using the Brunauer –Emmett –Teller (BET)equation and pore size distributions were obtained using the Barrett –Joyner –Halenda (BJH)method using the adsorption branch of the isotherms.3.Results and discussionFig.2gives the XRD pro file of the carbon nanoparticles in the as-prepared state.The broad peak around 2θ=26°can be assigned to the amorphous phase of carbon,representing the amorphous carbon nanoparticles prepared at low synthesis temperature by the present method.For SEM observation,the as-synthesized powder was directly transferred to double sided adhesive conductive carbon tape without further coating.SEM micrographs are shown in Fig.3.Fig.3a at relative low magni fication exhibits large amount of cotton-like agglomerates less than 200nm in diameter.At high magni fication in Fig.3b,it is obvious that the agglomerates consist of nanoparticleswith dimensions ranging from 20to 50nm.In fact,the as-prepared powder suffers greatly from shrinkage during drying due to strong surface tension,resulting in the formation of agglomerated carbon nanoparticles.Typical TEM bright field morphology of the amorphous carbon nanoparticles is shown in Fig.4.It is clear that the agglomerate consists of nanoparticles as shown in Fig.4a,which is consistent with SEM micrographs.The shape of the nanoparticles is not regular and surface is not smooth either.The high resolution TEM image further proves the nanoparticles are completely amorphous,as shown in Fig.4b.Fig.5shows the nitrogen adsorption –desorption isotherm of the sample,which lies between a type II and type IV isotherm shape,sug-gesting the presence of both macro-and mesoporosity.The large hys-teresis loop at a relative pressure between 0.4and 1.0is the characteristic of a wide distribution of slit-shaped mesopores [9],which matches very well the calculated pore size distribution by the BJH method in the insert of Fig.5.The average pore diameter and BET surface area of the amorphous carbon nanoparticles is 9.8nm and 75.2m 2g −1,respectively.The formation of mesopores should be mainly attributed to the spaces between the agglomerated nano-particles,as well as the pores in the nanoparticles created by the gen-erated gases druing the synthesis.In our previous paper,we synthesized amorphous carbon nano-tubes at 200°C in air by the reaction of ferrocene and ammonium chloride [10].The chemical reaction equations are also proposed as follows:4ðC 5H 5Þ2Fe þO 2þ4NH 4Cl →4ðC 5H 5Þ2FeCl þ4NH 3þ2H 2Oð1ÞFig.1.Scheme of the experimentalsetup.Fig.2.XRD pro file of the as-prepared amorphous carbonnanoparticles.Fig. 3.SEM micrographs of the amorphous carbon nanoparticles at different magni fications.200 B.Liu et al./Materials Letters 66(2012)199–202ðC 5H 5Þ2FeCl þ3O 2þ2NH 4Cl →10C þFeCl 3þ2NH 3þ6H 2Oð2ÞAccording to the experiment,amorphous carbon can be prepared at low temperature without inert gas protection because oxygen is a reactant in the process.Therefore,the solubility of ferrocene and am-monium chloride in stable high boiling point (above 200°C)organic solvents will promise a solution-phase synthesis of amorphous car-bon under ambient atmosphere,which is very convenient as a result of no need of special and complicated equipment.In present paper,ethanol and diglycol are used to dissolve ferrocene and ammonium chloride respectively.And ammonium chloride can completely dis-solve and uniformly disperse in diglycol at 200°C.When ferrocene dissolved in ethanol was added and mixed with diglycol,ferrocene would dissolve in the diglycol and react with the ammonium chloride at a molecular level,preferring to form nanoparticles according to Eqs.(1)and (2).At the same time,the ethanol and a certain amount of unreacted ferrocene were evaporating and blowed off by the air flow because of their low melting and sublimation point,respectively.Additionally,ammonia and water vapor were generated during the formation of carbon,resulting in the unsmooth surface and meso-pores of the nanoparticles.On the basis of the above results,relatively uniform carbon nano-particles can be obtained through the reaction of ferrocene and am-monium chloride with solvent and supply of oxygen.In comparison with the previous synthesis without solvent,the solubility of the re-actants in diglycol makes it easy to control reaction rate and unifor-mity for nanoparticles.It is further found that 6.04g and 3.98g of carbon nanoparticles can be synthesized in triglycol and polyethylene glycol 400with identical conditions,respectively,as shown in Fig.S1(Supplementary materials),indicating that the morphologies are sim-ilar with that prepared in diglycol.Consequently,the properties of solvents should play an important role in the formation of carbon nanoparticles due to the interactions between the reactants and the solvent.The speci fic mechanism of this reaction warrants some fur-ther discussion in order to control the morphology,pore structure and size distribution of the nanoparticles.4.ConclusionIn conclusion,agglomerates of amorphous carbon nanoparticles with diameters of 20to 50nm are prepared by the reaction of ferro-cene and ammonium chloride in diglycol under ambient atmosphere.The present synthesis method is competitive for fabrication of porous carbon nanomaterials because of its evident advantages,including the inexpensive starting materials and instruments,low synthesis temperature and ambient atmosphere,environment friendly and ef fi-cient process,ease in procedural control.It will be much more attrac-tive for diverse applications in the future.AcknowledgmentsThis work is supported by “Chen Guang ”project of Shanghai Municipal Education Commission and Shanghai Education Develop-ment Foundation Science &Technology (No.09CG53),Natural Science Foundation of Shanghai (No.10ZR1413400),National Natural Science Foundation of China (No.51002094),Innovation Program of Shanghai Municipal Education Commission (No.10YZ112)and the Scientists-Company Cooperation Project of the Ministry of Science and Technology of China (No.2009GJC00003).Appendix A.Supplementary dataSupplementary data to this article can be found online at doi:10.1016/j.matlet.2011.08.111.Fig. 4.TEM micrographs of the amorphous carbon nanoparticles at different magni fications.Fig.5.Nitrogen adsorption –desorption isotherm and pore size distribution of the amorphous carbon nanoparticles.201B.Liu et al./Materials Letters 66(2012)199–202References[1]Srinivas G,Zhu YW,Piner R,Skipper N,Ellerby M,Ruoff R.Carbon2010;48:630–5.[2]Frackowiak E,Béguin F.Carbon2001;39:937–50.[3]Moreno-Castilla C,Maldonado-Hódar FJ.Carbon2005;43:455–65.[4]Liu Z,Sun XM,Nakayama-Ratchford N,Dai HJ.ACS Nano2007;1:50–6.[5]Inagaki M.Pores in carbon materials—importance of their control.New CarbonMater2009;24:193–222.[6]Li J,Wang XY,Huang QH,Gamboa S,Sebastian PJ.J Power Sources2006;158:784–8.[7]Ma Z,Kyotani T,Liu Z,Terasaki O,Tomita A.Chem Mater2001;13:4413–5.[8]Wu CZ,Zhu X,Ye LL,OuYang CZ,Hu SQ,Lei LY,et al.Inorg Chem2006;45:8543–50.[9]Sing KSW.Pure Appl Chem1985;57:603–19.[10]Liu BY,Jia DC,Zhou Y,Feng HB,Meng QC.Carbon2007;45:1710–3.202 B.Liu et al./Materials Letters66(2012)199–202。