6.9(3)二元一次方程组及其解法学习单
(完整版)二元一次方程组知识点及典型例题
二元一次方程组小结与复习一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。
(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
(二)二元一次方程组的解法: 1.代入消元法 2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。
二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0=++c by ax (a,b,c 为已知数,且a ≠0,b ≠0)的形式,这种形式叫二元一次方程的一般形式。
练习1、下列方程,哪些是二元一次方程,哪些不是?12).().(711)(6526)(=++-=++=-y x xy D y x C yx B x z x A练习2、若方程的值。
的二元一次方程,求、是关于)(n n mm y x y xm 43195=+--练习3、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例题、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)⎩⎨⎧=+=-1023724y x y x(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=题型三:代数式的变形 1、在方程=5中,用含的代数式表示为:= ,当=3时,= 。
6.9二元一次方程组及其解法
1、用前面学过的代入法来解
把其中一个未知数用另一个来表示,然后进行代入求解。如把②变形为
③,把③代入①,就可以求出未知数y的值,再把y的值代入③,即可解出该方程组。
2、整体代入法
把2x看成一个整体,进行变化后代入另一个方程求解。如把②变形为 ③,把③代入①,就可以求出未知数x的值,再把x的值代入③,即可解出该方程组。
教学重点:
用加减法解二元一次方程组。
教学难点:
灵活运用加减消元法的技巧,把“二元”转化为“一元”
教学过程
(一) 复习与准备
问题1:等式有哪些基本性质?如何用数学式子来表示它们?
学生回顾结果:
<1>若a=b,那么a±c=b±c
<2>若a=b,那么ac=bc
让学生思考:
若a=b,c=d,那么a+c=b+d吗?
答案:1 ⑴相加 y ⑵相减 x 2 ⑴B ⑵B
设计意图:通过简单的加减判断,训练学生对加减消元法的理解和认识,同时让学生明白,什么时候用加法消元,什么时候用减法消元。
问题7:用加减法解方程组
提问:同学们,观察这个方程组,能直接进行加减消元吗?那这个方程组怎么来解,我们分成小组来讨论研究学习。前后四桌为一个小组,大家展开讨论后,得出解题过程,看哪个小组又快又准确。
通过分析,让学生明了这种方法后,教师规范解题格式,学生对比演习格式。让学生初步掌握加减消元法解方程组的基本过程。
解:①+②得,
8x=40
解得
x=5
把x=5代入①得
25+2y=33
解得
y=4
所以这个方程组的解为
解出答案以后,要求学生代回检验我们所求出的结果是否为方程组的解,学生通过前面的学习,对检验已经有了一定的认识,但并没有形成习惯,因此要强调检验的重要性,培养学生良好的学习习惯。
【暑假分层作业】第08练 二元一次方程组及其解法-2022年七年级数学(人教版)(答案及解析)
第08练二元一次方程组及其解法知识点一、二元一次方程:(1)二元一次方程的定义含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程(2)二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.(3)二元一次方程有无数解.求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.知识点二、二元一次方程组的定义:(1)二元一次方程组的定义:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.(2)二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.知识点三、二元一次方程组的解法:(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x (或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用{x=ax=b的形式表示.一、单选题1.方程组34225x yx y+=⎧⎨-=⎩的解是()A.23xy=⎧⎨=⎩B.21xy=⎧⎨=-⎩C.11xy=⎧⎨=⎩D.11xy=⎧⎨=-⎩【答案】B【解析】【分析】由2x-y=5可得y=2x-5,将方程y=2x-5代入方程3x+4y=2进行求解,得到x的值,再将x 的值代入y=2x-5求解即可.【详解】解:由2x-y=5可得y=2x-5将方程y=2x-5代入方程3x+4y=2得:3x+4(2x-5)=2,解得:x=2,将x=2代入方程y=2x-5得:y=2×2-5=-1,∴该方程组的解为21x y =⎧⎨=-⎩故选:B . 【点睛】此题考查了二元一次方程组的求解能力,关键是能根据题目选择合适的消元方法进行计算.2.已知关于x ,y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解为24x y =⎧⎨=⎩,则关于方程组111222(1)2(1)3(1)2(1)3a x b y c a x b y c ++-=⎧⎨++-=⎩的解为( ) A .57x y =⎧⎨=⎩B .513x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .17x y =⎧⎨=⎩【答案】A 【解析】 【分析】将方程组变形,结合题意得出()()11232143x y ⎧+=⎪⎪⎨⎪-=⎪⎩,即可求出x ,y 的值.【详解】解:方程组()()()()11122212131213a x b y c a x b y c ⎧++-=⎪⎨++-=⎪⎩变形为()()()()111222121133121133a x b y c a x b y c⎧++-=⎪⎪⎨⎪++-=⎪⎩,设()()113213x m y n ⎧+=⎪⎪⎨⎪-=⎪⎩则111222a m b n c a m b n c +=⎧⎨+=⎩,x 和y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,∴24m n =⎧⎨=⎩,∴()()11232143x y ⎧+=⎪⎪⎨⎪-=⎪⎩, 解得57x y =⎧⎨=⎩,故A 正确.故选:A .【点睛】本题主要考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.3.若二元一次联立方程式2143221x yx y+=⎧⎨-+=⎩的解为,x a y b==,则a b+之值()A.192B.212C.7 D.13【答案】D【解析】【分析】先求出二元一次方程组的解,然后代入代数式求解即可.【详解】解:解方程组214 3221x yx y+=⎧⎨-+=⎩得112 xy=⎧⎨=⎩因为二元一次方程组2143221x yx y+=⎧⎨-+=⎩的解为x ay b=⎧⎨=⎩,所以a=1,b=12,所以a+b=13.故选D.【点睛】题目主要考查解二元一次方程组,求代数式的值,熟练掌握解二元一次方程组的方法是解题关键.4.已知关于x,y的方程组34754x yx y m+=⎧⎨-=⎩的解互为相反数,则m的值为()A.63 B.7 C.-7 D.-63【答案】D【解析】【分析】根据相反数的定义得到x=-y,代入第一个方程求出x、y的值,再代入第二个方程求出m.【详解】解:∵方程组34754x yx y m+=⎧⎨-=⎩的解互为相反数,∴x=-y,∵3x +4y =7,∴-3y +4y =7,得y =7, ∴x =-7,∴m =5x -4y =-35-28=-63, 故选:D . 