高等数学复习题2014-2015
2015(高等数学二)成人高等学校招生全国统一考试5年真题
2014年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效.......。
选择题一、选择题:1—10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项的字母填涂在答题卡相应题号的信息点上............。
1.0lim →x 22sin xx= A.0 B.1 C.2 D.∞ 2.设函数)(x f 在x=1处可导,且)1('f =2,则0lim→x xf x f )1()1(--=A.-2B. -21C.21D.23. d(sin2x)=A.2cos2xdxB.cos2xdxC.-2cos2xdxD.-cos2xdx4.设函数)(x f 在区间[a ,b]连续且不恒为零,则下列各式中不恒为常数.....的是 A.)()(a f b f - B.⎰badx x f )( C. 0lim →x )(x f D. ⎰xadt t f )(5.设)(x f 为连续函数,且⎰xdt t f 0)(=)1ln(3++x x ,则)(x f =A.1132++x x B. 113++x x C.3x 2D. 11+x6.设函数)(x f 在区间[a ,b]连续,且I (u )=,)()(dx t f dx x f uaua⎰⎰-a<u<b ,则I (u )A.恒大于零B.恒小于零C.恒等于零 D 可正,可负. 7.设二元函数z=x y,则yz∂∂= A. x yB. x ylny C. x ylnx D.yx y-18.设函数)(x f 在区间[a ,b]连续,则曲线y=)(x f 与直线x=a ,x=b 及x 轴所围成的平面图形的面积为 A.⎰badx x f )( B. -⎰b adx x f )( C. ⎰b adx x f )( D.⎰badx x f )(9.设二元函数z=xcosy ,则yx z∂∂∂2=A.xsinyB.-xsinyC.sinyD.-siny 10.设事件A ,B 相互独立,A,B 发生的概率分别为0.6;0.9,则A ,B 都不发生的概率为 A.0.54 B.0.04 C.0.1 D.0.4非选择题二、填空题:11~20小题,每小题4分,共40分。
历年天津理工大学高数期末考试试卷及答案
2015-2016年第二学期《高等数学AII 》期末考试试卷一、单项选择题(从4个备选答案中选择最适合的一项,每小题2分共20分) 1、三重积分⎰⎰⎰Ω=dV z y x f I ),,(,其中Ω由平面1=++z y x ,1=+y x ,0=x ,0=y ,1=z 所围,化为三次积分是( B ) A 、 ⎰⎰⎰---=211010),,(y x x dz z y x f dy dx I ; B 、 ⎰⎰⎰---=111010),,(y x x dz z y x f dy dx I ;C 、 ⎰⎰⎰--=11110),,(yx dz z y x f dy dx I ; D 、 ⎰⎰⎰--=11010),,(yx x dz z y x f dy dx I .2、设y e x u 2=,则=du ( A )A. dy e x dx xe y y 22+;B. dy e xdx y +2;C. dy xe dx e x y y 22+;D. dy e x dx e x y y 22+. 3、微分方程y dxdyx= 的通解为( C ). A. C x y +-=; B. C x y +=; C. Cx y =; D. x y =.4、设1∑是222y x R z --=上侧,2∑是222y x R z ---=下侧,3∑是xoy 平面上圆222R y x ≤+的上侧,R Q P ,,在3R 空间上有一阶连续偏导数,且0=∂∂+∂∂+∂∂zR y Q x P ,则与曲面积分⎰⎰∑++1Rdxdy Qdzdx Pdydz 相等的积分是( B )(A) ⎰⎰∑++2Rdxdy Qdzdx Pdydz ;(B) ⎰⎰∑++3Rdxdy Qdzdx Pdydz ;(C)Rdxdy Qdzdx pdydz ++⎰⎰∑∑21 ;(D)Rdxdy Qdzdx pdydz ++⎰⎰∑∑31 .5、微分方程x xe y y y 396-=+'-''的特解形式为( B )A 、x axe 3-;B 、x e b ax 3)(-+;C 、x e b ax x 3)(-+;D 、x e b ax x 32)(-+ 解:特征方程0)3(9622=-=+-r r r ,321==r r ,特解形式为x e b ax y 3)(-*+=.选(B ). 6、当)0,0(),(→y x 时, 22yx xyu +=的极限为( A ) A 、不存在; B 、1; C 、2; D 、0. 7、下列级数收敛的是( B ) A 、∑+∞=+121n n ; B 、∑+∞=131sin n n ; C 、∑+∞=+1441n n n ; D 、∑+∞=-121)1(n n n . 8、微分方程02=-'+''y y y 的通解为( C )A. x x e C e C y --=21;B. 221x xe C e C y --=; C. 221x xe C eC y -=-; D. x x e C e C y 221+=-.解:特征方程0)1)(12(122=+-=-+r r r r ,11-=r ,212=r ,通解为221xx e C e C y -=-.选(C ).9、设⎰⎰+=Ddxdy y x I 21)(,⎰⎰+=Ddxdy y x I 32)(,D 由直线1=x ,1=y 与1=+y x 围成,则1I 与2I 的大小关系是( A )A 、21I I <;B 、21I I =;C 、21I I >;D 、21I I ≥. 10、积分 0 0adx ⎰⎰的极坐标形式的二次积分为( B )A 、⎰⎰40csc 02πθθa dr r d ;B 、⎰⎰40sec 02πθθa dr r d ;C 、⎰⎰20tan 02πθθa dr r d ;D 、⎰⎰40sec 0πθθa rdr d .二、填空题(每空3分,共30分)1、微分方程0))(,,(4='''y x y y x F 的通解含有(独立的)任意常数的个数是 2 个.2、设)(x f 是周期为π2的周期函数,且⎩⎨⎧<≤<≤--=ππx x x x f 000)(,它的傅立叶级数的和函数为)(x S ,则=)5(πS 2π. 3、已知函数)ln(22y x z +=,则=∂∂-∂∂xzy y z x0 . 4、设平面曲线L 为1||||=+y x ,则曲线积分=⎰+ds e Ly x ||||e 24.5、若曲线积分⎰---=Ldy y ax xy dx y xy I )(3)6(2232与路径无关,则=a 2 。
14-15年第2学期高等数学试题(含答案)
z dV ,其中 是由旋转抛物面 x
y 2 2 z 与平面 z 2 所围成的区域;
6、设 为上半球面 z 4 x2 y2 ( z 0) ,则求曲面积分 7、证明曲线积分
( x
2
y 2 z 2 )ds 。
( 2,1) (1, 0)
(2xy y 4 3)dx ( x 2 4xy3 )dy 与路径无关,并计算积分值.
z 2 所截部分的外侧。
四、证明题(每题 5 分,共 2 题,共 10 分) 1、 已知 f n ( x) 满足 f n ( x) f n ( x) x
n 1 x
e ( n 为正整数) , f n (1)
e ,求函数项级数 n
2
f
n 1
n
( x) 的和。
2 、 设 曲 线 L 是 正 向 圆 周 ( x a) 2 ( y a) 2 1 , ( x ) 是 连 续 的 正 函 数 , 证 明 :
8、求下列曲面积分: (1)I
( x 1)dydz ydzdx dxdy ,其中 : 平面 x y z 1 在第一卦限部分,
法向量指向原点; ( 2) I
( x y)dydz ( x y)dzdx z
2
dxdy , : 锥面 z x 2 y 2 被 z 1 ,
z x
( e ,1)
(C)
(
)
(B) 1
1 e
(D) e
3、设 D 是 xoy 平面上以 (0,0) , (1,1) , (1,1) 为顶点的三角形区域,D 1 为 D 在第一象限 的部分,则 (A) 4 (C)2
广东海洋大学10--15第二学期高数
广东海洋大学2014—2015学年第二学期《高等数学》课程试题课程号:x2□√考试□√A 卷□√闭卷□考查□B 卷□开卷题号一二三四五六七八九十总分阅卷教师各题分数24 14 28 286100实得分数一 . 填空(3×8=24分)1.设1,2,1a ,0,1,x b ,b a,则x2.设1,0,2a,0,1,0b,则ba3.曲面222y xz在点)2,1,1(处的切平面方程为4.将xoz 平面上的曲线1422zx绕x 轴旋转一周所得的旋转曲面的方程为5.函数)3ln(22y xz的驻点为6.设L 为连接)0,1(到点)1,0(的直线段,则dsx y L)(7.幂级数13n nn x的收敛半径为8.微分方程xey3的通解为y二 .计算题(7×2=14分)1.设)ln(22y xy z,求dz .2.设函数),(y x f z 是由方程333a xyz z所确定的具有连续偏导数的函数,求22,xzxz.姓名:学号:试题共5 页加白纸3 张密封线GDOU-B-11-302三 .计算下列积分(7×4=28分)1.dxdy x yD)(2,其中D 是由0y, 2x y及1x所围成的闭区域。
2.证明曲线积分dy xy xdxy xy )2()2(2)1,1()0.0(2在整个xoy 平面内与路径无关,并计算积分值。
3.计算dxdyz dzdx y dydzx )3()2()1(,其中是球面9222zyx的外侧。
4.计算dxdy yxD2211,其中D 是由2522yx围成的闭区域。
四 .计算题(7×4=28分)1.判别级数2121)1(nn n是否收敛? 若收敛,是绝对收敛还是条件收敛? 2.将函数31)(xx f 展开为x 的幂级数。
3. 求微分方程62ydxdy满足初始条件20xy的特解。
4.求微分方程xe yy 的通解。
五.证明)()()(ydx x f x dxx f dy(6分)2014-2015学年第二学期《高等数学》A 卷(参考答案及评分标准课程号:×2一、填空(3×8=24分)1. 2;2. 2,0,1;3.02zyx;4. 4.14222zyx;5.)0,0(;6.2;7.3;8. 21391c x c ex二、计算题(14分)1.222yxxyx z ,222222)ln(yxyy xy z ,(4分)dy yxyy xdxyxxydz]2)[ln(22222222(3分)2.令),,(z y x F 333a x yz z (1分),得y zF F zx 33,12,则yzF F xzzx 3312,(4分)则322222)33(6)33(6y zz y zx z z xz. (2分)三.计算下列积分(7×4=28分)1.原式101)21()21()(4101022分3210分422dx x dxy x ydyx y dxxx2.设xy xy x Q y xy y x P 2),(,2),(22,有y xxQ yP22,所以曲线积分与路径无关。
高等数学试题(含答案)
《高等数学》试题库一、选择题 (一)函数1、下列集合中( )是空集。
{}{}4,3,02,1,0. a {}{}7,6,53,2,1. b (){}x y x y y x c 2,.==且 {}01.≥〈x x x d 且 2、下列各组函数中是相同的函数有( )。
()()()2,.x x g x x f a == ()()2,.x x g x x f b ==()()x x x g x f c 22cos sin ,1.+== ()()23,.x x g xx x f d ==3、函数()5lg 1-=x x f 的定义域是( )。
()()+∞∞-,55,. a ()()+∞∞-,66,. b()()+∞∞-,44,. c ()()()()+∞∞-,66,55,44,. d4、设函数()⎪⎩⎪⎨⎧-+2222x x x〈+∞≤〈≤〈∞〈-x x x 2200 则下列等式中,不成立的是( )。
()()10.f f a = ()()10.-=f f b ()()22.f f c =- ()()31.f f d =-5、下列函数中,( )是奇函数。
x xa . x xb s i n.211.+-x x a a c 21010.xx d -- 6、下列函数中,有界的是( )。
arctgx y a =. t g x y b =. xy c 1.=x y d 2.= 7、若()()11-=-x x x f ,则()=x f ( )。
()1.+x x a ()()21.--x x b ()1.-x x c .d 不存在8、函数x y sin =的周期是( )。
π4.a π2.b π.c 2.πd9、下列函数不是复合函数的有( )。
xy a ⎪⎭⎫⎝⎛=21. ()21.x y b --= x y c s i nlg .= xe y d s i n 1.+=10、下列函数是初等函数的有( )。
