年全国高考1卷数学文Word版解析
(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析
2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2020年高考理科数学全国1卷(word版,含答案)
1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)Word版含解析
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)一、单选题1.已知集合{}24xA x =<,{}1B =≤,则A B =( )A .()0,2B .[)1,2C .[]1,2D .()0,12.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为( ) A .1B .1-C .15D .15-3.()()51223x x -+的展开式中,x 的系数为( ) A .154B .162C .176D .1804.已知1tan 5α=,则2cos 2sin sin 2ααα=-( ) A .83-B .83C .38-D .385.何尊是我国西周早期的青铜礼器,其造形浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词的最早文字记载.何尊的形状可以近似地看作是圆台与圆柱的组合体,高约为40cm ,上口直径约为28cm ,下端圆柱的直径约为18cm .经测量知圆柱的高约为24cm ,则估计该何尊可以装酒(不计何尊的厚度,403π1266≈,1944π6107≈)( )A .312750cmB .312800cmC .312850cmD .312900cm6.已知()f x 是定义域为R 的奇函数,满足()()2f x f x =-,则()2022f =( ) A .2B .1C .1-D .07.在四棱锥P ABCD -中,ABCD 是边长为2的正方形,AP PD ==PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为( )A .4πB .8πC .136π9D .68π38.已知抛物线C :24y x =,O 为坐标原点,A ,B 是抛物线C 上两点,记直线OA ,OB 的斜率分别为1k ,2k ,且1212k k =-,直线AB 与x 轴的交点为P ,直线OA 、OB 与抛物线C 的准线分别交于点M ,N ,则△PMN 的面积的最小值为( )A B C D二、多选题9.已知函数()()1cos 02f x x x ωωω=>的图像关于直线6x π=对称,则ω的取值可以为( ) A .2B .4C .6D .810.在菱形ABCD 中,2AB =,60DAB ∠=,点E 为线段CD 的中点,AC 和BD 交于点O ,则( ) A .0AC BD ⋅= B .2AB AD ⋅= C .14OE BA ⋅=-D .52OE AE ⋅=11.一袋中有3个红球,4个白球,这些球除颜色外,其他完全相同,现从袋中任取3个球,事件A “这3个球都是红球”,事件B “这3个球中至少有1个红球”,事件C “这3个球中至多有1个红球”,则下列判断错误的是( )A .事件A 发生的概率为15B .事件B 发生的概率为310C .事件C 发生的概率为335D .1(|)31P A B =12.对于函数()()32,f x x x cx d c d =+++∈R ,下列说法正确的是( )A .若0d =,则函数()f x 为奇函数B .函数()f x 有极值的充要条件是13c <C .若函数f (x )有两个极值点1x ,2x ,则4412281x x +>D .若2c d ==-,则过点()20,作曲线()y f x =的切线有且仅有3条三、填空题13.已知样本数据1-,1-,2,2,3,若该样本的方差为2s ,极差为t ,则2s t=______. 14.已知圆O :221x y +=与直线l :=1x -,写出一个半径为1,且与圆O 及直线都相切的圆的方程:______.15.已知椭圆()222210x y a b a b+=>>的左顶点为A ,左焦点为F ,过F 作x 轴的垂线在x轴上方交椭圆于点B ,若直线AB 的斜率为32,则该椭圆的离心率为______.16.已知f (x )是偶函数,当0x ≥时,()()2log 1f x x =+,则满足()2f x x >的实数x 的取值范围是______.四、解答题17.已知数列{}n a 是等差数列,1324,,a a a a +成等比数列,56a =. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:()221n n S n +<+.18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos sin cos c B a A b C =-. (1)判断ABC 的形状; (2)若3ab ,D 在BC 边上,2BD CD =,求cos ADB ∠的值.19.