【点睛】此题考查了解二元一次方程组的解法,正确理解题意得到x=-y 是解题的关键.5.已知关于x ,y 的方程组1427x y ax y a +=+⎧⎨-=--⎩,则下列结论中正确的是:①当0a =时方程组的解是方程1x y +=的解;②当x y =时,52a =-;③当1y x =,则a 的值为1或3-;④不论a 取什么实数,3x y -的值始终不变.( ) A .①②③ B .①②④C .②③④D .①③④【答案】B 【解析】 【分析】①把a 看作已知数表示出方程组的解,把0a =代入求出x 与y 的值,代入方程检验即可; ②令x y =求出a 的值,即可作出判断;③把x 与y 代入3x y -中计算得到结果,判断即可; ④令23x y =求出a 的值,判断即可. 【详解】解:1427x y a x y a +=+⎧⎨-=--⎩,据题意得:336x a =-, 解得:2=-x a ,把2=-x a 代入方程14x y a +=+得:33y a =+, 当0a =时,2x =-,3y =,把2x =-,3y =代入1x y +=得:左边231=-+=,右边1=, 所以2x =-,3y =是方程的解,故①正确; 当x y =时,233a a -=+, 即52a =-,故②正确;当1y x =时,()3321a a +-=,即1a =±或3,故③错误336339x y a a -=---=-,无论a 为什么实数,3x y -的值始终不变为-9,故④正确.∴正确的结论是:①②④,故选:B . 【点睛】本题主要考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.6.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解. 【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,∴321325a b a b -=⎧⎨+=⎩①②,①+②得,a =1, 将a =1代入①得,b =1, ∴a 2008+2b 2008=1+2=3, 故选:C . 【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题7.对于实数,x y ,规定新运算:1x y ax by *=+-,其中,a b 是常数.若124*=,()2*310-=,则a b *= ___________. 【答案】9 【解析】 【分析】先根据题意得到关于a 、b 的二元一次方程组21423110a b a b +-=⎧⎨-+-=⎩,求出a 、b 的值,然后根据221a b a b *=+-进行求解即可. 【详解】解:由题意得:21423110a b a b +-=⎧⎨-+-=⎩,解得13a b =-⎧⎨=⎩,∴()222211319a b a b *=+-=-+-=, 故答案为:9. 【点睛】本题主要考查了新定义下的实数运算,解二元一次方程组,正确理解题意求出a 、b 的值是解题的关键.8.若x =a ,y =b 是方程组342,25x y x y +=⎧⎨-=⎩的解,则22a b -=______.【答案】3 【解析】 【分析】先解方程组求出x 和y 的值,然后代入计算即可. 【详解】解:34225x y x y +=⎧⎨-=⎩①②,①+②×4,得 11x =22, ∴x =2. 把代入②,得 4-y =5, ∴y =-1,∵x =a ,y =b 是方程组342,25x y x y +=⎧⎨-=⎩的解,∴a =2,b =-1, ∴22a b -=4-1=3. 故答案为:3. 【点睛】本题考查了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式. 9.若()22x y -与25x y +-互为相反数,则()2021x y -=______.【答案】1- 【解析】 【分析】由题意,得到()22250x y x y -++-=,然后利用非负数的性质,求出x 、y 的值,再代入计算,即可得到答案. 【详解】解:∵()22x y -与|25|x y +-互为相反数, ∴()22250x y x y -++-=, ∴20x y -=,250x y +-=,联合两个方程,解得12x y =⎧⎨=⎩,∴()20212021 (12)1x y -=-=-故答案为:-1. 【点睛】本题考查了相反数的定义,绝对值的非负性,解题的关键是熟练运用非负数的性质进行解题. 10.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(0m >,0n >),得到正方形A B C D ''''及其内部的点,其中点A ,B 的对应点分别为A ',B ',则=a ______,m =______,n =______.若正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,则点F 的坐标为______.【答案】12,12,2,(1,4) 【解析】 【分析】首先根据点A 到A ',B 到B '的点的坐标可得方程组3102a m a n -+=-⎧⎨⨯+=⎩,3202a m a n +=⎧⎨⨯+=⎩,解可得a 、m 、n 的值,设F 点的坐标为(x ,y ),点F '、点F 重合可列出方程组,再解可得F 点坐标. 【详解】解:将点A (-3,0)的横、纵坐标都乘以实数a ,再将得到的点向右平移m 个单位,向上平移n 个单位后的坐标为:(- 3a + m , n ), 又知点A '的坐标为(-1,2), ∴3102a m a n -+=-⎧⎨⨯+=⎩①, 解得2n =,将点B (3,0)的横、纵坐标都乘以实数a ,再将得到的点向右平移m 个单位,向上平移n 个单位后的坐标为:(3a + m ,n ), 又知点B '的坐标为(2,2), ∴3202a m a n +=⎧⎨⨯+=⎩②,①+②得:2m = 1, 解得12m =,将12m =代入②得:1322a +=,解得12a =, ∴正方形进行的操作为:把每个点的横、纵坐标都乘以实数12,再将得到的点向右平移12个单位,向上平移2个单位,设点F 的坐标为(x ,y ),依题意得1122122x y y y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14x y =⎧⎨=⎩,∴点F 的坐标为(1,4). 故答案为:12,12,2,(1,4). 【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组. 11.对于x 、y 定义一种新运算“※”:x y ax by =+※,其中a 、b 为常数,等式右边是通常的加法和乘法的运算,已知5227=※,3419=※,那么23=※_______. 【答案】13 【解析】 【分析】利用题中的新定义化简已知等式求出a 与b 的值,即可确定出所求. 【详解】解:根据题中的新定义得:52273419a b a b +=⎧⎨+=⎩①②,①×2﹣②得:7a =35, 解得:a =5,把a =5代入①得:b =1, 则23=※2×5+3×1=13. 故答案为13. 【点睛】本题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解答本题的关键.12.已知关于x ,y 的二元一次方程组3226x y kx y k +=⎧⎨-=+⎩有下列说法:①当x 与y 相等时,解得k =﹣4;②当x 与y 互为相反数时,解得k =3;③若4x •8y =32,则k =11;④无论k 为何值,x 与y 的值一定满足关系式x +5y +12=0,其中正确的序号是_____. 【答案】①②③④ 【解析】 【分析】用代入消元法先求出方程组的解,①根据x =y 列出方程,求出a 即可判断;②根据互为相反数的两个数的和为0,列出方程,求出a 即可判断;③把底数统一化成a ,等式左右两边的底数相同时,指数也相同,得到x ,y 的方程,把方程组的解代入求出a ;④在原方程中,我们消去a ,即可得到x ,y 的关系. 