11.2--=x x y a ⎩⎨⎧+=21.xx y b 00≤〉x x x y c c o s 2.--=()()2121lg 1sin .⎪⎪⎭⎫ ⎝⎛+-=x e y d x11、区间[,)a +∞, 表示不等式( ).(A )a x <<+∞ (B )+∞<≤x a (C )a x < (D )a x ≥ 12、若ϕ3()1t t =+,则 ϕ3(1)t +=( ).(A )31t + (B )61t + (C )62t + (D )963332t t t +++13、函数log (a y x =+ 是( ).(A )偶函数 (B )奇函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 14、函数()y f x =与其反函数1()y f x -=的图形对称于直线( ). (A )0y = (B )0x = (C )y x = (D )y x =-15、函数1102x y -=-的反函数是( ).(A )1x lg 22y x =- (B )log 2x y = (C )21log y x= (D )1lg(2)y x =++ 16、函数sin cos y x x =+是周期函数,它的最小正周期是( ).(A )2π (B )π (C )2π (D )4π 17、设1)(+=x x f ,则)1)((+x f f =( ). A . x B .x + 1 C .x + 2 D .x + 3 18、下列函数中,( )不是基本初等函数.A . xy )e1(= B . 2ln x y = C . xxy cos sin =D . 35x y = 19、若函数f(e x )=x+1,则f(x)=( )A. e x +1B. x+1C. ln(x+1)D. lnx+1 20、若函数f(x+1)=x 2,则f(x)=( )A.x 2B.(x+1) 2C. (x-1) 2D. x 2-1 21、若函数f(x)=lnx ,g(x)=x+1,则函数f(g(x))的定义域是( ) A.x>0 B.x ≥0 C.x ≥1 D. x>-1 22、若函数f(x)的定义域为(0,1)则函数f(lnx+1)的定义域是( )A.(0,1)B.(-1,0)C.(e -1,1)D. (e -1,e) 23、函数f(x)=|x-1|是( )A.偶函数B.有界函数C.单调函数D.连续函数 24、下列函数中为奇函数的是( )A.y=cos(1-x)B.⎪⎭⎫⎝⎛++=21ln xx y C.e x D.sinx 225、若函数f(x)是定义在(-∞,+∞)内的任意函数,则下列函数中( )是偶函数。
大一下半学期高数题答案与试卷(1)
答案与提示 第十章 微分方程一、选择题 1. B 2. A 3. D 4. B 5. B 6. B 7. C 8. A 9. D 10. B 二、填空题1. 05|2='=+⎧⎨=⎩x y y y 2. 2221+=x y 3. d cot d y x u u u x x ==, 4. 12e e x x y x C x C =+++ 5. p ;p ';0xp p '+= 6. p ;d d p py ;2d 20d pyp p y+= 7. 220'''-+=y y y 三、综合题 1. ⑴ 213ln ||1=++-y x x x ⑵ 21(arctan )2=y x ⑶ 21arctan 2=++y x x C 2. ⑴ 45=+x Cy x⑵ 2(1)e y x y -=+ 3. 22e e x x --4. ⑴ 5712e e x x y C C =+ ⑵ 2e xy x -= ⑶ 212e (cos sin )xy C x C x =+5. 12()e euuf u C C -=+ 6. 22123e e (3)e 2x x x y C C x x ---=++-第六章 空间解析几何与向量代数一、选择题 1. C 2. A 3. B 4. D 5. C 6. A 7. B 8. D 二、填空题1. (,,)---a b c2. 13. ⑴ 120==D D ⑵ 120==B B 且12,D D 不全为0 ⑶ 12120====C C D D4. 5++=x y z5. 6. {}22(,)2+≤x y x y 7. 22450-=z y 8. 22=+z x y 三、综合题1. | r | = 6,错误!未找到引用源。
2. ⑴121012--+==x y z ⑵ 112132-+-==-x y z3. 7510-+-=x y z4. 30+=x y 或30-=x y5. 354250+-+=x y z6. 2230-=x y第七章 多元函数微分学一、选择题 1. C 2. C 3. B 4. A 5. D 6. B 7. D 8. B二、填空题1. {}(,)10x y x y x y +>-+≠且 2. 2 3. 2cos 2cos +y x x y 4. 1112250221---++-===x y z x y z5. 6. 3,1 7. 9813 三、综合题1. 22. cos()2∂=+∂z y xy xy x ,2cos()∂=+∂z x xy x y ,2cos()sin()2∂=-+∂∂z xy xy xy x x y2 3. 1d d ln d ln d yz yz yz u yzxx zx x y yx x z -=++ 4.e ,x zf f y x u v∂∂∂=+∂∂∂ ∂∂=∂∂z fxy u5.22d 1)d z y x x y =-+ 6. cos()1cos()11cos()1cos()z yz xyz z xz xyz x xy xyz y xy xyz ∂-∂-==∂-∂-, 第八章 二重积分一、选择题 1. B 2. B 3. D 4. D 5. B 6. C 7. C 8. D 9. B 10. A二、填空题 1. (,)d d Df x y x y ⎰⎰ 2. 连续 3. >;< 4. 41+xy 5. 4π 6. 1 7. 33πa8.422d (,)d xx f x y y ⎰⎰ 9.2221d (,)d y yy f x y x +-⎰⎰ 10. d d x y ;d d r r θ三、计算题 1. ⑴ 1111d (,)d x f x y y --⎰⎰ 或1111d (,)d y f x y x --⎰⎰ ⑵11d (,)d xx f x y y ⎰⎰ 或1d (,)d yy f x y x ⎰⎰⑶ eln 10d (,)d xx f x y y ⎰⎰或1ee d (,)d y yf x y x ⎰⎰⑷122001d (,)d d (,)d x x f x y y x f x y y -+⎰⎰⎰或1201d (,)d yy f x y x -⎰⎰或242222d (,)d d (,)d x x f x y y x f x y y --+⎰⎰⎰⎰或40d (,)d y f x y x ⎰2. 64153. 26π-4. 136. e 2-7.763 8. 2(1e )R π-- 9. 9210. 6π内蒙古农业大学2012—2013学年第二学期经济类《高等数学》(B2)试卷 A一、填空题(每小题2分,共20分) 1. 点()231,,--在第( )卦限2.设(2,1,1),(1,1,2),a b →→=-=-则 (3)(2)a b →→⋅-= ( ). 3.点)1,1,2(到平面22100x y z ++-=的距离( )4. 1(,)ln(1)f x y x y =+-的定义域为( )5.(,)f x y =35(,)f =( )6. 设z xy =, 则 =dz ( ).7. 已知22dz x dx y dy =+,则2zx y∂=∂∂( ).8. 若 D={(y x ,)︱0201,x y ≤≤≤≤}, Dd σ=⎰⎰( ).9. 一阶线性微分方程sin 1xy y x x '+=的通解是( ).10. 特征方程2320r r +-=对应的二阶常系数齐次线性微分方程为( ). 二、选择填空题(每小题2分,共20分)1.过点(2,3,1)且垂直z 轴的平面方程为( )A 1z = B. 3y = C. 2x = D. 230x y z ++= 2. 03sin limx y xyx →→=( ) A 4 B. 2 C. 3 D. 1 3. 22limx y x yx y →→=+().A. 0B. 不存在C. 2D. 14. 已知32(,)f x y x y =, 则 (1,1)x f =( )A. 1B. 2C. 4D. 35.22{(,)9}D x y x y =+≤则Dd σ⎰⎰=( )A. 18πB. 14πC. 16πD. 12π6.已知平面2433x y z ++=与平面29x ky z +-=垂直,则k =( )A. 0B. 2C. 1D. 37. 设三个向量,,a b c →→→满足0a b c →→→→++=,那么a b →→⨯= ( ).A. b a →→⨯ B. b c →→⨯ C. c b →→⨯ D. a c →→⨯8. 就二元函数而言,下列说法正确的是 ( ).A. 可导一定连续B. 连续一定可导C. 可导、连续互为充要条件D. 可导、连续彼此无关 9. 微分方程ydx xdy =通解是( ).A. 22y x c -= B. y c x = C. y x c -= D. y x c += 10. 下列方程是三阶微分方程的是( )A. 2y y x '-= B. 32()y y x '''-= C. 23()30y y '+= D. 22y y x '''=+4 三、判断题(每小题2分,共20分)1. 空间任意两个向量(自由向量)一定是共面的 ( )2. 此式子()a b c →→→⨯⋅表示一个数 ( ) 3. (2,1,3),(1,1,2),a b →→==则 a b →→⨯9= ( ) 4.r i j k →→→→=++是单位向量. ( )5. 2222lim x y x y x y→→-=-2 . ( )6. 已知z x y =+,则 dz dx dy =+. ( )7. 已知2229x y z ++=,则z xx z∂=-∂ ( ) 8.(,)Df x y d σ=⎰⎰(,)Df x y dxdy ⎰⎰. ( )9.()10,y dy f x y dx ⎰⎰=()1,xdx f x y dy ⎰⎰. ( )10.微分方程1y ''=的通解是y =12c x c +. ( ) 四、计算题(每小题8分,共40分)1. 求平行于y 轴且过点1P (1,5,1)-及2322(,,)P -的平面方程2.已知22z u v =+,,u xy v x y ==-, 求 dz 3. 求23223(,)f x y x x y y =++-的极值.4. 计算Dxy d σ⎰⎰, 其中D 是由直线0,y x y ==和1x =所围成的闭区域.5. 求微分方程320y y y '''-+=满足初始条件00,1x x yy =='==的特解内蒙古农业大学 2012—2013学年第二学期经济类《高等数学》(B2)试卷 A 评分参考一、填空题(每小题2分,共20分)1.(六)2. ( 6).3. ( 1 ) 4. ( 1x y +->02,x y +≠ )5. ( 4 )6. ( ydx xdy + )7. ( 0 ).8. ( 2 ) .9. (1(cos )x c x-+ ). 10. ( 320y y y '''+-= ).二、选择填空题(每小题2分,共20分)1. A 2. C. 3. B. 4. D. 5. A. 6. C. 7. B. 8. D 9. B. 10. D. 三、判断题(每小题2分,共20分)1. √2. √3. ×4.×5. ×6. √7. √8. √9. × 10. × 四、计算题(每小题8分,共40分)1. 解 平行于y 轴的平面方程为 0Ax Cz D ++= 此平面过1P (1,5,1)-和2322(,,)P -得 0320,A C D A C D ++=-+= 解得 3255,A D C D =-=- 带入 3250x z +-= 2. 解22z z u z vuy v x u x v x∂∂∂∂∂=+=+∂∂∂∂∂,22z z u z v ux v y u y v y ∂∂∂∂∂=+=-∂∂∂∂∂ 2222()()z zdz dx dy uy v dx ux v dy x y∂∂=+=++-∂∂ 3. 解22236,f f x y y x y ∂∂=+=-∂∂ 令00,f fx y ∂∂==∂∂ 得 12121102,x x y y =-=-⎧⎧⎨⎨==⎩⎩ 222222066,,f f fy x x y y∂∂∂===-∂∂∂∂ (1)1110x y =-⎧⎨=⎩ 220612,,,A B C AC B ===--=-<0, 1110x y =-⎧⎨=⎩ 不是极值点.(2)2212x y =-⎧⎨=⎩ 220612,,,A B C AC B ===-=>0,A >0,∴(,)f x y 在12(,)-取得极小值125(,)f -=-4. 解112000120x Dx xy d dx xydy xy σ==⎰⎰⎰⎰⎰1301128x dx ==⎰5. 解 2320r r -+=, 解得 1212,r r ==, 通解为 212x x y c e c e =+ 2122x xy c e c e '=+ , 由 00,1x x yy =='== 得 1212021,c c c c +=+=解得 1211,c c =-=, 特解为 2x xy e e =-+内蒙古农业大学2013—2014学年第二学期经济类《高等数学》(B2)试卷 A一、填空题(每小题2分,共20分)1.