如图,在直三棱柱111ABC A B C 中,D 、E 分别是AB 、1BB 的中点,12AA AC CB ==,AB =.(1)求证:1//BC 平面1A CD ;(2)若1BC =,求四棱锥1C A DBE -的体积; (3)求直线1BC 与平面1ACE 所成角的正弦值.20.新高考模式下,数学试卷不分文理卷,学生想得高分比较困难.为了调动学生学习数学的积极性,提高学生的学习成绩,张老师对自己的教学方法进行改革,经过一学期的教学实验,张老师所教的80名学生,参加一次测试,数学学科成绩都在[]50,100内,按区间分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)求这80名学生的平均成绩(同一区间的数据用该区间中点值作代表);(2)按优秀与非优秀用分层抽样方法随机抽取10名学生座谈,再在这10名学生中,选3名学生发言,记优秀学生发言的人数为随机变量X ,求X 的分布列和期望.21.已知12,F F 分别为双曲线()222210,0x ya b a b-=>>左、右焦点,(P 在双曲线上,且124PF PF ⋅=. (1)求此双曲线的方程;(2)若双曲线的虚轴端点分别为12,B B (2B 在y 轴正半轴上),点,A B 在双曲线上,且()22B A B B μμ=∈R ,11B A B B ⊥,试求直线AB 的方程.22.已知函数()()211e 12x f x a x a x ax a =---+++,()R a ∈.(1)当1a =时,求f (x )的单调区间;(2)当310,e a ⎛⎫∈ ⎪⎝⎭时,求证:函数f (x )有3个零点.参考答案:1.B【分析】化简集合A 和B ,即可得出A B ⋂的取值范围. 【详解】解:由题意在{}24xA x =<,{}1B =≤中,{}2A x x =<,{}12B x x =≤≤ ∴{}12A B x x ⋂=≤< 故选:B. 2.D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-, 故实部与虚部的和为431555-+=-,故选:D. 3.C【分析】根据二项式定理可求得()523x +展开式通项,由此可确定12,T T ,结合多项式乘法运算进行整理即可确定x 的系数. 【详解】()523x +展开式的通项公式为:()55155C 2323C rr r r r r rr T x x --+=⋅⋅=⋅; 当1r =时,412523C 240T x x =⨯=;当0r =时,51232T ==;x ∴的系数为24023224064176-⨯=-=.故选:C. 4.A【分析】利用二倍角公式化简为正、余弦的齐次分式,分式上下同除2cos α,代入1tan 5α=可得答案.【详解】2222cos 2cos sin sin sin 2sin 2sin cos αααααααα-=--22111tan 825123tan 2tan 255ααα--===---, 故选:A. 5.C【分析】根据圆柱和圆台的体积公式计算可得结果. 【详解】下端圆柱的体积为:224π91944π⋅=6107≈3cm ,上端圆台的体积为:()22116π1414993⨯+⨯+16π4033=⨯1612663≈⨯6752=3cm , 所以该何尊的体积估计为61076752+=128593cm . 因为12850最接近12859,所以估计该何尊可以装酒128503cm . 故选:C 6.D【分析】根据函数()f x 是定义域为R 的奇函数,且()()2f x f x =-得出函数()f x 是周期为4的周期函数,进而求解.【详解】因为函数()f x 是定义域为R 的奇函数,且()()2f x f x =-, 所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=, 即函数()f x 是周期为4的周期函数,因为函数()f x 是定义域为R 的奇函数,所以(0)0f =, 因为()()2f x f x =-,所以(2)(0)0f f ==, 又因为202245052=⨯+,所以(2022)(2)0f f ==, 故选:D . 7.C【分析】将该四棱锥的外接球放在一个长方体内,画出图形,利用已知条件找出球心,建立相应的关系式,求出外接球的半径,利用球体表面积公式计算即可. 