【详解】解:3226x y k x y k +=⎧⎨-=+⎩①②,由②得:x =2y +k +6③, 把③代入①中,得:y =187k --④,把④代入③中,得:x =567k +,∴原方程组的解为567187k x k y +⎧=⎪⎪⎨--⎪=⎪⎩.①当x 与y 相等时,x =y , 即567k +=187k --,解得:k =﹣4,∴①正确;②∵方程的两根互为相反数,∴x +y =0, 即567k ++187k --=0,解得:k =3,∴②正确;③4x •8y =32,∴(22)x •(23)y =25,∴22x •23y =25,∴22x +3y =25,∴2x +3y =5,将方程组的解代入得: 2×567k ++3×187k --=5,解得:k =11,∴③正确;④3226x y k x y k +=⎧⎨-=+⎩①②,①﹣②×2得x +5y =﹣12,即x +5y +12=0.∴④正确.综上所述,①②③④都正确.故答案为:①②③④.【点睛】本题考查二元一次方程组的解,解二元一次方程组,解一元一次方程,熟练掌握用加减法求解二元一次方程组是解题的关键.三、解答题13.解二元一次方程组:3324x y x y -=⎧⎨+=⎩. 【答案】21x y =⎧⎨=-⎩【解析】【分析】利用加减消元法即可求解.【详解】3324x y x y -=⎧⎨+=⎩①②, ①×2+②得:5x =10,解得x =2;将x =2代入①中,得y =-1,∴方程组的解为:21x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组的知识,掌握加减消元法、代入消元法是解答本题的关键. 14.解方程组:(1)11912435x y x y -=⎧⎨-+=-⎩(2)()()22341312x y x y y ⎧+=⎪⎨⎪--=--⎩【答案】(1)373x y =⎧⎪⎨=⎪⎩(2)23x y =⎧⎨=⎩【解析】【分析】利用两个整式加减消元或者代入消元来解二元一次方程组;(1)11912435x y x y -=⎧⎨-+=-⎩①②②式×3+①式得,x =3,将x =3,代入①式得,y =73, 故方程组的解为373x y =⎧⎪⎨=⎪⎩; (2)()()22341312x y x y y ⎧+=⎪⎨⎪--=--⎩①② ②式化简后得,4x -y =5 ③,①式×3+③式得,x =2,将x =2代入①得,y =3,故方程组的解为23x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,熟练掌握整式加减消元或代入消元是解题的关键. 15.北京冬奥会、冬残奥会期间,大批的大学生志愿者参与服务工作,为双奥的成功举办做出巨大贡献.同时,“绿色办奥”是北京冬奥会、冬残奥会四大办奥理念之一.期间,节能与清洁能源车辆占全部赛事保障车辆的84.9%,为历届冬奥会最高.冬奥会开幕式当天,北京大学组织本校全体参与开幕式活动的志愿者统一乘车去国家体育场鸟巢,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?北京大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【答案】(1)计划调配36座新能源客车6辆,北京大学共有218名志愿者;(2)调配36座新能源客车3辆,调配22座新能源客车5辆.【解析】【分析】(1)根据题意,找到等量关系式,列一元一次方程求解即可;(2)由(1)得,志愿者有218人,根据题意,列二元一次方程,找整数解即可.(1)解:设计划调配36座新能源客车x 辆,则调配22座新能源客车(x +4)辆,由题意,得36x +2=22(x +4)-2解得x=6则志愿者的人数为:36x+2=36×6+2=218答:计划调配36座新能源客车6辆,北京大学共有218名志愿者.(2)解:设调配36座新能源客车a辆,则调配22座新能源客车b辆,由题意,得36a+22b=218∴18a+11b=109∵a,b为正整数∴当a=3,b=5时,既保证每人有座,又保证每车不空座答:调配36座新能源客车3辆,调配22座新能源客车5辆.【点睛】本题考查一元一次方程和二元一次方程的实际应用,根据题意找到等量关系式是解决问题的关键.16.将1到2021之间的所有奇数按顺序排成下图:记Pmn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=;(2)若Pmn=2021,则m=,n=;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200若能,求出4个数中的最大数;若不能,请说明理由.【答案】(1)45;(2)169,3;(3)覆盖的4个数之和能等于200【解析】【分析】(1)根据题意可知P45表示第4行第5个数,每行都有6个数,所有的数字都是奇数,然后即可计算出相应的值;(2)根据题意,可以得到2[6(m﹣1)+n]﹣1=2021,然后m为整数,1≤n≤6,即可得到m、n的值;(3)先判断,然后设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,即可列出相应的方程,然后求解即可说明理由.(1)解:(1)由题意可得,P 45=2×(6×3+5)﹣1=45, 故答案为:45;(2)解:∵Pmn =2021,∴2[6(m ﹣1)+n ]﹣1=2021,∴12m +2n ﹣13=2021,∵m 为正整数,1≤n ≤6,∴m =169,n =3,故答案为:169,3;(3)解:所覆盖的4个数之和能等于200,理由:设4个阴影格子中的数分别为2n ﹣3、2n ﹣1、2n +1、2n +11,由题意可得(2n ﹣3)+(2n ﹣1)+(2n +1)+(2n +11)=200,解得:n =24,∴所覆盖的4个数之和能等于200.【点睛】此题考查了数字类规律的运算,有理数的混合运算,解一元一次方程,正确理解数字的排列规律并应用是解题的关键.17.对于任意的实数x ,y ,规定运算“※”如下:x y ax by =+※.(1)当3a =,4b =时,求12-※()的值; (2)若5316=※,232-=-※(),求a 与b 的值.【答案】(1)-5(2)a 的值为2,b 的值为2【解析】【分析】(1)根据规定运算“※”,进行计算即可解答;(2)根据题意可得关于a ,b 的二元一次方程组,然后进行计算即可解答.(1)当a =3,b =4时,∴1※(-2)=3×1+4×(-2)=-5,∴1※(-2)的值为-5;(2)∵5※3=16,2※(-3)=-2,∴5316232a b a b +⎧⎨--⎩=①=②, ①+②得:2a +5a=14解得a =2,把a =2代入①得:10+3b =16,解得b =2,∴原方程组的解为22a b ⎧⎨⎩==, ∴a 的值为2,b 的值为2.【点睛】本题考查了实数的运算,解二元一次方程组,熟练掌握解二元一次方程的步骤,以及理解材料中规定的运算是解题的关键.18.备解二元一次方程组4*8x y x y -=⎧⎨+=⎩,现系数“*”印刷不清楚. (1)李宁同学把“*”当成3,请你帮助李宁解二元一次方程组438x y x y -=⎧⎨+=⎩; (2)数学老师说:“你猜错了”,该题标准答案的结果x 、y 是一对相反数,你知道原题中“*”是 .【答案】(1)31x y ==-⎧⎨⎩(2)5【解析】【分析】(1)将方程组中的两个方程相加消掉未知数y ,得到x 的一元一次方程,求出x 的值,把x 的值代入第一个方程,求出y 的值,即得方程组的解;(2)用x -y =4与x +y =0组成方程组,求出x 、y 的值,把x 、y 的值代入*x +y =8,求出*的值.(1)438x y x y -=⎧⎨+=⎩①②, ①+②得,4x =12,把x =3代入①,得,3-y =4,∴y =-1,∴31x y ==-⎧⎨⎩; (2)04x y x y +=⎧⎨-=⎩①②, ①+②,得,2x =4,∴x =2,把x =2代入①,得,2+y =0,∴y =-2,∴22x y =⎧⎨=-⎩, ∴228*-=,∴5*=.