设(2,1,1),(1,1,2),a b →→=-=-则 a b →→⨯= ( ). 2. 过点(3,2,1)且垂直y 轴的平面方程为( )63. 22123limx y x y x y →→+=+( )4. (,)arccos x f x y y=,则12(,)f =( )5. 1(,)f x y x y =-间断点为( )6. 已知2(,)f x y xy =, 则 (1,1)y f =( )7.设33z x y =+, 则 =dz ( ). 8.交换积分顺序()10,y dy f x y dx ⎰⎰=( )9.微分方程1y ''=的通解是( ).10. 特征方程2330r r -+=对应的二阶常系数齐次线性微分方程为( ). 二、选择填空题(每小题2分,共20分)1.设(1,1,2),(2,1,2),a b →→=-=-则 (2)(3)a b →→⋅-= ( ).A 18 B. 19 C. 20 D. 21 2.点312(,,)-到平面2230x y z -+-=的距离( )A 1 B. 2 C. 3 D. 4 3. 103lim(1)xx y xy →→+=( )A 2e B. e C. 1 D. 3e4. 已知dz ydx xdy =+,则2zx y∂=∂∂( ). A. 0 B. 3 C. 1 D. 2 5.22{(,)9,0}D x y x y x =+≤≥则Dd σ⎰⎰=( )A. 12πB. 10πC. 11πD. 9π6.已知平面2433x y z ++=与直线12312x y z k ---==-平行,则k =( )A. 0B. 2C. 1D. 37.已知()u f xy =, 则uy∂=∂( ) A. ()f xy ' B. ()xf xy ' C. ()yf xy ' D. ()xyf xy ' 8.设三个向量,,a b c →→→满足0a b c →→→→++=,那么a b →→⨯= ( ).A. b c →→⨯ B. b a →→⨯ C. c b →→⨯ D. a c →→⨯9. 微分方程xdx ydy =通解是( ).A. 22y x c -= B. y c x = C. y x c -= D. y x c += 10. 可分离变量的微分方程的是( )A. 32()y y x ''-= B. 22y x y '= C. 23()30y y '+= D. 2y y x '-= 三、判断题(每小题2分,共20分)1. 空间任意三个向量(自由向量)一定是共面的. ( )2. 2433,,πππαβγ===是某一向量的方向角. ( ) 3. 2sin lim 2x y xy y →→=。
2014-2015学年第一学期《高等数学》试卷(A卷)
2014-2015学年第一学期《高等数学》试卷(A 卷)一.填空题(每小题4分,20分)1.设0x →2与kx 是同阶无穷小,则k = 12.由方程()2cos 1x y e xy e +-=-确定()y y x =,则()0y '2-3.设y 1x =处对应的微分dy =24.已知()()()011,13f f f '===,则()1xf x dx ''⎰1-5.曲线(1y x =-的拐点处的横坐标x =15-二.计算下列各题(每小题5分,共20分)6、求极限()()sin 230lim ln 1x xx e e x x x →-++解 原式=()()()sin sin 034342300001sin 1lim lim lim lim x x x x x x x x x x e e x x e e e x x x x x x x--→→→→----==+++ ()3423200000sin sin 1cos sin 11limlim lim lim lim 346126126x x x x x x x x x x x x x x x x x x →→→→→----=====++++ 7、求极限1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭解 由于14344002sin 2sin lim lim 01111x x xx x x x e x e e x x x e e --→+→+-⎛⎫⎛⎫++ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭1144002sin 2sin 20lim lim 111011x x x x x x e x e x x x e e →-→-⎛⎫⎛⎫+++ ⎪ ⎪+=-=-= ⎪ ⎪+ ⎪ ⎪++⎝⎭⎝⎭,从而左右极限存在且相等,故原式极限存在且1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭=18、用泰勒公式求极限()30sin 1lim x x e x x x x→-+ 解 因为()()23231,sin 2!3!xx x e x o x x x o x =+++=-+,所以 原式=()()()232330112!3!lim x x x x o x x o x x x x→⎡⎤⎡⎤+++-+-+⎢⎥⎢⎥⎣⎦⎣⎦ ()()33232333001131126lim lim2663x x x x x x o x x x o x x x →→++-+---==-+== 9、设()2,111,1x f x x x ≠⎪=⎨-⎪-=⎩在1x =处连续,求,a b 的值 解 因为()2,111,1x f x x x ≠=⎨-⎪-=⎩在1x =处连续,所以()111x f →==-,从而)()()112lim2lim 10101x x x x →→=-=⋅-=- ,即)1lim220,4,4x a b b a →==+==-进而21114221lim 1x x a x x →→-+--==-14x a→===,即()4,448a b =-=--=三.计算下列各题(每小题5分,共15分)10、设1124y =,求y '解 令t =11111arctan ln arctan ln 1ln 124124t y t t t t t +=+=+⎡+--⎤⎣⎦- 从而()14421111111121411x dy dt y x dt dx t t t '⎡⎤⎧⎫⎡⎤'=⋅=+⋅-⋅⋅+⎨⎬⎢⎥⎢⎥++-⎣⎦⎩⎭⎣⎦()()()114342211111110421414t t x x t t -⎧⎫--+⎡⎤⎡⎤⎪⎪=+⋅++⎨⎬⎢⎥⎢⎥+-⎪⎪⎣⎦⎣⎦⎩⎭()()()22333434442241111111121121t t x x x x t t t ----+⎡⎤=-⋅+=⋅+⎢⎥+--⎣⎦ ()()()()223333434344444441111111121111t t x x x x x x t t x -----+--=⋅+=⋅+=⋅+--+-=dy dt 和dtdx,再作乘积得出结果,切记别忘作乘积!) 11、设()f x 连续,在0x =的某个邻域内有()()()1sin 31sin 8f x f x x o x +--=+,且()f x 在1x =处可导,求曲线()y f x =在点()()1,1f 处的切线方程。
高等数学题库 (1)
第一章 第一节(限时45分钟,满分100分)一、选择题(每小题5分,共50分)1.若A ={x |2<2x <16,x ∈Z},B ={x |x 2-2x -3<0},则A ∩B 中元素个数为A .0B .1C .2D .3解析 解不等式2<2x <16,得1<x <4,又x ∈Z ,所以A ={2,3},解不等式x 2-2x -3<0得-1<x <3,即B ={x |-1<x <3},所以A ∩B ={2},故选B.答案 B2.(2014·黄冈模拟)设集合M ={x |x <2 014},N ={x |0<x <1},则下列关系中正确的是A .M ∪N =RB .M ∩N ={x |0<x <1}C .N ∈MD .M ∩N =∅解析 M ∩N ={x |x <2 013}∩{x |0<x <1}={x |0<x <1}.答案 B3.(2014·唐山模拟)已知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则 A .A ∩B =∅B .B ⊆AC .A ∩∁R B =RD .A ⊆B 解析 解不等式x 2-3x +2<0可得A ={x |1<x <2},解不等式log 4x >12可得B ={x |x >2},所以A ∩B =∅.答案 A4.(2015·韶关模拟)已知集合U ={1,2,3,4},集合A ={2,3},B ={3,4},则∁U (A ∪B )=A .{1,2,4}B .{2,4}C .{3}D .{1}解析 A ∪B ={2,3,4},∁U (A ∪B )={1},选D.答案 D5.(2014·淄博模拟)已知集合A ={x |0<x <2},B ={x |(x -1)(x +1)>0},则A ∩B =A .(0,1)B .(1,2)C .(-∞,-1)∪(0,+∞)D .(-∞,-1)∪(1,+∞)解析 解不等式(x -1)(x +1)>0得x <-1,或x >1,所以B ={x |x <-1,或x >1},所以A ∩B ={x |1<x <2}.答案 B6.(2014·肇庆模拟)已知全集U ={-2,-1,0,1,2,3,4,5,6},集合M ={大于-1且小于4的整数},则∁U M =A .∅B .{-2,-1,5,6}C .{0,1,2,3,4}D .{-2,-1,4,5,6}解析 易知M ={0,1,2,3},所以∁U M ={-2,-1,4,5,6}.答案 D7.(2014·日照模拟)已知集合M ={x |y =ln(1-x )},集合N ={y |y =e x ,x ∈R}(e 为自然对数的底数),则M ∩N =A .{x |x <1}B .{x |x >1}C .{x |0<x <1}D .∅解析 因为M ={x |x <1},N ={y |y >0},故M ∩N ={x |0<x <1}.答案 C8.(2015·淮南模拟)设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x x -1<0,B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析 不等式x x -1<0等价于x (x -1)<0,解之得0<x <1,所以A ={x |0<x <1},所以A B ,则“m ∈A ”是“m ∈B ”的充分而不必要条件.答案 A9.(2014·台州模拟)设集合M ={x |x 2-x -2<0},P ={x ∈Z||x -1|≤3},Q ={x |x ∈P ,x ∉M },则Q =A .{-2,1,2,3,4}B .{-2,-1,2,3,4}C .{-1,2,3,4}D .{-1,2,3}解析 解不等式x 2-x -2<0得-1<x <2,所以M ={x |-1<x <2},解不等式|x -1|≤3得-2≤x ≤4,所以P ={-2,-1,0,1,2,3,4},所以Q ={-2,-1,2,3,4}.答案 B10.(2014·商丘模拟)已知全集U =R ,集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +1<0,N ={x |x 2-x <0},则集合M 、N的关系用韦恩(Venn)图可以表示为解析 不等式x -1x +1<0等价于(x +1)(x -1)<0,解之得-1<x <1,即M ={x |-1<x <1},解不等式x 2-x <0得0<x <1,所以N ={x |0<x <1},显然有N ⊆M ,则可用B 表示.答案 B二、填空题(每小题6分,共30分)11.(2014·江苏)已知集合A ={-2,-1,3,4},B ={-1,2,3},则A ∩B =________. 解析 由题意得A ∩B ={-1,3}.答案 {-1,3}12.(2014·重庆)设全集U ={n ∈N|1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.解析 显然U ={1,2,3,4,5,6,7,8,9,10}⇒(∁U A )∩B ={7,9}.答案 {7,9}13.(2014·宁德模拟)已知集合A ={0,1},B ={-1,0,a +2},若A ⊆B ,则a 的值为________. 解析 ∵A ⊆B ,∴a +2=1,解得a =-1.答案 -114.若集合A ={x ∈R||x +1|+|x -2|≤5},非空集合B ={x ∈R|2a ≤x ≤a +3},若B ⊆A ,则实数a 的取值范围是________.解析 当x <-1时,|x +1|+|x -2|=-2x +1≤5,解得-2≤x <-1,当-1≤x ≤2时,|x +1|+|x -2|=x +1+2-x =3≤5,即-1≤x ≤2;当x >2时,|x +1|+|x -2|=2x -1≤5,解得2<x ≤3,则不等式|x +1|+|x -2|≤5的解为-2≤x ≤3,即A =[-2,3].∵B ⊆A ,∴⎩⎪⎨⎪⎧2a ≥-2,a +3≤3,解得-1≤a ≤0.答案 [-1,0]15.设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集.则S 4的所有奇子集的容量之和为________.解析 ∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,所以S 4的所有奇子集的容量之和为7.答案 7三、解答题(共20分)16.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎩⎪⎨⎪⎧log 12(x +2)>-3x 2≤2x +15,B ={x |m +1≤x ≤2m -1}. (1)求集合A ;(2)若B ⊆A ,求实数m 的取值范围.解析 (1)解不等式log 12(x +2)>-3得:-2<x <6.①解不等式x 2≤2x +15得:-3≤x ≤5.②由①②求交集得-2<x ≤5,即集合A =(-2,5].(2)当B =∅时,m +1>2m -1,解得m <2;当B ≠∅时,由⎩⎪⎨⎪⎧m +1≤2m -1,m +1>-2,2m -1≤5,解得2≤m ≤3.故实数m 的取值范围为(-∞,3].。