【详解】由题意将该四棱锥放在一个长方体的中, 如图∴所示:取AD 的中点H ,连接PH ,连接,AC BD 交于1O ,由AP PD =则在等腰PAD 中有:PH AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD=AD , 则PH ⊥平面ABCD , 又112AH AD ==, 所以在Rt PAH △中,3PH ===,由底面为正方形ABCD ,所以它的外接圆的圆心为对角线的交点1O , 连接1O H ,则1PH O H ⊥,PAD 外接圆的圆心为2O ,且在PH 上,过点1O ,2O 分别作平面ABCD 与平面PAD 的垂线,则两垂线必交于点O ,点O 即为四棱锥P ABCD -外接球的球心, 且1OO ⊥平面ABCD ,又PH ⊥平面ABCD ,即2O H ⊥平面ABCD , 所以1OO ∥PH ,所以四边形12OO HO 为矩形. 如图∴连接2AO ,则22AO PO =,在2Rt AO H 中,22223O H PH PO PH AO AO =-=-=-,所以()2222222213AO AH HO AO =+=+-,解得253AO =,所以254333O H =-=,所以1243OO O H ==, 在图∴中连接OB ,由112O B BD =所以在1Rt OO B 中,OB ==即四棱锥P ABCD -外接球的半径为R OB ==, 所以四棱锥P ABCD -外接球的表面积为: 221364πR 4ππ9S ==⨯=⎝⎭,故选:C. 8.D【分析】设出A 、B 的坐标,由1212k k =-解得12y y 的值,再分别求出点M 、点N 的坐标,求得||MN 的式子,研究AB l 恒过x 轴上的定点可得点P 的坐标,进而用方法1基本不等式或方法2函数思想求得三角形面积的最小值.【详解】设211(,)4y A y ,222(,)4y B y ,则114k y =,224k y =, ∴12121612k k y y ==- ∴1232y y =-, ∴设OA l :14y x y =,令=1x -得:14y y =-,∴14(1,)M y --,同理:24(1,)N y -- ∴12121212||44||||4||8y y y y MN y y y y --=-+==, 设AB l :x my t =+,221044x my t y my t y x=+⎧⇒--=⎨=⎩ 20m t ∆=+>,124y y m +=,124y y t ,又∴1232y y =-,∴432t -=-,解得:8t =, ∴AB l :8x my =+恒过点(8,0),∴AB l 与x 轴交点P 的坐标为(8,0),即:(8,0)P , ∴点P 到准线=1x -的距离为8+1=9. 方法1:1211||1321||||888y y MN y y -==+≥⨯=1||y =.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN的面积的最小值为2. 方法2:12||||8y y MN -==∴20m ≥∴||MN ≥m =0时取得最小值.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN故选:D. 9.AD【分析】首先将函数()f x 化成一个三角函数,然后根据对称轴公式求得ω的表达式,对整数k 赋值求得结果.【详解】()()1cos sin 26f x x x x ωωωπ=+=+,因为函数()f x 的图象关于直线6x π=对称,所以662k ωπππ+=+π,k ∈Z ,解得26k ω=+,因为0ω>,所以当0k =时,2ω=;所以当1k =时,8ω=. 故选:AD. 10.ABD【分析】以O 为坐标原点可建立平面直角坐标系,利用平面向量数量积的坐标运算依次验证各个选项即可.【详解】四边形ABCD 为菱形,AC BD ∴⊥,则以O 为坐标原点,,OC OD 正方向为,x y 轴,可建立如图所示平面直角坐标系,2AB AD ==,60DAB ∠=,2BD ∴=,OA OC ===()0,0O ∴,()A ,()0,1B -,()0,1D ,12E ⎫⎪⎪⎝⎭,对于A ,ACBD ,0AC BD ∴⋅=,A 正确;对于B ,()3,1AB =-,()3,1AD =,312AB AD ∴⋅=-=,B 正确;对于C ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,()BA =-,31122OE BA ∴⋅=-+=-,C 错误; 对于D ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,3122AE ⎛⎫= ⎪ ⎪⎝⎭,915442OE AE ∴⋅=+=,D 正确. 故选:ABD. 11.ABC【分析】根据题意求出基本事件总数、满足条件的基本事件数,利用古典概型概率公式及条件概率公式求解即可.