故答案为:5.【点睛】本题主要考查了二元一次方程的解,解二元一次方程组,熟练掌握二元一次方程的解的定义,运用加减消元法解二元一次方程组,是解决问题的关键.1.定义新运算:对于任意实数a ,b 都有a ※b =am -bn ,等式右边是通常的减法和乘法运算.若3※2=5,1※(-2)=-1,则(-3)※1的值为( )A .-2B .-4C .-7D .-11 【答案】A【解析】【分析】按照定义新运算的法则,先求出m 和n 的值,再把算式转化为有理数运算即可.解:根据题意,3※2=5,1※(-2)=-1,得,32521m n m n -=⎧⎨+=-⎩, 解得,11m n =⎧⎨=-⎩, 则(-3)※1=(-3)×1-1×(-1)=-2,故选:A .【点睛】本题考查了定义新运算,二元一次方程组和有理数混合计算,解题关键是根据定义新运算法则把两个等式转化为二元一次方程组,求出m 、n 的值.2.已知关于x ,y 的方程组25241x y a x y a +=-⎧⎨-=-⎩给出下列结论:正确的有_____.(填序号) ①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 都为正整数的解有3对【答案】①②【解析】【分析】①将a=1代入方程组的解,求出方程组的解,即可做出判断;②将a 看做已知数求出方程组的解表示出x 与y ,即可做出判断;③将a 看做已知数求出方程组的解表示出x 与y ,即可判断正整数解;【详解】解关于x ,y 的方程组25241x y a x y a +=-⎧⎨-=-⎩得2122x a y a =+⎧⎨=-⎩①当1a =时,原方程组的解是30x y =⎧⎨=⎩,此时30x y =⎧⎨=⎩是213x y a +=+=的解,故①正确; ②原方程组的解是2122x a y a =+⎧⎨=-⎩,∴30x y +=≠,即无论a 取何值,x ,y 的值不可能是互为相反数,故②正确;③x ,y 都为正整数,则210220x a y a =+>⎧⎨=->⎩,解得112a -<<,正整数解分别是当10,2a a ==时,故只有两组,故③错误;故答案为①②【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.【答案】(1)见解析;(2)a和b的值分别为2,5.【解析】【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k的值即可;(2)根据加减消元法的过程确定出a与b的值即可.【详解】解:(1)选择甲,3274232m n km n+=-⎧⎨+=-⎩①②,①×3﹣②×2得:5m=21k﹣8,解得:m=2185k-,②×3﹣①×2得:5n=2﹣14k,解得:n=2145k-,代入m+n=3得:21821455k k--+=3,去分母得:21k﹣8+2﹣14k=15,移项合并得:7k=21,解得:k=3;选择乙,3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m +5n =7k ﹣6,解得:m +n =7-65k , 代入m +n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m +2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.[阅读材料]善于思考的小明在解方程组253(1)4115(2)x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程(2)变形:4105x y y ++=,即()2255(3)x y y ++=,把方程(1)代入(3)得:235y ⨯+=,所以1y =-,将1y =-代入(1)得4x =,所以原方程组的解为41x y =⎧⎨=-⎩.21 [解决问题](1)模仿小明的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩, (2)已知x ,y 满足方程组2222321250425x xy y x xy y ⎧-+=⎨++=⎩,求224x y +的值. 【答案】(1)原方程组的解为32x y =⎧⎨=⎩;(2)22420x y += 【解析】【分析】(1)根据题意,利用整体的思想进行解方程组,即可得到答案;(2)根据题意,利用整体的思想进行解方程组,即可得到答案.【详解】解:()13259419x y x y -=⎧⎨-=⎩①② 将方程②变形得:()332219x y y -+=③把方程①代入③得:35219y ⨯+=,所以2,y =将2y =代入①得3x =,所以原方程组的解为32x y =⎧⎨=⎩; ()22222321250425x xy y x xy y ⎧-+=⎨++=⎩①②, 把方程①变形,得到223(4)550x xy y xy ++-=③,然后把②代入③,得325550xy ⨯-=,∴5xy =,∴22425520x y +=-=;【点睛】本题考查了方程组的“整体代入”的解法.整体代入法,就是变形组中的一个方程,使该方程左边变形为另一个方程的左边的倍数加一个未知数的形式,整体代入,求出一个未知数,再代入求出另一个未知数.。
二元一次方程组学案(全章精编)
二元一次方程学习目标:1、认识二元一次方程2、了解二元一次方程的解3、会求二元一次方程的正整数解4、列二元一次方程 二、例题解析1、已知方程3x m-2-2y 2n-1=7是二元一次方程,求m 和n 的值.2、已知⎩⎨⎧-==13y x 是方程42-=-y mx 解,求m 的值.3、方程82=+y x 的正整数解补充例题:1、用x 的代数式表示y 的代数式.x -y =3 2x=3y 2x=3y+1 2x=4y-1 3x-4y=3 4x+3y=2 2、把方程化为一般形式:X=y-1 2x=3(y-1) 2(x+1)-3(y-1)=5 3x-1=2(y+1)-1三、同步练习:1.已知方程21123m x +-y 2-3n=1是二元一次方程,则m=_____,n=_______2.在(1)5121(2)(3)(4)2346x x x x y y y y ==-==⎧⎧⎧⎧⎨⎨⎨⎨=-=-==⎩⎩⎩⎩中, _______是方程7x-3y=2的解;•________是方程2x+y=8的解;3.若1213x y ⎧=⎪⎪⎨⎪=-⎪⎩是方程4x+9x-15m=0的一组解,则m=_______.4、甲种面包每个2元,乙种面包每个2.5元,现在某人买了x 个甲种面包,y 个乙种面包,共花了30元.(1)列出关于x 、y 的二元一次方程 ; (2)如果5=x ,那么=y .(3)如果乙种面包买了4个,那么甲种面包买了 个.5、二元一次方程x+2y=7的正整数解是______________.6、现有足够的1元、2元的人民币,需要把面值为10元人民币换成零钱,请你设计几种兑换方案.二元一次方程组学习目标:1、认识二元一次方程组;2、了解二元一次方程组的解3、列二元一次方程组 一、教学过程例题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少? 解:设胜的场数是x ,负的场数是y由题意得二元一次方程组的解:二、例题:1、已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+23,4y nx my x 的解是⎩⎨⎧-==,3,1y x 求m +n 的值.2、 某校师生200人到甲乙两地参观学习,到甲地的人数比到乙地的人数的2倍少4人.到两地的人数各是多少?(列方程组表示,不要求出解) 二、练习:1、已知下列三对值:x =-6 x =10 x =10 y =-9 y =-6 y =-1(1) 哪几对数值使方程21x -y =6的左、右两边的值相等? (2)哪几对数值是方程组的解? 2、若⎩⎨⎧==2,1y x 是方程组⎩⎨⎧=+=-3,0by x y ax 的解,则a =______,b =______.3、若|x -2|+(3y +2x )2=0,则yx的值是______. 4、已知y =ax +b ,当x =1时,y =1;当x =-1时,y =0,则a =______,b =______ 5、若等式0|21|)42(2=-+-y x 中的x 、y 满足方程组⎩⎨⎧=+=+,165,84n y x y mx 求2m 2-n +41mn 的值 6、已知⎩⎨⎧-==12y x 是方程组⎩⎨⎧-=-=+4232y nx my x 的解,求m 、n 的值.21x -y =6 2x +31y =-117、根据题意列出方程组:1、某班共有学生42人,男生比女生人数的2倍少6人,问男、女生各有多少人?2、苹果的售价3元/kg,葡萄的售价是4元/kg,,小华共买了苹果和葡萄9kg,付款29元。