高等数学2014-2015第二学期高数总复习1
2014——2015学年第二学期高等数学期末复习题 不定积分 一、填空:1 ⎰='____]ln [2xdx x 2. 不定积分⎰=+____1dx e e xx3. 不定积分⎰=____dx xe x4. 已知x x x sin ln + 是()f x 的一个原函数,则()___f x =5. 若()f x 是连续函数,则_____)(=⎰dx x f d 6. 若()f x 的一个原函数是2sin x x ,则_____)(=⎰dx x f d 7. 若)(x f 的一个原函数是x1,则____)(=x f8. 不定积分⎰=+____)23cos(dx x 9.[tan(31)]____x dx '+=⎰10.(sin 3)____xdx '=⎰cos ____d xdx =⎰ 11 .(cos )]____x dx '=⎰12. 若⎰+=,)()(c x F dx x f 则____sin )(sin =⎰x d x f13. 不定积分⎰=+____12dx xx 二.选择题 1.设函数123)(2++=x x x f ,则)(x f 的原函数是( )A.23++x x B . x x x ++23 C. x x x --23 D. x x x ++-232. 设C 是任意常数,且)()(x f x F =',下列等式成立的是( )A . ⎰+='c x f dx x F )()(B . ⎰+=c x F dx x f )()( C.⎰+'=c x F dx x F )()( D. ⎰+'=c x F dx x f )()(3 .下列等式中不正确的是 ( ) A⎰=')(])([x f dx x f B ⎰=dx x f dx x f d )()(C c x f dx x f +='⎰)()(D ⎰=)()(x f x df4.⎰=-dx x 11( )A . c x +-1lnB .c x +--1ln C. c x +-1ln D . x--1ln5.=⎰dx xe xcos sin ( ) A .c e x +-cos B. c e x +cos C. c e x +-sin D . c e x +sin6.dx x 3)12(⎰+=( )A.c x ++4)12(81 B. c x ++4)12(21C . c x ++4)12(41 D. c x ++4)12(161 7.=⎰dx x 2sin ( )A. c x +2cos 21 B .c x +-2cos 21C .c x +2cos 2 D.c x +-2cos 2 8.=⎰dx x ln ( )A.c x+1B . c x x x +-ln C. c x x x ++ln D.c x x +ln 9. 若c e x dx x f x ++=⎰2)(, 则=)(x f ( )A . x e x +2B . x e x +2 C. c e x x ++2 D.c e x x ++210 .⎰=x xd cos ( )A.c x x +cos 22B . c x x x ++sin cosC .c x x x +-sin cos D.c x x x ++cos sin 三.计算题1.dx e e x x ⎰--112 2.2211x dx x -+⎰ 3.3(2)x xx e dx ++⎰4. (cos sin )x x dx +⎰5.28)1xedx x+-⎰ 6 . 3(32)x dx -⎰ 7. cos(26)x dx +⎰ 852(1)x x dx +⎰.9.2cos(21)x xdx-⎰ 10.3sincos x xdx⎰ 11.⎰=____ln 2dx xx12.1xx dx +⎰13.⎰=+dx xx 1 14.⎰=+dx xx 1 15. ⎰xdx x ln 16. cos x xdx ⎰定积分及应用 一.选择题1. 下列广义积分收敛的是( ) A.cos xdx -∞⎰B.dx e x⎰+∞1C.dx x⎰+∞11D.0x e dx -∞⎰2. 定积分 dx x f ba⎰)(是( )A . ()f x 的一个原函数B . ()f x 的全体原函数 C. 任意常数 D . 确定常数3. 设)(x f 在],[b a 上可积,则dx x f b a⎰)(dx x f ab⎰-)(的值必定等于( )A . 0B . dx x f b a⎰-)(2 C. dx x f b a⎰)(2 D . dx x f ab⎰)(24.=+⎰--dx x x 12)21(( ) A. 2ln 3- B. 2ln 3+ C. 2ln 3-- D. 2ln 3+-5.dx ex ⎰102=( ) A . 2eB.2e C.212+e D.212-e 6.xdx x cos sin 203⎰π=( ) A.21B.41 C.41-D .21- 7. 设3()f x dx x c =+⎰,则2()f x dx =⎰( )A.2B. 4C. 6D. 8 8.dx x ⎰-42=( )A.dx x xdx ⎰⎰+-42B.dx x xdx ⎰⎰-+-42)(C.dx x dx x ⎰⎰+--402)( D.dx x dx x ⎰⎰-+--402)()(二.填空题 1. 若c x dx x f +=⎰ln )(,则_____)(21=⎰dx x f 2._____2=⎰b a x dx xe dxd 3._____1sin 112=+⎰-dx xx 4 . _____sin 114=⎰-xdx x 5. _____112=⎰+∞dx x 6.9cos _____x xdx ππ-=⎰7 _____11=⎰e dx x三.计算下列定积分 1._____)13(4=-⎰dx x 2.1201xdx x +⎰3.11000(21)x dx -⎰4. ⎰+411dx x 5.⎰+911dx x x6.⎰10dx xe x7.1ln e x xdx ⎰ 8.cos x xdx π⎰四.应用题 1 . 求由曲线21===x x y xy 及和直线所围平面图形的面积 2 . 求由曲线x y x y 22==和所围平面图形的面积3 . 求由曲线轴及、与直线x x x e y x 10===轴所围平面图形的面积4. 求由曲线2,0,2y x y x ===所围平面图形绕x 轴旋转一周而成的旋转体的体积5. 求由曲线,1,0y x x y ===轴所围平面图形绕x 轴旋转一周而成的旋转体的体积 6. 求由曲线1,0,0,====x y x e y x 所围平面图形绕x 轴旋转一周而成的旋转体的体积 7.求由曲线,4,0y x x y ===所围平面图形绕x 轴旋转一周而成的旋转体的体积微分方程 一.选择题 1. 方程02=-'y y 的通解为( )A.x C 2sin B. x Ce 2- C . x Ce 2 D. x Ce2. 微分方程054=+'-''y y y 的通解为( )A. )2sin 2cos (21x C x C e y x +=B. )sin cos (212x C x C e y x +=- C .)2sin 2cos (21x C x C e y x +=- D. )sin cos (212x C x C e y x +=3. 微分方程xy dxdy2=的通解为( ) A.c e y x +=2B. x c y ln =C. 2xce y = D .c x y +=ln4. 微分方程0=-''y y 的通解为( )A.2-=x y B. x y -=2 C. x x e c e c y 21+=- D.x x e e y +=-5. 微分方程2x xydx dy =-的通解为( ) A.xcx y +=43 B .cx x y +=23 C. c x y +=33 D .cx x y +=436. 微分方程02=+'+''y y y 的通解为( )A .)sin cos 21x C x C y +=B . x x eC e C y 221+= C .x x xe C e C y --+=21 D. x x e C e C y -+=21二 填空: 1. 微分方程 11-=+'y xy 的通解为_____ 2 . 微分方程 01=-'y e x 的通解为_____ 3. 微分方程09=-''y y 的通解为_____ 4 . 微分方程 045=+'+''y y y 的通解为_____ 5. 微分方程052=+'+''y y y 的通解为_____6.微分方程0)1(2='--y x y x 的通解为_____三.求下列微分方程的通解 1. 1222+='y y y x 2 . 0)1(2=++dy x dx y 3 . x xy y =+'2 4 .32x x y y x +=-' 5. 043=-'-''y y y四.求下列微分方程的特解 1 .x e y y 23=-',00==x y2 . 1)0(,0)0(,02='==+'+''y y y y y3 .0)0(,2=='-y e y y x 4. 0)0(,1)0(,065=='=+'-''y y y y y二重积分 一 选择题 1. 设D 是由1,2==y x 所围成的区域,则⎰⎰=Dd xy δ2( )A. 34B.38 C . 316 D. 0 二 填空1. 设D 是由0,1,1==-=+x y x y x 所围成的区域,则_____⎰⎰=Dd δ三 计算二重积分 1 .⎰⎰Dydxdy,D 是由,1,0,====y x x e y x ,所围成 2 .⎰⎰Dxydxdy ,D是由2,2-==x y x y ,所围成的闭域 3 .,2δd xy D⎰⎰ 其中D 是由1,5,===x x y x y 围城4⎰⎰Ddxdy x xsin ,D 是由π===x y x y ,0,,所围成的闭域多元函数一.求下列函数的偏导数或全导数 1.xy v y x u v e zu =+==,,sin ,求y z x z ∂∂∂∂, 2 .y x v y x u v u z -=+==,2,2 ,求 yzx z ∂∂∂∂, 3.222,3,cos 2xy v y x u v e z u =+=+= 求yzx z ∂∂∂∂, 4.,cos ,sin ,22t v t u uv v u z ==++=求dtdz 二.求下列隐函数的偏导数yz x z ∂∂∂∂, 1. ,6333=+++xyz z y x 2. ,05242222=-+-+-z x z y x 3 . ,32z y x e z +-=。
高数试题下
高数试题下(总18页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高数试题一、选择题(本大题5小题,每小题4分,共20分)1.设直线1724:121x y z l -+-==-,26,:23,x y l y z -=⎧⎨+=⎩则l 1 与l 2 的夹角为[ ]. (A )2π;(B )3π;(C )4π;(D )6π. 2.函数 z = xe 2y在点P (1, 0)出沿从P (1, 0)到Q (2, 1)方向的方向导数为[ ]. 2233();();();().2222A B C D -- 3.函数2222221sin ,0,(,)0,0,xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0, 0)点[ ].(A ) 偏导数连续;(B ) 偏导数不存在; (C )偏导数存在但不可微; (D )可微但偏导数不连续。
4.积分11220xdx x y x dy -=⎰⎰[ ].1111()()()()341224A B C D 。
5.设是由x 2 + y 2 + z 2 = 1所围成的区域,则三重积分||z e dv Ω=⎰⎰⎰[ ].3()()()()2.22A B C D ππππ;;;二、填空题(本大题5小题,每小题4分,共20分)1.过点(0,2,4)且与两平面x + 2z = 1和y – 3z = 2都平行的直线方程是2.设2224,:3,x y z z ⎧++=⎪Γ⎨=⎪⎩则2x ds Γ=⎰3. 满足微分方程初值问题20d (1)d 1 xx y y ex y =⎧=+⎪⎨⎪=⎩ 的解为y = .4.设z = ln(1 + x 2 + y 2), 则(1,2)dz =三、(9分)求微分方程4cos y y x x ''+=的通解.四、(9分)求函数f (x , y ) = xy 在闭区域x 2 + y 2 1上的最大值和最小值。
十年(2014-2023)高考数学真题(全国通用):专题08 三角函数选择题(理科)(解析版)
,解得 sin
1
,
4
cos 1 sin2 15 , tan sin 15 .
4
cos 15
故选:A.