【详解】由题意7个球中任取3个球的基本事件总数为:37C 35=这3个球都是红球的基本事件数为:33C 1=,所以事件A 发生的概率为:1()35P A =,故A 错误, 这3个球中至少有1个红球的基本事件数为:1221334343C C C C +C 1812131⋅+⋅=++=,所以事件B 发生的概率为:31()35P B =,故B 错误, 这3个球中至多有1个红球的基本事件数为:123344C C C 18422⋅+=+=,事件C 发生的概率为22()35P C =,故C 错误, 因为1()()35P AB P A ==, 所以由条件概率公式得:1()135(|)31()3135P AB P A B P B ===, 故D 正确, 故选:ABC. 12.BCD【分析】对于A :利用奇偶性的定义直接判断;对于B :利用极值的计算方法直接求解;对于C :先求出13c <,表示出244122161692781c x x c +=-+,即可求出;对于D :设切点()00,x y ,由导数的几何意义得到3200025460x x x --+=.设()322546g x x x x =--+,利用导数判断出函数()g x 有三个零点,即可求解.【详解】对于A :当0d =时,()32f x x x cx =++定义域为R .因为()()()()()3232f x x x c x x x cx f x -=-+-+-=-+-≠-, 所以函数()f x 不是奇函数.故A 错误;对于B :函数()f x 有极值⇔ ()f x 在R 上不单调.由()32f x x x cx d =+++求导得:()232f x x x c =++'.()f x 在R 上不单调⇔()f x '在R 上有正有负⇔4430c ∆=-⨯>⇔13c <.故B 正确.对于C :若函数f (x )有两个极值点1x ,2x ,必满足0∆>,即13c <.此时1x ,2x 为2320x x c ++=的两根,所以1212233x x c x x ⎧+=-⎪⎪⎨⎪=⎪⎩. 所以()22212121242293c x x x x x x +=+-=-.所以()()222244222212121242216162293992781cc c x x x xx x c +=+-=--=-+ 对称轴164272329c -=-=⨯,所以当13c <时,()224412216162116116292781932738181c x x c +=-+>⨯-⨯+=. 即4412281x x +>.故C 正确;对于D :若2c d ==-时,()3222f x x x x =+--.所以()2322f x x x '=+-.设切点()00,x y ,则有:()3200002000002203222y x x x y f x x x x ⎧=+--⎪-⎨=+-=⎪-⎩', 消去0y ,整理得:3200025460x x x --+=不妨设()322546g x x x x =--+,则()26104g x x x '=--.令()0g x '>,解得:2x >或13x <-;令()0g x '<,解得: 123x -<<.所以()g x 在1,3⎛⎫-∞- ⎪⎝⎭,()2,+∞上单调递增,在1,23⎛⎫- ⎪⎝⎭上单调递减.所以()()()()()32111119254660333327g x g =-=-----+=>极大值, ()()322225242660g x g ==⨯-⨯-⨯+=-<极小值.所以作出的图像如图所示:因为函数()g x 有三个零点,所以方程3200025460x x x --+=有三个根,所以过点()20,作曲线()y f x =的切线有且仅有3条.故D 正确. 故选:BCD. 13.710##0.7 【分析】根据极差的定义可得()314t =--=,先求出平均数,再从方差,从而可求2s t.【详解】极差()314t =--=,平均数为()()1122315-+-+++=,故方差()()()()()222222114111*********s ⎡⎤=--+--+-+-+-=⎣⎦. 所以21475410s t ==.故答案为:710. 14.()2221x y +-=(答案不唯一)【分析】根据圆的圆心和半径,结合直线和圆的位置关系及两个圆的位置关系计算即可. 【详解】设圆心C 为()00,x y ,由已知圆C 与直线l :=1x -相切, 圆C 与圆O :221x y +=相切,可得0112x ⎧--=,即得0002x y =⎧⎨=⎩或0002x y =⎧⎨=-⎩或0020x y =-⎧⎨=⎩, 且已知半径为1,所以圆的方程可以为: ()2221x y +-=或()2221x y ++=或2221x y故答案为: ()2221x y +-=(答案不唯一) 15.12##0.5【分析】由题意设(),0A a -,2,b B c a ⎛⎫- ⎪⎝⎭,再由232AB b a k c a -==-+结合222a b c =+,即可得出答案.【详解】由题意可得,(),0A a -,(),0F c -,令椭圆()222210x y a b a b +=>>中x c =-,解得:2b y a=±,所以2,b B c a ⎛⎫- ⎪⎝⎭,而2032AB b a k c a -==-+,则2232a c a c a c a a -+==-+, 解得:12e =. 故答案为:12. 16.()(),01,-∞⋃+∞【分析】利用奇偶性和函数的单调性解不等式.