二元一次方程组及其解法优秀教案
二元一次方程组及其解法【课时安排】3课时【第一课时】【教学目标】一、知识与技能理解二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解。
二、过程与方法经历认识二元一次方程和二元一次方程组的过程,感受类比的学习方法在数学学习过程中的作用。
三、情感、态度与价值观学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性,感受学习数学的乐趣。
【教学重难点】重点:理解二元一次方程组的解的意义。
难点:求二元一次方程的正整数解。
【教学过程】一、创设情境,引入新课(一)古老的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足。
问鸡、兔各几何?”教师描述:这是我国古代数学著作《孙子算经》中记载的数学名题。
它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣。
怎样来解答这个问题呢?学生思考并自行解答,教师巡视。
最后,在学生动手动脑的基础上,集体讨论并给出各个解决方案。
(二)教师展示幻灯片:方法1:算筹解法。
(孙子算经,用算筹研究代数。
)方法2:图形解法。
(尚不成熟的符号语言,但很直观。
)方法3:算术解法。
兔数:(94÷2)-35=12鸡数:35-12=23方法4:一元一次方程的解法。
解:设鸡有x只,则兔有(35-x)只,则可列方程:2x+4(35-x)=94;解得:x=23。
则鸡有23只,兔有12只。
请同学们自己思考。
教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?二、尝试活动,探索新知(一)讨论二元一次方程、二元一次方程组的概念。
1.教师提问:上面的问题可以用一元一次方程来解,那么还有其他方法吗?方法6:设有x只鸡,y只兔,依题意得:x+y=35①2x+4y=94②针对学生列出的这两个方程,教师提出如下问题:(1)你能给这两个方程起个名字吗?(2)为什么叫二元一次方程呢?(3)什么样的方程叫二元一次方程呢?2.教师结合学生的回答,板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程。
数学北师大版六年级下册二元一次方程及其解法
6.9二元一次方程组及其解法闻素人 教学目标1.理解二元一次方程组的概念,以及二元一次方程组的解的概念。
2.能利用代入消元的方法熟练地解二元一次方程组。
3.经历解二元一次方程组的过程,体验数学的化归思想,而且知道解一次方程组中化归的基本方法:消元,即把二元化为一元,通过解一元一次方程达到解二元一次方程组的目的。
4.在学习中感受中华民族的传统灿烂文化,增强学生的民族自豪感,增加学生的民族自信心。
教学重点、难点重点:掌握用代入消元法解二元一次方程组的方法。
难点:理解代入消元法的基本思路。
教学过程一.复习旧知,作好铺垫1、_________________________________________________是二元一次方程。
2、下列方程中,属于二元一次方程的是( )10y x 5.D 0z 4y 3x 2.C 1xy .0y 51x 2.A 2=+=-+==+ B 3、将方程y x 3y x 2的式子表示变形为用=+______________________,x y 的式子表示用含_________________________________;二.情境引入,激发兴趣1.方程组通过“母亲节”引入例题得到方程组的概念:母亲节要到了,小丽打算用零用钱买一束康乃馨送给母亲,小丽买了红色和粉色康乃馨共16支,一共花了10元钱,已知红色康乃馨0.7元一支,粉色康乃馨0.5元一支,你知道这束花由几支红色康乃馨、几支粉色康乃馨组成?方程组:由几个方程组成的一组方程叫做方程组。
2.二元一次方程组二元一次方程组的概念:方程组中含有两个未知数,含有未知数的项的次数都是一次,这样的方程组叫做二元一次方程组。
例.判断下列方程组中,哪些是二元一次方程组?⎪⎩⎪⎨⎧=+=-1z 2y 3y x )1( ⎪⎩⎪⎨⎧-=+-=8y 76y 9x 14)2( ⎪⎩⎪⎨⎧-=-=-5x 9y 3344y 4x )3(2 ⎪⎩⎪⎨⎧-==+2xy 21y 6x 5)4( 3.二元一次方程组的解例.二元一次方程组⎪⎩⎪⎨⎧=+=+10y 5.0x 7.016y x 的解是 ( ) A. ⎪⎩⎪⎨⎧==14y 2x B.⎪⎩⎪⎨⎧==3y 13x C.⎪⎩⎪⎨⎧==6y 10x D.⎪⎩⎪⎨⎧==13y 5x 二元一次方程组的解:在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解。
二元一次方程组知识点汇总及练习(超详细)
【知识点梳理】知识点1:二元一次方程组的定义1.二元一次方程(1)定义:含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程(2)三个条件:①方程中的元指的是未知数,即二元一次方程有且只有两个未知数.②含有未知数的项的次数都是1.③二元一次方程的左右两边都必须是等式.(3)含有未知数的项的系数不等于零,且两未知数的次数均为1。
即若ax m+by n=c是二元一次方程,则a≠0,b≠0且m=1,n=12.二元一次方程组(1)定义:由两个二元一次方程所组成的方程组叫二元一次方程组。
(2)三个条件:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
3.二元一次方程组的解(1)定义:使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。
(2)常考题型:①根据定义判断②已知方程组的解,求方程组待定系数。
(将解代入方程)③列方程组求相关字母的值。
知识点2:解二元一次方程组1.代入消元法(1)定义:通过代入消去一个未知数,将方程组转化为一个一元一次方程来解,这种解法叫做代入消元法。
(2)用代入消元法解二元一次方程组的步骤:①从方程组中选取一个系数比较简单的方程,把其中的一个未知数用含另一个未知数的式子表示出来.②把①中所得的方程代入另一个方程,消去一个未知数.③解所得到的一元一次方程,求得一个未知数的值.④把所求得的一个未知数的值代入①中求得的方程,求出另一个未知数的值,从而确定方程组的解.例:解方程组:278 38100x yx y-=⎧⎨--=⎩2.加减消元法(1)定义:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程这种方法叫做加减消元法,简称加减法。
(2)加减消元法解方程步骤:①方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使一个未知数的系数互为相反数或相等;•②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程;④将求出的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值,从而得到方程组的解。
二元一次方程组解法练习题精选含答案
的 x,y 的值.