【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出 sin .
π
4.(2020 年高考课标Ⅲ卷理科·第 9 题)已知 2tanθ–tan(θ+ )=7,则 tanθ=
cos
3 2
,故 sin cos ,sin cos ,sin
cos
不可能均大于
1 2
.
取
6
,
3
,
4
,则 sin
cos
1 4
1 ,sin 2
cos
6 1 ,sin cos 42
61 , 42
故三式中大于
1 2
的个数的最大值为
2,故选 C.
法 2:不妨设 ,则 cos cos cos ,sin sin sin ,
2
cos 2 sin
,则
tan
()
A. 15 15
B. 5 5
C. 5 3
D. 15 3
【答案】A
解析:∵ tan
2
cos 2 sin
tan 2
sin 2 cos 2
2sin cos 1 2sin2
cos 2 sin
,
∵
0,
2
,
cos
0
,
1
2 sin 2 sin2
1 2 sin
4 cos
4
0 ,解得 cos
2 3
或 cos
2 (舍去),
又∵ (0, ),sin 1 cos2 5 . 3
高等数学复习题(含答案)
高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,)(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134lim xx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →, 解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xxx .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim 21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得lim0x =.(10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x xx x x x .(也可用洛必达法则)(11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=.(12)30tan sin limx x xx →-.解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ 20sin (1cos )1lim cos x x x x x x→-=⋅⋅ =222sin 2limx xx →=21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limx x x x -→ (2))e e ln()3ln(cos lim33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim ++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)20cos sin cos lim3x x x x xx →--=01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x 3e e lim e 1lim 3cos 333--⋅⋅=++→→x x x x xxx e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nx n xnxx nx (5)此极限为∞∞型,用洛必达法则,得 1sin 1lim cos lim x x x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x .6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→0000lim )1sin (lim )1sin (lim )(lim ,1)1(l i m )(l i m 2=+=++→→x x f x x , 为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→, 因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限.因而有01sin lim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x , 由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim)(0 ∴0=x 为)(x f 的无穷间断点. 综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导.答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导.(2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( ,当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→, 所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f , 因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f .0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得22)()())(1())(1(x y x y y x y y x y x y y y x y x y y x y y y ++-'+'--'+-'=+-+'-+-'=''=2)(22x y yy x +-',将 xy xy y +-='代入上式,得2)(22x y y x y xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y x ln e ln =, 两边关于x 求导数得:xx y y x xe ln e '1+⋅=⋅)e ln e ('xx y y x x+=即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy=)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.xx y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- ,22d d d cos d cos d cos 1()()()d d d d 1sin d 1sin d 1sin d y y t t t t xx x x t t t x t t''===⋅=+++ 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,33)()(d d 12131==''====t t t t t t xy,曲线在点(1,1)处切线的斜率为3 12. 求函数x x y tan ln e =的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx x x y xx x d ]sec tan 1e e [d )e (d 2tan ln tan ln tan ln ⋅+='= x xxx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得 x x xx x x y tan ln tan ln tan ln e d d e )e(d d +==)tan (ln d e d e tan ln tan ln x x x x x +=)tan d(tan 1e d e tan ln tan ln x x x x x x ⋅+= x xx x x x x d cos 1tan 1e d e 2tan ln tan ln ⋅+= x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f x e e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即()(1)0.f x f >=当1>x 时,e e )(-='xx f 0>,可知()f x 为),1[+∞上的严格单调增加函数,即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x x x xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值, ,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值.解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分.当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , 曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表由此可知,上凹区间(1,1)-,下凹区间(,1)(1,)-∞-+∞,曲线的拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线 (1)x x y ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim0, 可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim 2,[]b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x ++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f x cos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何? 答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe x d 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x x x d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x , (12)⎰-24d x x .解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2.(5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12.(10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112xx ⎰=C x +2arcsin .4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22xx x x t t t -=-⋅⋅==, 故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,x于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C x x x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x xx +--212arcsin 21. 5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e4,(4)⎰x x xd 4sin e5, (5)⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰-=⎰+-2241)(d 2arctan xx x x =)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. x221x -1x t(4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x xxd 4cose 544sin e5155⎰-=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x xx xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin =C xx x +-100100cos 10000100sin . (6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅-=x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x x xd e )1(2⎰+ , (2) 3s e c d x x ⎰. 解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2x e x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=xe =+--)e e (21C x x x )12(2++x x Cx+e (12C C =),为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xe dx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e . (2)3secd x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec =sec tan x x -⎰x x d sec3+x x tan sec ln +,式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x . 8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t x xx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-2d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1.(2)⎰-122d ||x x x =⎰--023d )(x x +⎰103d x x=1402444x x +--=4+41741=.(3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-40d 11x x x=⎰+-20d 211t t t t =⎰+--20d ]1424[t tt [].3ln 44021ln 442-=+--=tt t(2)⎰4π4d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x xd e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x x x =5155e 5e 51e 6=--x.(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x xx x xd 1223ln )1e 4ln(e 2e21⎰+--+= --+=3ln )1e 4ln(e 2x x )d 1211(e 21⎰+---+=3ln )1e 4ln(e 2()e21)12ln 21(+-x x()1e 23ln 231e 4ln )21e 2(+--++=.(3) x x xd πcose 10π⎰=ππsin d e 10πx x ⎰x x x x πde ππsin πsin e π11010π⎰-= =0x x x d πsin e 10π⎰-=)ππcos d(e 10πx x--⎰ x x x x πde ππcos πcos e π11010π⎰-==-+-)1e (π1πx x x d πcos e 10π⎰ 移项合并得x x x d πcos e 10π⎰)1e (π21π+-=. (4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰⎰++-++=1034134d )e 313ln 34()e 313ln 34(x x x x xx x x=4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e . 17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2) ⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d xx . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21, 故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1x x =+∞=-=-+∞→→+∞+xx x x x 1lim 1lim )1(00,∴⎰∞+02d 1x x 发散. (3)x xd e1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x =20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x x x x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线 22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ],则面积微元 A d =y y y d )242(2-+,则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ],2)2-y则面积微元 A d 2=[)4(212--x x ]x d , 于是得=A 1+A 2 =⎰20d 22x x +x x x d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积⎰+=122d )1(πx x V⎰++=1024d )12(πx x x=135)325(πx x x ++=π1528. 二、 微分方程1. 验证x x C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: x x C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x yx y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yyd d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 ,x求积分得 3313Cx y +=-,从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解) (2)分离变量得21d d xxy y -=,(0≠y ) 两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=,即 )e (e e e 11arcsin arcsin Cx x CC C y ±==±=,从而通解为 x C y arcsin e =,验证0=y 也是方程的解. (3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12 求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d yx x y +=. 解:(1)因a x P =)(, x b x Q s i n)(=, 故通解为 ⎰⎰⋅+⎰=-]d e sin [e d d x x b C y xa x a⎰⋅+=-)d e sin (e x x b C ax ax)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:⎰⋅⎰⋅+⎰=---]d e [e d )1(2d )1(y y C x yy⎰-⋅+=]d e [e 2y y C y y)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-, 两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为 1d d +=xyx y x y ,令 x yu =,则 1d d +=+u u x u x u ,即 x x u uu d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =,所以原方程的通解为 1ln C y y x=,即yxC ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy x y 2d d =,x x yy d 2d =, 两边积分,得x x y y⎰⎰=d 2d ,C x y +=2ln ,)e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y xx x x x=)d e cos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x, 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx x x +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x x x +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P .根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得 211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为x x C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,。