【详解】当0x ≥时,()()2log 1f x x +,函数在[)0,∞+上单调递增,∴()(0)0f x f ≥=,又()f x 是偶函数,所以()f x 的值域为[)0,∞+.当0x ≥时,()()2log 1f x x +,不等式()2f x x >()22log 1x x +>,即()22log 10x x+->,设()22()log 1g x x x =+-,由函数y =()2log 1y x =+,2y x=-在()0,∞+上都是增函数, 得()g x 在()0,∞+上是增函数,由(1)0g =,则()0(1)g x g >=解得1x >; 当0x <时,由函数值域可知()0f x >,此时20x<,所以()2f x x >恒成立;综上可知,满足()2f x x>的实数x 的取值范围是()(),01,-∞⋃+∞.故答案为:()(),01,-∞⋃+∞ 17.(1)1n a n =+ (2)证明见解析【分析】(1)根据等比数列定义和等差数列通项公式可构造方程组求得1,a d ,进而确定n a ; (2)利用裂项相消法可求得n S ,整理即可证得结论. 【详解】(1)设等差数列{}n a 的公差为d ,1324,,a a a a +成等比数列,()23124a a a a ∴=+,即()()2111224a d a a d +=+,又5146a a d =+=,则由()()2111122446a d a a d a d ⎧+=+⎪⎨+=⎪⎩得:121a d =⎧⎨=⎩或163a d =-⎧⎨=⎩, 当16a =-,3d =时,30a =,不满足1324,,a a a a +成等比数列,舍去; 12a ∴=,1d =,()211n a n n ∴=+-=+.(2)由(1)得:()()111111212n n a a n n n n +==-++++, 1111111111233445112n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()112222n n n =-=++, ()221n n S n n ∴+=<+.18.(1)直角三角形 (2)0【分析】(1)根据正弦定理的边角互化,即可得到结果;(2)由(1)中结论即可得到cos B ∠,从而得到AD 的值,然后在ABD △中结合余弦定理即可得到结果.【详解】(1)因为cos sin cos c B a A b C =-,由正弦定理可得, 2sin cos sin cos sin C B B C A +=即()2sin sin B C A +=所以()2sin sin ,0,πsin 1A A A A =∈⇒=且()0,πA ∈,所以π2A =即ABC 是直角三角形.(2)在直角ABC 中,有22223b c a b +==,即222c b =,所以c =, 又因为2BD CD =,所以23BD BC ==且cos c B a === 在ABD △中,由余弦定理可得,22222242cos 2b b AD AB BD AD B AB BD +-+-∠===⋅解得AD =, 在ABD △中由余弦定理可得,222222242cos 02b b b AD BD AB ADB AD BD +-+-∠===⋅19.(1)证明见解析 (2)23【分析】(1)连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点,利用中位线的性质可得出1DF //BC ,再利用线面平行的判定定理可证得结论成立;(2)过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,证明出CM ⊥平面11AA B B ,计算出CM 的长以及四边形1A DBE 的面积,利用锥体的体积公式可求得四棱锥1C A DBE -的体积; (3)设1BC =,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面1A CE 所成角的正弦值. 【详解】(1)证明:连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点, 因为D 、F 分别为AB 、1AC 的中点,则1DF //BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,1//BC ∴平面1A CD . (2)解:因为1BC =,则122AA AC CB ===,AB == 222AC BC AB ∴+=,即AC BC ⊥,过点C 在平面ABC 内作CM AB ⊥,垂足为点M , 因为1AA ⊥平面ABC ,CM ⊂平面ABC ,1CM AA ∴⊥,又因为CM AB ⊥,1AB AA A ⋂=,AB 、1AA ⊂平面11AA B B ,CM ∴⊥平面11AA B B ,由等面积法可得AC BC CM AB ⋅==因为1AA ⊥平面ABC ,AB ⊂平面ABC ,1AA AB ∴⊥,又因为11//AA BB 且11AA BB =,故四边形11AA B B 为矩形,所以,1111111212AA D A B E AA B B A DBE S S S S ⎫=--==⎪⎪⎝⎭△△矩形四边形11112333C A DBE A DBE V S CM -∴=⋅==四边形.