点评: 本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法. 2.解下列方程组
(1)
(2)
(3)
考点: 解二元一次方程组. 809625
分析: (1)(2)用代入消元法或加减消元法均可; (3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.
解答: 解:(1)①﹣②得,﹣x=﹣2,
,
,然后在用加减消元法消去未知数
(4)
.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
专题7 二元一次方程组及其解法-重难点题型(举一反三)(学生版)
专题2.1 二元一次方程组及其解法-重难点题型【知识点1 二元一次方程(组)的概念】1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
2、二元一次方程组含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
【题型1 二元一次方程(组)的概念】【例1】(2021春•常德期末)若方程(n ﹣1)x |n |﹣3y m ﹣2025=5是关于x ,y 的二元一次方程,则n m = .【变式1-1】(2021春•平凉期末)方程组{y −(a −1)x =5y |a|+(b −5)xy =3是关于x ,y 的二元一次方程组,则a b 的值是 . 【变式1-2】(2017春•长宁县月考)已知方程组{3x −(m −3)y |m−2|−2=1(m +1)x =−2是二元一次方程组,求m 的值.【变式1-3】(2021春•自贡期末)已知关于x 、y 的方程(k 2﹣4)x 2+(k +2)x +(k ﹣6)y =k +8, 试问:①当k 为何值时此方程为一元一次方程?②当k 为何值时此方程为二元一次方程?【知识点2 二元一次方程(组)的解】3、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
4、二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
5、二元一次方程组的解法(1)代入(消元)法(2)加减(消元)法【题型2 二元一次方程(组)的解】【例2】(2021春•开福区月考)已知关于x ,y 的二元一次方程组{mx +2y =103x −2y =0的解中x ,y 均为整数,且m 为正整数,则m 2﹣1的值为( )A .3或48B .3C .4或49D .48【变式2-1】(2021春•嵊州市期末)关于x ,y 的二元一次方程组{x +y =9k x −y =5k的解也是二元一次方程2x +y =16的解,则k 的值为 .【变式2-2】(2021春•遂宁期末)关于x ,y 的二元一次方程2x +3y =12的非负整数解有 组.【变式2-3】(2020春•永定区期中)若{x =2y =1是二元一次方程ax ﹣by =5和ax +2by =8的公共解,求b ﹣2a 的值.【题型3 构建二元一次方程组】【例3】(2021春•江津区期末)如果|x ﹣y ﹣3|+(x +3y +1)2=0,那么x ,y 的值为( )A .{x =1y =2B .{x =2y =−1C .{x =−1y =−2D .{x =−2y =−1 【变式3-1】(2020•奉贤区三模)如果单项式x 4y m ﹣n 与2019x m +n y 2是同类项,那么m +n 的算术平方根是 .【变式3-2】(2021春•海陵区期末)已知a 、b 都是有理数,观察表中的运算,则m = .a 、b 的运算a +b a ﹣b (a +2b )3 运算的结果 5 9 m【变式3-3】(2021春•三门峡期末)对于有理数x ,y ,定义一种新运算:x ⊕y =ax +by ﹣5,其中a ,b 为常数.已知1⊕2=9,(﹣3)⊕3=﹣2,则2a ﹣b = .【题型4 整体换元求值】【例4】(2021春•绥棱县期末)已知x ,y 满足方程组{2x +5y =m −145x +2y =−m,则11x +11y 的值为( ) A .﹣22 B .22 C .11m D .14【变式4-1】(2021•安徽二模)若x 2﹣y 2=2021,且x ﹣y =1.则x = .【变式4-2】(2021春•自贡期末)阅读以下材料:解方程组{x −y −1=0①4(x −y)−y =5②. 解:由①得x ﹣y =1③,将③代入②得4×1﹣y =5,解得y =﹣1;把y =﹣1代入①解得{x =0y =−1,这种方法称为“整体代入法”. 请你用这种方法解方程组{2x −y −2=0①6x−3y+45+2y =12②.【变式4-3】(2021春•福州期末)阅读材料:善于思考的小军在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代换”的解法:解:将方程②变形:4x +10y +y =5即2(2x +5y )+y =5③,把方程①代入③得:2×3+y =5,∴y =﹣1,把y =﹣1代入①得x =4,∴方程组的解为{x =4y =−1. 请你解决以下问题:(1)模仿小军的“整体代换”法解方程组{3x −2y =5①9x −4y =19②; (2)已知x ,y 满足方程组{3x 2−2xy +12y 2=47①2x 2+xy +8y 2=36②,求x 2+4y 2与xy 的值; (3)在(2)的条件下,写出这个方程组的所有整数解.【题型5 由方程组的错解问题求参数的值】【例5】(2020春•定州市校级期末)解方程组{ax +by =2cx −7y =8时,一学生把c 看错而得{x =−2y =2,正确的解是{x =3y =−2,那么a 、b 、c 的值是( )A .不能确定B .a =4,b =5,c =﹣2C .a ,b 不能确定,c =﹣2D .a =4,b =7,c =2【变式5-1】(2020春•牡丹江期中)甲乙两人解方程组{ax +5y =15,①4x −by =−2,②,由于甲看错了方程①中的a ,而得到方程组的解为{x =−3y =−1,乙看错了方程②中的b ,而得到的解为{x =5y =4,则a +b = . 【变式5-2】(2021春•青川县期末)解关于x ,y 的方程组{ax +by =93x −cy =−2时,甲正确地解出{x =2y =4,乙因为把c 抄错了,误解为{x =4y =−1,求a ,b ,c 的值.【变式5-3】(2020春•邗江区期末)小明和小红同解同一个方程组时,小红不慎将一滴墨水滴在了题目上使得方程组的系数看不清了,显示如下{▲x +■y =2(1)▲x −7y =8(2),同桌的小明说:“我正确的求出这个方程组的解为{x =3y =−2”,而小红说:“我求出的解是{x =−2y =2,于是小红检查后发现,这是她看错了方程组中第二个方程中x 的系数所致”,请你根据他们的对话,把原方程组还原出来.【题型6 根据方程组解的个数求参数】【例6】(2021春•江夏区期末)如果关于x ,y 的方程组{x +y =3x −2y =a −2的解是正数,那a 的取值范围是( ) A .﹣4<a <5 B .a >5 C .a <﹣4 D .无解【变式6-1】(2020秋•锦江区校级期中)若方程组{ax −y =14x +by =2有无数组解,则a +b =( ) A .2 B .3 C .﹣1 D .0【变式6-2】(2021春•仓山区期中)关于x ,y 的方程(m ﹣1)x +4y =2和3x +(n +3)y =1,下列说法正确的有 .(写出所有正确的序号)①当m =1,n =﹣3时,由这两个方程组成的二元一次方程组无解;②当m =1且n ≠﹣3时,由这两个方程组成的二元一次方程组有解;③当m =7,n =﹣1时,由这两个方程组成的二元一次方程组有无数个解;④当m =7且n ≠﹣1时,由这两个方程组成的二元一次方程组有且只有一个解.【变式6-3】(2021春•汉寿县期中)阅读下列材料,解答下面的问题:我们知道方程2x +3y =12有无数个解,但在实际问题中往往只需求出其正整数解.例:由2x +3y =12,得:y =12−2x 3=4−23x (x 、y 为正整数).要使y =4−23x 为正整数,则23x 为正整数,可知:x 为3的倍数,从而x =3,代入y =4−23x =2.所以2x +3y =12的正整数解为{x =3y =2. 问题:(1)请你直接写出方程3x +2y =8的正整数解 {x =2y =1. (2)若6x−3为自然数,则满足条件的正整数x 的值有A .3个B .4个C .5个D .6个(3)关于x ,y 的二元一次方程组{x +2y =92x +ky =10的解是正整数,求整数k 的值.。
二元一次方程组知识点归纳及解题技巧汇总
二元一次方程组知识点归纳及解题技巧汇总二元一次方程组知识点归纳及解题技巧汇总1、二元一次方程:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组:把具有相同未知数的两个二元一次方程合在一起。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
5、消元法解二元一次方程组:(1) 基本思路:未知数又多变少。
(2) 消元法的基本方法:将二元一次方程组转化为一元一次方程。
6.解法:通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。