2014-2015第一学期《高数2》问题答疑材料
2014-2015第一学期《高数2》问题答疑材料高等数学2答疑材料以下问题是同学们在平时问到的,有些问题出现的次数比较多,有些问题不是考试重点只需要大家作为一般性的了解即可。
下面我们将一一讨论大家所提及到的问题。
第七章向量代数与空间解析几何1、什么是单位向量,向量平行,垂直,共线的条件是什么?答:长度为1的向量叫单位向量,单位向量的方向是任意的,所以单位向量不一定相等。
a,b垂直的充要条件是:a.b=0.a,b平行的充要条件是:a*b=0。
向量既有大小也有方向在计算的时候注意方向。
2、空间中直线与平面的位置关系答:直线和直线的关系:(1)直线和直线平行;(2)直线和直线相交直线和平面有三种位置关系:(1)直线在平面内;(2)直线与平面相交;(3)直线与平面平行平面和平面的关系:(1)平面和平面平行;(2)平面和平面相交这一章同学们要掌握垂直、平行的充要条件,了解零向量,会简单的向量加减,掌握切平面方程、法线的算法。
第八章、多元函数微分法及其应用在多元函数中大家问的多的首先是1、什么多元函数,多元函数与一元函数的区别是什么?答:多元函数就是含有几个自变量,一元函数只含有一个自变量,在求偏导数的时候它们的本质都是一样的,只是多元函数要稍微复杂一点而已。
2、极值点、驻点、拐点的概念和计算?答:极值点:函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。
拐点:一般的,设y=f(x)在区间I上连续,x0是I的内点(除端点外的I内的点)。
如果曲线y=f(x)在经过点(x0,f(x0))时,曲线的凹凸性改变了,那么就称点(x0,f(x0))为这曲线的拐点。
驻点:函数的一阶导数为0的点称为函数的驻点,驻点可以划分函数的单调区间(驻点也称为稳定点,临界点。
) 判断极值点的步骤:是求出一阶导数等于0的点(也就是驻点),和不可导点,然后再判断在这些点左右邻近的情形,根据左右导数符号来判断是否为极值,所以极值点不一定是驻点,驻点也不一定是极值点。
高等数学复习题及答案
高等数学复习题及答案【篇一:大学高等数学上考试题库(附答案)】>一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是().(a)f?x??lnx 和 g?x??2lnx (b)f?x??|x| 和 g?x??2(c)f?x??x 和 g?x??2(d)f?x??|x|x和 g?x??122.函数f?x???ln?1?x??a?x?0x?0在x?0处连续,则a?().(a)0 (b)14(c)1 (d)23.曲线y?xlnx的平行于直线x?y?1?0的切线方程为().(a)y?x?1 (b)y??(x?1)(c)y??lnx?1??x?1?(d)y?x 4.设函数f?x??|x|,则函数在点x?0处().(a)连续且可导(b)连续且可微(c)连续不可导(d)不连续不可微5.点x?0是函数y?x4的().(a)驻点但非极值点(b)拐点(c)驻点且是拐点(d)驻点且是极值点6.曲线y?1|x|的渐近线情况是().(a)只有水平渐近线(b)只有垂直渐近线(c)既有水平渐近线又有垂直渐近线(d)既无水平渐近线又无垂直渐近线 7.?f???2dx的结果是(). ?x?x??1??1??1(b)(c)?c?f??cf????x??x??x?x(a)f??8.?dxe?ex??1(d)?c?f????x???c ?的结果是().x?x(a)arctane?c (b)arctane?c (c)e?e x?x?c (d)ln(e?ex?x)?c9.下列定积分为零的是().?(a)?4?arctanx1?x2??4dx (b)?4??4xarcsinxdx (c)?11?1e?e2x?x1?1?x2?x?sinxdx10.设f?x?为连续函数,则?f??2x?dx等于().(a)f?2??f?0? (b)12??f?11??f?0???(c)12??f?2??f?0???(d)f?1??f?0?二.填空题(每题4分,共20分)?e?2x?1?1.设函数f?x???x?a?x?0x?056在x?0处连续,则a?.2.已知曲线y?f?x?在x?2处的切线的倾斜角为?,则f??2??3.y?4.?xx?12.的垂直渐近线有条.dxx?1?lnx?2?.?5.?2??xsinx?cosx?dx?4?2.三.计算(每小题5分,共30分) 1.求极限①lim x??2x?1?x????x?②limx?0x?sinxxe?x2?1?2.求曲线y?ln?x?y?所确定的隐函数的导数y?. x3.求不定积分①?四.应用题(每题10分,共20分) 1.作出函数y?x?3x的图像. 232dx?x?1??x?3?②??a?0? ③?xe?xdx2.求曲线y?2x和直线y?x?4所围图形的面积.《高数》试卷1参考答案一.选择题1.b 2.b 3.a 4.c 5.d 6.c 7.d 8.a 9.a 10.c 二.填空题 1.?22.?三.计算题1①e2 ②11633.24.arctanlnx?c 5.22.y??x1x?y?13. ①ln|2x?1x?3|?c②ln|x|?c③?e?x?x?1??c四.应用题1.略2.s?18《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ). (a) f?x??x和g?x??(b) f?x??22x?1x?122和y?x?1(c) f?x??x和g?x??x(sinx?cosx)(d) f?x??lnx和g?x??2lnx ?sin2?x?1??x?1??2.设函数f?x???2?2x?1???x?1x?1 ,则limfx?1?x??().x?1(a) 0 (b) 1(c)2(d) 不存在3.设函数y?f?x?在点x0处可导,且f??x?0, 曲线则y?f?x?在点?x0,f?x0??处的切线的倾斜角为{}. (a) 0 (b)?2(c)锐角(d) 钝角4.曲线y?lnx上某点的切线平行于直线y?2x?3,则该点坐标是( ). ??1?1??(b) 2,?ln??? 2?2??2?x(a) ?2,ln (c)??1??1?,ln2? (d) ?,?ln2? ?2??2?5.函数y?xe及图象在?1,2?内是( ).(a)单调减少且是凸的 (b)单调增加且是凸的 (c)单调减少且是凹的 (d)单调增加且是凹的6.以下结论正确的是( ).(a) 若x0为函数y?f?x?的驻点,则x0必为函数y?f?x?的极值点. (b) 函数y?f?x?导数不存在的点,一定不是函数y?f?x?的极值点. (c) 若函数y?f?x?在x0处取得极值,且f??x0?存在,则必有f??x0?=0. (d) 若函数y?f?x?在x0处连续,则f??x0?一定存在.17.设函数y?f?x?的一个原函数为xex,则f?x?=( ).21111(a) ?2x?1?ex (b)2x?ex(c)?2x?1?ex(d) 2xex 8.若?f?x?dx?f?x??c,则?sinxf?cosx?dx?( ).(a) f?sinx??c (b) ?f?sinx??c (c) f?cosx??c (d) ?f?cosx??c 9.设f?x?为连续函数,则?f??1?x??dx=( ). ?2???1??(a) f?1??f?0? (b)2??f?1??f?0??? (c) 2??f?2??f?0??? (d)2?f?2??f?0??????10.定积分?dx?a?b?在几何上的表示( ).ab(a) 线段长b?a (b) 线段长a?b (c) 矩形面积?a?b??1 (d) 矩形面积?b?a??1 二.填空题(每题4分,共20分) ?ln?1?x2??1.设 f?x???1?cosx?a?x?0x?0, 在x?0连续,则a=________.2.设y?sin2x, 则dy?_________________dsinx.3.函数y?xx?12?1的水平和垂直渐近线共有_______条.4.不定积分?xlnxdx?______________________.5. 定积分?1?1xsinx?11?x22?___________.三.计算题(每小题5分,共30分) 1.求下列极限:?①lim?1?2x?x ②limx?01?arctanx1xx???2.求由方程y?1?xe所确定的隐函数的导数y?x.3.求下列不定积分:①?tanxsec3xdx②?ya?0?③?xedx2x四.应用题(每题10分,共20分) 1.作出函数y?13x?x的图象.(要求列出表格)3【篇二:高等数学试题及答案】>一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
高数A(Ⅱ)总复习一 (微分方程、级数)
1 x
x ( x 1) e dx c
1 x x c ( xe c) e x x
f (1) = e 代入,得 c = 0
∴ f (x) = ex
SHIJIAZHUANG TIEDAO UNIVERSITY
高等数学(A)I
2. 二阶常系数非齐次线性微分方程 y"- 4y' + 3y= 4xe3x 的
高等数学(A)I
1. 解微分方程 xf ( x) f ( x) (x 1)e x , f (1) e.
解:
1 x 1 x P( x) , Q( x) e x x
∴ 通解为
f ( x)
1 dx e x
1 dx x 1 x x e e d x c x
高等数学(A)I
6. 任意项级数的比值判别法 和根值判别法
un 1 ∑un为任意项级数, lim ( 或 lim n | un | ) n un n
① ρ< 1 , 级数绝对收敛 ② ρ> 1 或为+∞, 级数发散 ③ ρ= 1 ,另行判定
SHIJIAZHUANG TIEDAO UNIVERSITY
n 1
SHIJIAZHUANG TIEDAO UNIVERSITY
*例. 级数 A. 收敛;
高等数学(A )I
n2
(1) n n (1)
n
的收敛性为 【 A 】 C. 不确定 ; D. A, B, C 都不对
( n 2, 3,...)
B. 发散 ;
1 1 1 解: S2n-1 = 1 3 4 56 (2n 1) (2n)
高等数学复习题(含答案)
高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x 即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,∴ )(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134limxx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →,解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xx x .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得l i 0x =. (10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x x x x x x .(也可用洛必达法则) (11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=. (12)30tan sin limx x xx→-. 解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ =2202sin 2limx x x → =21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limxx x x -→ (2))e e ln()3ln(cos lim 33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x x x e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nxn xnx x nx (5)此极限为 ∞∞型,用洛必达法则,得 1sin 1limcos lim xx x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x . 6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→000lim )1sin (lim )1sin(lim )(lim ,1)1(lim )(lim 2=+=++→→x x f x x ,为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→,因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限. 因而有01sinlim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x ,由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim )(0 ∴0=x 为)(x f 的无穷间断点.综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导. 答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导. (2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( , 当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→,所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f ,因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f.0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy 解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得=2)(22x y yy x +-', 将 xy xy y +-='代入上式,得 2)(22x y yxy xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y xln e ln =, 两边关于x 求导数得:即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy =)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.x x y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- , 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,∴33)()(d d 12131==''====t t t t t t xy ,∴曲线在点(1,1)处切线的斜率为312. 求函数xx y tan ln e=的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f xe e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即 当1>x 时,e e )(-='x x f 0>,可知()f x 为),1[+∞上的严格单调增加函数, 即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x xx xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值,,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值. 解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分. 当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , ∴曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表知,上凹区间(1,1)-,下凹区由此可(,1)(1,)-∞-+∞,曲线的间拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线(1)xxy ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim 0,可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim2, []b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f xcos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何?答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe xd 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x xx d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x, (12)⎰-24d x x . 解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2. (5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12. (10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112x x⎰=C x+2arcsin . 4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22x x x x t t t -=-⋅⋅==,故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C xx x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x x x +--212arcsin 21.5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e 4,(4)⎰x x xd 4sine 5, (5) ⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰- =⎰+-2241)(d 2arctan x x x x=)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. (4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x x xd 4cose 544sin e5155⎰-1=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x x x xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin=C xx x +-100100cos 10000100sin .