(3)解:不妨设1BC =,因为AC BC ⊥,1CC ⊥平面ABC ,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,1,0B 、()0,0,0C 、()10,0,2C 、()12,0,2A 、()0,1,1E , 设平面1A CE 的法向量为(),,n x y z =,()12,0,2CA =,()0,1,1CE =, 则1220n CA x z n CE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,可得()1,1,1n =-, 因为()10,1,2BC =-,则111cos ,BC n BC n BC n⋅<>==-=⋅因此,直线1BC 与平面1A CE20.(1)73.5(2)分布列见解析;期望()910E X =【分析】(1)根据频率分布直方图估计平均数的方法直接计算即可;(2)根据频率分布直方图可确定优秀与非优秀学生对应的频率,根据分层抽样原则可确定10名学生中优秀学员的人数,由此可得X 所有可能的取值,根据超几何分布概率公式可求得X 每个取值对应的概率,由此可得分布列;由数学期望计算公式可求得期望. 【详解】(1)80名学生的平均成绩为()550.01650.03750.03850.025950.00510⨯+⨯+⨯+⨯+⨯⨯=73.5.(2)根据频率分布直方图知:优秀学员对应的频率为()0.0250.005100.3+⨯=,则非优秀学员对应的频率为10.30.7-=,∴抽取的10名学生中,有优秀学生100.33⨯=人,非优秀学生100.77⨯=人;则X 所有可能的取值为0,1,2,3,()37310C 3570C 12024P X ====;()1237310C C 63211C 12040P X ====;()2137310C C 2172C 12040P X ====;()33310C 13C 120P X ===;X ∴的分布列为:∴数学期望()721719012324404012010E X =⨯+⨯+⨯+⨯=. 21.(1)22145x y -=(2)y x =+y =【分析】(1)根据平面向量数量积坐标运算和点在双曲线上,可构造方程组求得22,a b 的值,由此可得双曲线方程;(2)由2,,A B B 三点共线可设:AB y kx =+用向量垂直的坐标表示,代入韦达定理结论可解方程求得k 的值,由此可得直线AB 方程. 【详解】(1)设()1,0F c -,()()2,00F c c >,则(1PF c =--,(2PF c =-,212854PF PF c ∴⋅=-+=,解得:3c =,229a b ∴+=;又P 在双曲线上,则22851a b-=,24a ∴=,25b =, ∴双曲线的方程为:22145x y -=.(2)由(1)得:(10,B,(2B ,()22B A B B μμ=∈R ,2,,A B B ∴三点共线,直线AB斜率显然存在,可设:AB y kx =+()11,A x y ,()22,B x y ,由22145y kx x y ⎧=⎪⎨-=⎪⎩得:()2254400k x ---=,()22540Δ801040k k ⎧-≠⎪∴⎨=->⎪⎩,即252k <且254k ≠,12x x ∴+=1224054x x k =--, 11B A B B ⊥,110B A B B ∴⋅=,又(111,B A x y =,(122,B B x y =,()1112121212125B A B B x x y y x x y y y y ∴⋅=+=+++(()1212125x x kx kx k x x =++++()()()222121222401801202005454k k kx xx x k k+=++++=-++=--,解得:k =252k <且254k ≠,∴直线AB方程为:y x =y = 【点睛】关键点点睛:本题考查直线与椭圆的综合应用问题,解题关键是能够利用平面向量垂直关系的坐标表示来构造等量关系,结合韦达定理的结论得到关于所求变量的方程的形式,从而解方程求得变量的值.22.(1)函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1). (2)证明过程见详解【分析】(1) 因为1a =,所以函数()()212e 22x f x x x x =--++,对函数求导,利用导函数的正负来判断函数的单调性即可求解;(2)对函数进行求导,求出导函数的零点,根据条件可得:函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,然后利用零点存在性定理即可证明.