例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y ③把③带入②,得6(5-y)+13y=89y=59/7把y=59/7带入③,得x=5-59/7即x=-24/7∴x=-24/7y=59/7 为方程组的解加减消元法:例:解方程组x+y=9①x-y=5②解:①+② 2x=14即 x=7把x=7带入①得7+y=9解得y=-2∴x=7y=-2 为方程组的解7. 二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6① 2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4① 2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。
教科书中没有的几种解法(一)加减-代入混合使用的方法.例1, 13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2, (x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
二元一次方程组--辅导讲义(学)
二元一次方程组一、知识梳理知识点1. 二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 例1.方程41ax yx -=-是二元一次方程,则a 的取值为( )A 、0a ≠B 、1a ≠-C 1a ≠D 、2a ≠例2.若二元一次方程321x y-=有正整数解,则x 的取值应为( )A 正奇数B 、正偶数C 、正奇数或正偶数D 、0例3.已知二元一次方程组45ax by bx ay +=⎧⎨+=⎩ 的解是21x y =⎧⎨=⎩,则_____.a b +=练习1.已知,x y 满足方程组⎩⎨⎧=+=+4252y x y x ,则x y -的值为 。
2.请写出一个以,x y 为未知数的二元一次方程组,且同时满足下列两个条件:①由两个二元一次方程组成;②方程的解为⎩⎨⎧==32y x ,这样的方程组可以是___________.知识点2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.例1:解方程组:(1)32528x yx y+=⎧⎨-=⎩(2)2931x yy x+=⎧⎨-=⎩例2解方程组:4143314312 x yx y+=⎧⎪⎨---=⎪⎩练习:已知关于、的二元一次方程组的解满足二元一次方程,求的值。
二元一次方程组 习题及答案100道
二元一次方程组习题及答案100道1.2x+9y=813x+y=342.9x+4y=358x+3y=303.7x+2y=527x+4y=624.4x+6y=549x+2y=875.2x+y=72x+5y=196.x+2y=213x+5y=567.5x+7y=525x+2y=228.5x+5y=657x+7y=2039.8x+4y=56x+4y=2110.5x+7y=415x+8y=4411.7x+5y=543x+4y=3812.x+8y=154x+y=299x+5y=46 14.9x+2y=62 4x+3y=36 15.9x+4y=46 7x+4y=42 16.9x+7y=135 4x+y=41 17.3x+8y=51 x+6y=27 18.9x+3y=99 4x+7y=95 19.9x+2y=38 3x+6y=18 20.5x+5y=45 7x+9y=69 21.8x+2y=28 7x+8y=62 22.x+6y=14 3x+3y=27 23.7x+4y=67 2x+8y=26 24.5x+4y=52 7x+6y=74 25.7x+y=926.6x+6y=486x+3y=4227.8x+2y=167x+y=1128.4x+9y=778x+6y=9429.6x+8y=687x+6y=6630.2x+2y=227x+2y=471) 66x+17y=3967 25x+y=1200答案:x=48 y=47 (2) 18x+23y=2303 74x-y=1998答案:x=27 y=79 (3) 44x+90y=7796 44x+y=3476答案:x=79 y=48 (4) 76x-66y=4082 30x-y=2940答案:x=98 y=51 (5) 67x+54y=8546 71x-y=5680答案:x=80 y=59 (6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48 (7) 47x-40y=853 34x-y=2006答案:x=59 y=48 (8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12(14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=82 59x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=761947x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55(39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=8420x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 (51) 17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46(64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=1052484x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=8295 40x+y=2920答案:x=73 y=91(89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-45067x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。
百度__第五讲_二元一次方程组解法及其简单应用辅导专题含答案
第五讲 二元一次方程组解法及其简单应用培优辅导【要点梳理】1、二元一次方程:含有 未知数(x 和y ),并且含有未知数的 次数都是 ,像这样的 方程叫做二元一次方程,它的一般形式是(0,0)ax by c a b +=≠≠.2、二元一次方程的解:一般地, ,叫做二元一次方程的解. 【二元一次方程有 个解】3、二元一次方程组:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.5、二元一次方程组的解法:代入消元法和加减消元法。
6、三元一次方程组及其解法:方程组中一共含有 个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。
解三元一次方程组的关键也是“ ”:三元→二元→一元 基础夯实 一.选择题:1、方程72=+y x 在自然数范围内的解( )A.有无数对B.只有3对C.只有4对D.以上都不对2、若方程组()⎩⎨⎧=+=-+143461y x y a ax 的解x 、y 的值相等,则a 的值为( )A .﹣4B .4C .2D .1 3、把一张50元的人民币换成10元或5元的人民币,共有 A. 4种换法B. 5种换法C. 6种换法D. 7种换法4、定义新运算“※”:abyb a x b a +-=*,已知,821=* 432=*,则=*43( ) A. 0 B. 1 C. 2 D.35、如果⎩⎨⎧=-=+.232,12y x y x 那么=-+-+3962242yx y x ( ) A. 2 B.21C. 1D. 1- 二.填空题:1、单项式8323y xnm +与n m y x 2322+-是同类项,则m+n=2、已知关于,x y 的方程组2647x ay x y -=⎧⎨+=⎩的解是正整数,那么正整数a =________。
二元一次方程组考点总结及练习(附答案)