(6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅- =x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x xxd e )1(2⎰+ , (2) 3s e c d x x ⎰.解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2xe x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=x e =+--)e e (21C x x x )12(2++x x C x+e (12C C =), 为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xedx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e .(2)3sec d x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec=sec tan x x -⎰x x d sec 3+x x tan sec ln +, 式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x .8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t xxx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-20d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1. (2)⎰-122d ||x x x =⎰--023d )(x x +⎰13d x x=10402444x x +--=4+41741=. (3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-4d 11x xx=⎰+-20d 211t t t t =⎰+--20d ]1424[t t t(2)⎰4π04d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x x d e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x xx =5155e 5e51e 6=--x .(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x x()1e 23ln 231e 4ln )21e 2(+--++=. (3) x x x d πcos e 10π⎰=ππsin d e 10πx x ⎰ =0x x x d πsin e 10π⎰-=)ππcos d(e 1πxx --⎰ =-+-)1e (π1πx x x d πcos e 10π⎰移项合并得x x x d πcos e 10π⎰)1e (π21π+-=.(4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰ =4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e .17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2)⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d x x . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21,故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1xx =+∞=-=-+∞→→+∞+x x x x x 1lim 1lim )1(00, ∴⎰∞+02d 1x x发散. (3)x xd e 1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x=20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x xx x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ], 则面积微元 A d =y y y d )242(2-+, 则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ], 则面积微元 A d 2=[)4(212--x x ]x d , 于是得A =A 1+A 2A =⎰2d 22x x+A x xx d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积y=135)325(πx x x ++=π1528. 二、 微分方程1. 验证xx C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: xx C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x y x y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yy d d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 , 求积分得 3313Cx y +=-, 从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解)(2)分离变量得21d d xx y y -=,(0≠y )两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=, 即 )e (e ee 11arcsin arcsin C x xCC C y ±==±=,从而通解为 xC y arcsin e =,验证0=y 也是方程的解.(3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d y x x y +=. 解:(1)因a x P =)(, x b x Q s i n )(=, 故通解为)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy xy2d d =,x x y y d 2d =, 两边积分,得x x y y ⎰⎰=d 2d ,C x y +=2ln , )e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e)(2=代入通解的公式得=)d ecos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x , 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx xx +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x xx +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx 121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P . 根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为xx C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,其特征方程为0622=-+r r , 特征根为711+-=r , 712--=r ,故通解 xxC C y )71(2)71(1e e --+-+=.因x3e-中3-=λ不是特征方程的根,且1)(=x P m , 故设原方程特解xp A y 3e-=,代入原方程化简,得31-=A ,从而原方程通解为x x C C y )71(2)71(1e e --+-+=x 3e 31--.由0)0(=y ,得03121=-+C C , 由0)0('=y ,得11)71()71(21=++-+-C C ,解得42771+=C , 42772-=C , 故所求特解x xxp y 3)71()71(e 31e 4277e 4277---+---++=. (2)先解02=+''y y ,其特征方程为022=+r ,特征根为i 2,i 221-==r r ,故通解x C x C y C 2sin 2cos 21+=.设原方程特解x b x a y s i n c o s *+=,代入原方程,化简得1,0==b a ,故原方程通解x x C x C y sin 2sin 2cos 21++=,由00)0(1==C y 得,由1)0(='y ,得02=C ,故所求特解为x y sin =.11. 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解:对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.12.求微分方程 x y y y x2sin e 842=+'-''的通解.解:对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。
2014-2015-1工科高数(2-1)期末考试A卷参考答案
2014—2015学年第一学期《高等数学(2-1)》期末考试A卷( 工科类 )参考答案及评分标准各章所占分值如下:第一章函数与极限16 %;第二章一元函数的导数与微分16 %;第三章微分中值定理与导数的应用14 %;第四章不定积分15 %;第五章定积分及其应用26 % . 第六章常微分方程13 % .一.(共3小题,每小题4分,共计12 分)判断下列命题是否正确在 题后的括号内打“√”或“⨯” ,如果正确,请给出证明,如果不正确请举一个反例进行说明 .1.极限xx 1sinlim 0→不存在. ( √ )--------------------------------------------------(2分)证 设x x f 1sin )(= ,取πn x n 21=,221ππ+=n y n ,),2,1( =n0lim =∞→n n x ,0lim =∞→n n y ,但)(lim n n x f ∞→n n x 1sin lim ∞→=02sin lim ==∞→πn n ,)(lim n n y f ∞→n n y 1sinlim ∞→=1)22sin(lim =+=∞→ππn n , 由海涅定理,xx 1sin lim 0→不存在. ---------------------------------------------------------------(2分)2.若曲线)(x f y =在))(,(00x f x 点处存在切线,则)(x f 在0x 点必可导. ( ⨯ )--------------------------------------------------------(2分) 例:3x y =在)0,0(点处有切线0=x ,但3x y =在0=x 处不可导.---------------------------------------------------------(2分)3.设函数)(x f 在],[b a 上连续且下凸,在),(b a 内二阶可导,则),(b a x ∈∀有0)(>''x f . (⨯ )----------------------------------------------------------(2分)例:4)(x x f =在]3,2[-上连续且下凸,但 0)0(=''f .. ---------------------------------------------------------(2分)二.(共3小题,每小题6分,共计18分) 1. 求极限)!sin()11(lim n nnn ⋅-∞→ .解 ,0)11(lim =-∞→nn n,1)!s i n (≤n ------------------------------------------------------(3分).0)!sin()11(lim =⋅-∴∞→n nn n ----------------------------------------------------------------(3分)2.求极限44)1(limxdte t x x t x ⎰-+∞→+.解 44)1(l i mx dtet x xt x ⎰-+∞→+⎪⎭⎫⎝⎛∞∞+=⎰+∞→xx t x e x dt e t 404)1(lim----------------------------(2分)xxx e x x e x )4()1(lim434++=+∞→---------------------------------------------------------------------(2分).141lim 434=++=+∞→x x x x --------------------------------------------------------------------(2分)3.求极限)21(lim 222222nn nn n n n n ++++++∞→ . 解 )21(lim 222222n n nn n n n n ++++++∞→ ∑=∞→⋅⎪⎭⎫⎝⎛+=ni n n n i 12111lim ------------------------------------------------------------------(2分) ⎰+=1021x dx ---------------------------------------------------------------------(2分) 4arctan 10π==x. ----------------------------------------------------------------(2分)1.求函数()xx eex f 11211++=的间断点并判断其类型.解 0=x 是)(x f 的间断点,---------------------------------------------------------------------(3分)又 )(lim 0x f x +→21211lim 11=++=+→xx x ee,)(lim 0x f x -→1211lim 110=++=-→xxx e e , 0=∴x 是)(x f 的跳跃间断点. ---------------------------------------------------------------(3分)2.设⎪⎩⎪⎨⎧=≠-=0,00,1)(2x x x e x f x ,求 .)(x f '解 当0≠x 时,2)1(2)(22x e x x e x f x x --⋅='21222x e e x x --=----------------- (3分 ) 当0=x 时,0)0()(lim )0(0--='→x f x f f x xx e x x 1lim 20-=→201lim2x e x x -=→122lim 20==→x xe xx ,⎪⎩⎪⎨⎧=≠--='∴.0,1,0,12)(222x x x e e x f x x ------------------------------------------------ ( 3分 )3.设方程ln(sin )cos sin x t y t t t =⎧⎨=+⎩确定y 为x 的函数,求dy dx 与22d ydx . 解()sin ()dy y t t t dx x t '==' , --------------------------------------------------------------------(3分)22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭()sin dt t dx =()sin d dt t t dt dx =⋅sin cos ()t t t x t +='sin tan sin t t t t =+. -----------------------------------------------------------------------(3分)1.求不定积分⎰+dx e xx ln 2.解 ⎰+dx e xxln 2⎰⋅=dx e e x x ln 2⎰=dx x e x 2-----------------------------------------------(3分))(2122⎰=x d e x -------------------------------------------------------------------------(2分) .212C e x += ----------------------------------------------------------------------(1分)2.求不定积分⎰dx x x 2cos .解⎰dx x x 2cos ⎰+=dx xx 22cos 1 -------------------------------------------------------(2分) ⎰+=)2(sin 41412x xd x ---------------------------------------------------(2分) ⎰-+=dx x x x x 2sin 412sin 41412 C x x x x +++=2cos 812sin 41412.------------------------------------(2分)3.设)(x f 在]1,1[-上连续,求定积分dx x x x f x f }1sin )]()([{211-+-+⎰-.解1dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-------------------------------(2分)dx x 210120-+=⎰(上半单位圆的面积)-----------------------------------(3分)242ππ=⋅=.------------------------------------------------------------------------------(1分)解2dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-----------------------------(2分)+=0dx x 2111-+⎰-(上半单位圆的面积)-------------------------------(3分)2π=.-------------------------------------------------------------------------------------(1分)五.(本题8分)设由曲线 x y ln = 与直线 0=-ey x 及 x 轴 所围平面图形为 D (1) 求D 的面积S ;(4分)(2) 求D 绕直线e x =旋转所得旋转体的体积 V .(4分)解 曲线x y ln =与直线 0=-ey x 的交点为)1,(e ----------------------(1分).12-=e------------------------------------------(3分) (2) ⎰⎰---=-=1210221)()(dy e e dy ey e V V V y ππ------------------------------(2分)⎰⎰+---=1221022)2()1(dy e ee e dy y e y y ππ.)3125(6)2212(3222+-=---=e e e e e πππ----------------------(2分)xx ⎰-=1)()1(dyy e e S y 12]2[e ye y -=六.(共2小题,每小题6分,共计12分)1.设有半径为R 的半球形蓄水池中已盛满水 (水的密度为ρ), 求将池中水全部抽出所做的功.解 过球心的纵截面建立坐标系如图,则半圆方程为222x y R +=. --------------------------------------------------(1分).44gR ρπ=---------------------------------------------------------------------------(2分)2.设有质量为m 的降落伞以初速度0v 开始降落,若空气的阻力与速度成正比(比例系数为0>k ),求降落伞下降的速度与时间的函数关系.解 设降落伞下降的速度为)(t v ,则根据牛顿第二运动定律,有 kv mg dtdvm-=,其中g 为重力加速度,-------------------------------------------(2分) 分离变量,得m dtkv mg dv =- , 两端积分 ⎰⎰=-m dtkv mg dv , 1ln 1C m t kv mg k +=-- , 1ln kC t mkkv mg --=-, t mk Cekv mg -=- (其中1kC eC -=,0>-kv mg )---------------------------------(2分)由已知0)0(v v =,代入上式,得0kv mg C -=,故 .)(0tm ke kmg v k mg v --+=------------------------------------------------------------(2分)y,],0[R x ∈∀所做功的微元:取],[dx x x +(其中g x dx x R g dW ⋅-=)(22πρ分)(3)(32dx x x R g -=πρ23()RW g R x x dxρπ=-⎰故七.(本题6分)求微分方程2106652+-=+'-''x x y y y 的通解.解 特征方程为:,0652=+-r r 特征根:.3,221==r r对应齐次方程的通解为:.3221x x e C e C y +=----------------------------------------(3分) 而0不是特征根,可设非齐次方程的特解为C Bx Ax y ++=21,----------------(1分)B Ax y +='21,A y 21='',代入原方程得, 2106)(6)2(5222+-=++++-x x C Bx Ax B Ax A , 2106652)106(622+-=+-+-+x x C B A x A B Ax ,比较同次幂的系数,得⎪⎩⎪⎨⎧=+--=-=.2652,10106,66C B A A B A解之得,.0,0,1===C B A .21x y =∴故所要求的通解为.23221x e C e C y x x ++=---------------------------------------------(2分)八.(本题8分)设L 是一条平面曲线,其上任意一点)0(),(>x y x 到坐标原点的距离恒等于该点处的切线在y 轴上的截距且L 经过点)0,21(. (1)试求曲线L 的方程;(2)求L 位于第一象限的一条切线,使该切线与L 以及两坐标轴所围图形的面积最小. 解(1)过曲线L 上点),(y x 处的切线方程为:)(x X y y Y -'=-, 令0=X ,得切线在y 轴上的截距:y x y Y '-=,由题意,得y x y y x '-=+22,即dx dy x y x y -=⎪⎭⎫⎝⎛+21,)0(>x ------------(2分)令u x y =,则,12x dx u du -=+)0(>x ,12⎰⎰-=+⇒x dxudu )0(>xC x u u ln ln )1ln(2+-=++⇒,C u u x =++⇒)1(2,将xyu =代入并化简,得 C y x y =++22,由L 经过点)0,21(,令21=x ,0=y ,得21=C ,故曲线L 的方程为:,2122=++y x y 即 241x y -=.----------------------------------(2分)(2)曲线L :241x y -=在点),(y x 处的切线方程为:)(x X y y Y -'=-,即)(2)41(2x X x x Y --=--,亦即 )210(4122≤<++-=x x X x Y , 切线与x 轴及y 轴的交点分别为:)0,241(2xx +,).41,0(2+x -----------------------(2分)所求面积⎰--+⋅=210222)41(2)41(21)(dx x xx x S ,)0(>x)413)(41(41)41(2)41(441)(22222222-+=+-+⋅='x x x x x x x x S ,)0(>x 令0)(='x S ,得)(x S 符合实际意义唯一驻点:63=x , 即63=x 为)(x S 在)21,0(内的最小值点, 故所求切线方程为: 41363632++⋅-=X Y ,即.3133+-=X Y ---------------------------------------------(2分)。
高等数学复习题附答案)
高等数学复习题一、选择题1、已知函数)2arctan(2)(-+-=x x x f ,则函数)(x f 的定义域为 ( ) ①)2,1(-, ②]3,1(-, ③]2,1[, ④]2,(-∞.2、已知函数)(x f 的定义域为[0,1],则函数)2(x f -的定义域为 ( )①]2,(-∞, ②(1,2), ③[0,1], ④[1,2].3、已知函数|1|arcsin )(-=x x f ,则函数)(x f 的定义域为 ( ) ①]1,1[-, ②]1,1(-, ③)2,0(, ④]2,0[.4、=∞→xx x πsinlim ( )① 1 ② π ③不存在 ④ 0 5、下列函数中为奇函数的是( )①)1(log 2++x x a , ②2x x e e -+, ③x cos , ④x 2.6、下列函数中是相同函数的是( )① 1)(,)(==x g xx x f ② 33341)(,)(-=-=x x x g x x x f ③ 2)()(,)(x x g x x f == ④ x x g x x f lg 2)(,lg )(2== 7、=→xxx 3sin lim( )①1 ② 2 ③ 3 ④ ∞8、()=+→xx x 1021lim( )①2-e , ②2e , ③2, ④+∞. 9、=→xx x arcsin 0lim( )①0, ②1, ③2, ④不存在.10、=⎪⎭⎫⎝⎛+∞→xx x 21lim ( )①2-e , ②2e , ③2, ④+∞. 11、=++--∞→103422lim 22x x x x x ( )①0, ②1, ③2, ④不存在.12、=⎪⎭⎫⎝⎛+∞→xx x x 2lim ( )①2-e , ②2e , ③2, ④+∞. 13、=∞→x x x arctan lim ( )① 0, ② 1, ③ 2, ④不存在. 14、()=+→xx x 1021lim( )①2-e , ②2e , ③2, ④+∞.15、当0→x 时,下列函数为无穷小量的是 ( ) ①x x sin ②x x 1sin 2 ③)1ln(1+x x ④x11+ 16、当xx 2t a n 0时,与→等价的无穷小量是( )①x -, ②x , ③2x , ④2x .17、下列函数在指定变化趋势下是无穷小量的是 ( )①1,ln →x x , ②+→0,ln x x , ③∞→x e x ,, ④+∞→x e x ,.18、下列函数在指定变化趋势下不是无穷小量的是 ( )①1,ln →x x , ②0,cos →x x , ③∞→x x ,sin 1, ④+∞→-x ex,. 19、当x x 2s in 0时,与→等价的无穷小量是( )①x -, ②x , ③2x , ④2x . 20、点0=x 是函数⎩⎨⎧≥-<=0,10,)(x e x x x f x的 ( ) ①连续点 ②可去间断点③第二类间断点 ④第一类间断点,但不是可去间断点 21、函数)(x f y =由参数方程0sin cos ≠⎩⎨⎧==a ta y ta x ,则=dxy d( )①t sin - ② t tan ③ t cot - ④t sec22、设==dy e y x 则,( )①dx e x x, ②dx e x, ③xdx e x 2, ④xdx e x23、设==-dy e y x则,1( )①dx e x1-, ②dx e xx 121--, ③dx e x x 121-, ④dx e x x 11--24、设,sin 2x y = 则=dy ( ) ① x x cos sin 2 ② xdx cos 2 ③ xdx sin 2 ④xdx 2sin 25、设函数||)(x x f = 则在=x 点处( )①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导. 26、设函数||cos )(x x f = 则在=x 点处( )①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导.27、设函数x x f =)(,则)(x f 在点0=x 处 ( ) ①可导 ②不连续③连续,但不可导 ④可微 28、设21,1,()31,1x x f x x x ⎧+<=⎨-≥⎩,则f (x )在x =1处 ………………………………( )①既可导又连续 ②可导但不连续 ③不连续也不可导 ④连续但不可导 29、函数xy sin =,则=)12(y( )①x cos ② x cos - ③ x sin ④x sin -30、曲线26322-+=x x y 在点(3,1)处的切线的斜率=k ( )①3 ②1 ③15 ④ 0 31、设'0000(2)()()limh f x h f x f x h→+-=存在,则 ………………………..…..( )①'0()f x ②'0()f x h - ③'02()f x h - ④'02()f x 32.设函数3)(x x f = , 则在0=x 是函数的( )① 驻点与极值点; ②不是驻点与极值点; ③极值点; ④驻点. 33、设函数()f x 区间[0,1]满足罗尔定理的是( )①|5.0|)(-=x x f , ②⎩⎨⎧≥-<=5.0225.02)(x x x xx f , ③)sin()(x x f π=, ④ x x f =)(34、设函数()f x 在x 的()00f x '=,则()f x 在0x( )① 一定取极大值 ② 一定 取极小值 ③ 一定 不取极值 ④ 极值情况不确定35、设函数)(x f 在0x 处具有二阶导数,且0)(0='x f ,0)(0<''x f ,则)(0x f 为 ① 最小值 ②极小值 ③最大值 ④极大值 36、⎰='])([dx x F d( )①dx x F )(', ②)(x F , ③dx x F )(, ④. )(x F '37、设x sin 是)(x f 的一个原函数,则⎰=dx x f )( ( ) ①C x +sin ② C x +cos ③C x x ++cos sin ④C x x +sin 38、⎰=-dx xx 212( )①C x +arcsin , ②C x +-21, ③C x +--212, ④C x +2arcsin 21 39、⎰=+dx x x212( )①C x +arctan , ②C x +2arctan 21, ③C x +2, ④C x ++)1ln(2 40、下列函数中,为)(222x x e e y --=的原函数的是………………………….( )① x x e e 22-- ②)(2122x x e e -- ③x x e e 22-+ ④)(2122x x e e -+ 41、dx x x e⎰+1)ln 1(1= ( )① 12ln + ②C +2ln ③2 ④2ln 42、=⎰badad dx x f )(( )① )()(a f b f - ②)(a f - ③ f(b ) ④ 0 43、=⎰21sin xdx x dx d( )① x sin x ②0 ③2 ④3 44、=⎰badbd dx x f )(( )① )()(a f b f -, ② f(b ), ③)(a f -, ④ 0. 二、填空题 1、 若)(x f 的定义域为)0,(-∞,则)(ln x f 的定义域为 ; 2、已知函数291)(xx f -=,则函数)(x f 的定义域为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学复习题(2014-2105 第一学期)一、填空题 1.函数1ln x y x-=的连续区间为 2. 函数01ln 110x x y xx ≤≤⎧=⎨<<⎩,则其定义域为连续区间为3. 函数22(4)x xy x x -=-,(1)间断点为 ,(2)连续区间为 , (3) ,y 为无穷大;(4) ,y 为无穷小。
4. 函数sin (3xy x x =-),水平渐近线为 ,垂直渐近线为5. 01sin 5lim(sin)x x x x x →+= 01l i m a r c t a n x x→=6. 若0sin limlim(1)x x x ex cx x→→∞=+,则c = 7. 23lim(1)xx x→∞-= 411l i m x x x -→= 8. 1lim (0,1)xx a a a →>≠9.x →=10. 101101limm m mn n x na x a x ab x b x b --→∞+++=+++ 11. sin lim sin x x xx x →∞+=- ()301tan 2arcsin 4lim ln(14)sin 3arctan 2x x e x x x x x→-=+12. 函数ln(1y x x =-+)的单调增加区间为 ,凹区间为13. ln x y x=在2[,]e e 上最小值为 14. 设5()x f x e -=,则0(1)(1)lim x f x f x∆→+∆-∆=15. sin(())y x ϕ=,则dy = 16. 已知2()21,f x x =-则10.1x x dy=∆==17. 设参数方程2323x t ty t t⎧=-⎪⎨=-⎪⎩,则dy dx = 18. 已知()ln(1)f x x =+,则在[0,1]上满足拉格朗日中值定理的ξ= 19. 设3(1)sin 2x y x x e -=++,则0'x y ==20. 设(8)ln ,y x x =则(10)y =21. 设105x y x e =+,则(20)y = 22. 已知(2),ln n xyx-=则(1)n y -= 23. 写出()f x 在0x 处有定义,极限,连续,可导,可微之间的关系 有定义存在极限 连续 可导 可微24. 若点(1,3)为曲线32y ax bx =+的拐点,则a b -= 25. 3cos(1e )x d -= 26. 2()ln xef x x tdt =⎰,则'(=f e )27.()aaf x dx -=⎰⎰=aa-⎰=28.222sin 1cos xdx x ππ-=+⎰1211s i n 1xdx x -+=+⎰29.55(x -+=⎰30.若021lim(1),ax t x e dt x →∞-∞+=⎰则a =31.设()(),f x dx F x C =+⎰则(ln )f x dx x=⎰(21f x dx -=⎰) ()x x e f e dx =⎰cos (sin )xf x dx =⎰ 2(2)xf xdx -=⎰32.已知xe -是()f x 的一个原函数,则(ln )f x dx x=⎰33. 微分方程'''20y y y --=的通解为34.微分方程3''sin 2x y e x =+的通解为35. 微分方程233'1x yy x =+的通解为36.设ln(1)10()001x x f x K x x ⎧+-<<⎪==⎨<<,则K = 时,函数()f x 无间断点。
二、选择题1. 设函数()f x 在[0,1]上可导,'()0,f x >并且(0)0,(1)0f f <>,则()f x 在(0,1)内( )A 至少有两个零点B 有且仅有一个零点C 没有零点D 零点个数不能确定2.当0x →时,下列无穷小量中与x 等价的是( ) A 1cos x -Bsin2x D 21xe - 3.下列结论正确的是( )A()()df x dx f x dx =⎰ B '()()f x dx f x =⎰ C 1()()x d f x dx f x dx =⎰ D 21()0d f x dx dx=⎰ 4.函数()f x 在点0x x =处连续是函数()f x 在该点可导的( ) A 充分条件 B 必要条件 C 充要条件 D 无关条件 5.若函数()y f x =在点0x x =处取得极大值,则必有 ( ) A 0'()0f x =且0''()0f x > B 0'()0f x =且0''()0f x < C 0'()0f x = D 0'()0f x =或0'()f x 不存在 6. 0'()0f x =是函数()y f x =在点0x x =处取得极值的 ( ) A 必要条件 B 充要条件 C 充分条件 D 无关条件7若ln xx 是()f x 的一个原函数,则'()xf x dx =⎰( ) A ln x C x + B 12ln x C x -+ C 1C x + D 1C x-+ 8.下列函数中在[0,3]上不满足拉格朗日定理条件的是( )A 221x x ++ B cos(1)x + C 221x x - D ln(1)x +9 下列广义积分收敛的是( ) Alnexdx x+∞⎰B e+∞⎰C1ln edx x x+∞⎰D 21ln edx x x+∞⎰10 如果()f x 是可微函数,当0x ∆→,在点0x 处y dy ∆-是x ∆的( ) A 高阶无穷小 B 等价无穷小 C 低阶无穷小 D 不可比较11.(),x f x e -=则'(ln )f x dx x =⎰( )A 1C x -+ B1C x+ C ln x C -+ D ln x C + 12.设()xf x dx eC =+⎰,则2(1)xf x dx -=⎰( )A 212x e C -+ B 21x xe C -+ C 2112x e C --+ D 2112x e C -+ 13 设13201()()1f x x f x dx x=++⎰,则10()f x dx =⎰( ) A6π B 4π C 3π D 2π14 设4()2xx f t dt =⎰,则40dt =⎰( ) A 16 B 8 C 4 D 215.0x →时,下列无穷小量中与x 等价的是( )A 3tan x B1 C csc cot x x - D 21sin x x x+16.方程''4'5xy y y xe ---=的特解形式为( ) A xae- B ()x ax b e -+ C ()xax b xe -+D 2()xax b x e-+17 设0x <<+∞,则122001111xxdt dt t t +=++⎰⎰( ) A arctan x B 2arctan x C2πD 0 18 当0x →时,sin 20()sin xf x t dt =⎰与34()g x x x =+比较是( )无穷小A 高阶B 低阶C 同阶但非等价D 等价无穷小 三.计算题 10ln(sin 3)lim ln(sin 5)x x x +→2.2012lim sin xx x e x x x→----32()xx y x e =+, 'y4.已知21(),21x y f x -=+且2'()f u u =,求0x dydx=5设y =0lim 'x y +→6 设方程2cos 0yxte dt t dt +=⎰⎰确定y 是x 的函数,求dydx7求曲线1y y xe =+上过点(0,1)处切线的方程8设()y y x =是由参数方程222()[()]tx f u duy f t ⎧=⎪⎨⎪=⎩⎰所确定,求dy dx91cos 2lim xx x→⎰10 20lim()x xx x e →+11531[(23)cos(21)]21x x x e dx x π-++-+-++⎰12278⎰1312dx x142ln e x dx x+∞⎰1543⎰16设10()110x x f x xe x ⎧≥⎪=+⎨⎪+<⎩,求2(1)f x dx -⎰17.已知曲线l 通过点(,1)2π且l 上任一点处切线的斜率为1(sin )x y x-,求l 的方程。
18.已知()f x 的一个原函数为sin ,xx求'()xf x dx ⎰四.解答题1.试求,,a b c 的值,使32y x ax bx c =+++有一拐点(1,1)-,且在0x =处有极大值12.列表讨论函数3226187y x x x =---单调区间与极值,凹凸区间与拐点。
五.应用题1.求由,,1xxy e y e x -===围成的平面图形的面积,及该平面图形绕x 轴旋转生成的旋转体的体积。
2.求由抛物线22y x =与其在点1,12⎛⎫⎪⎝⎭处的法线所围成的图形面积六 证明题1 设()f x 在[0,1]上连续求证(1)22(sin )(cos )f x dx f x dx ππ=⎰⎰(2) 0(sin )(sin )2xf x dx f x dx πππ=⎰⎰ 并由此计算2sin 1cos x xdx x π+⎰2.若2350a b -<,试证方程532340x ax bx c +++=有唯一实根。