二元一次方程组考点解析考点一二元一次方程(组)的解的概念【例1】已知2,1xy==⎧⎨⎩是二元一次方程组8,1mx nynx my+=-=⎧⎨⎩的解,则2m-n的算术平方根为( )A.4B.2D.±2【解析】把2,1xy==⎧⎨⎩代入方程组8,1mx nynx my+=-=⎧⎨⎩得28,2 1.m nn m+=-=⎧⎨⎩解得3,2.mn==⎧⎨⎩所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.变式练习1.若方程组,ax y bx by a+=-=⎧⎨⎩的解是1,1.xy==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二二元一次方程组的解法【例2】解方程组:1 28. x yx y=++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2. xy==⎧⎨⎩方法二:1, 28. x yx y=++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2. 所以原方程组的解为3,2. xy==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.变式练习2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________. 3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.变式练习4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.变式练习5.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x yy z+=-+=⎧⎨⎩B.53323x yy x-==+⎧⎨⎩C.512x yxy-==⎧⎨⎩D.2371x yx y-=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x yx y-=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21xy==⎧⎨⎩,是方程组4,ax byax by+=--=⎧⎨⎩的解,那么a,b的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A、B两地相距6 km,甲、乙两人从A、B两地同时出发,若同向而行,甲3 h可追上乙;若相向而行,1 h相遇,A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩ 6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.(2014·抚州)已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( )A.8B.4C.-4D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222x y z ===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a 、b12.已知2,1x y ==⎧⎨⎩是二元一次方程组7,1mx ny nx my +=-=⎧⎨⎩的解,则m+3n 的立方根为__________.13.孔明同学在解方程组,2y kx b y x =+=-⎧⎨⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,x y =-=⎧⎨⎩又已知3k+b=1,则b 的正确值应该是__________. 14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x y x y +=-⎧=⎨⎩,①;② (2)1151.x y z y z x z x y +-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩ 整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y xy +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.214 34 15.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得15x y +=⎧⎨,解得5x =⎧⎨,答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。
《二元一次方程组的解法》数学教学PPT课件(3篇)
用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值
写出方程组的解
学习目标
1、理解解二元一次方程组的另一种常用方法——“加减 消元法” ; 2、熟练以及灵活应用加减消元法解二元一次方程组.
新知探究
想一想
为了解方程组
3x+2y=13 3x-2y=5
不用代入法能否消去其中的未知数y ?
旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校
舍?(单位:m2 )
拆 (x m2)
设应拆除旧校舍x m2 ,建 造新校舍y m2 .
根据题意列方程组
20000 m2
y=4x
y-x=20000× 30﹪.
y=4x 即
y-x=6000
新建 (y m2)
1.解方程组: x=3y+2, ① x+3y=8. ②
随堂练习
1、用代入消元法解下列方程组
y=2x ⑴
x=4
x=—y2-5
y=8 ⑵
x=5 y=15
x+y=12
4x+3y=65
x+y=11 x=9
3x-2y=9
x=3
⑶ x-y=7
y=2 ⑷ x+2y=3
y=0
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y的二元 一次方程,求m 、n 的值.
把y=0.8代入①可得x=2
{ x=2
故原方程的解为 y=0.8
{7x+4y-10=0
例3 解方程组 4x+2y-5=0
{7x+4y=10 ①
解:原方程组可化为 4x+2y=5 ②
由方程②得y=(5-4x)/2 将上式带入①整理,得10- x =10
七年级数学二元一次方程组经典练习题
二元一次方程组练习题100道一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( ) 2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x -2y =13的一个解( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 ( )9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为b a( )12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437y x +=( ) 二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( ) (A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( ) (A )2; (B )-1; (C )1; (D )-2;17、在下列方程只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x (C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x 18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =319、下列是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x (C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xy y x 20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( ) (A )a =-3,b =-14 (B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x y x 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( )(A )无解 (B )有唯一一个解(C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4(C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4 (D )21-=k ,b =-4□x +5y =13 ①4x -□y =-2 ② 三、填空:25、在方程3x +4y =16中,当x =3时,y =______,当y =-2时,x =_____ 若x 、y 都是正整数,那么这个方程的解为_________;26、方程2x +3y =10中,当3x -6=0时,y =_________;30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a |+|b |=2的自然数解是_____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =____,m =____;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =_____; 33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)等于____;34、若x +y =a ,x -y =1同时成立,且x 、y 是正整数,则a 为_____;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________; 36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m n m ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x y x y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解; 48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。