【详解】(1)因为1a =,所以函数()()212e 22x f x x x x =--++,所以()e (2)e 1(1)(e 1)x x x f x x x x '=+--+=--,当1x >或0x <时,()0f x '>,此时函数()f x 单调递增; 当01x <<时,()0f x '<,此时函数()f x 单调递减; 综上:函数()f x 的单调递增区间为(,0)-∞和(1,)+∞, 单调递减区间为(0,1).(2)因为函数()()211e 12x f x a x a x ax a =---+++,所以()e (1)e ()e ()()(e 1)x x x x f x a a x a x a a x a x a x a a '=+---+=---=--,令()0f x '=可得:x a =或ln x a =-,因为310,e a ⎛⎫∈ ⎪⎝⎭,所以ln 3a ->,当x a <或ln x a >-时,()0f x '>,此时函数()f x 单调递增; 当ln a x a <<-时,()0f x '<,此时函数()f x 单调递减;所以函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,故当x a =时,函数取极大值()()22e 10102aaf a a a f a =-+++>=->,因为当2x =-时,221(2)(3)10ef a a a -=-+--<;所以0(2,)x a ∃∈-,使得0()0f x =; 当ln x a =-时,函数取极小值,ln 2211(ln )(ln 1)e (ln )ln 1ln ln (ln )22a f a a a a a a a a a a a a --=-----++=---1ln (1ln )02a a a =-++<,(因为ln 3a ->,所以13ln 22a <-,因为3110e 2a <<<,所以312a +<,也即11ln 02a a ++<)所以0(,ln )x a a '∃∈-,使得0()0f x '=;又当x →+∞时,()f x →+∞,所以0(ln ,)x a ''∃∈-+∞,使得0()0f x ''=;故当310,e a ⎛⎫∈ ⎪⎝⎭时,函数()f x 有3个零点.【点睛】函数零点的求解与判断方法:答案第17页,共17页 (1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用导数求出函数的极值点,再利用零点存在性定理进行判断零点的个数.。
2021年高考试题真题——数学(新高考全国Ⅰ卷) Word版含解析
2021年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A. {}2B. {}2,3C. {}3,4D.{}2,3,42. 已知2i z =-,则()i z z +=( ) A. 62i -B. 42i -C. 62i +D. 42i +3. ,其侧面展开图为一个半圆,则该圆锥的母线长为( )A. 2B. C. 4D. 4. 下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( ) A. 0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D.3,22ππ⎛⎫⎪⎝⎭5. 已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A. 13B. 12C. 9D. 66. 若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A. 65-B. 25-C.25D.657. 若过点(),a b 可以作曲线e x y =的两条切线,则( ) A. e b a < B. e a b < C. 0e b a <<D. 0e a b <<8. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立D. 丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则( )A. 两组样本数据的样本平均数相同B. 两组样本数据样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样数据的样本极差相同10. 已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( )A. 12OP OP =B. 12AP AP =C. 312OA OP OP OP ⋅=⋅ D. 123OA OP OP OP ⋅=⋅ 11. 已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( ) A. 点P 到直线AB 的距离小于10 B. 点P 到直线AB 的距离大于2 C. 当PBA ∠最小时,PB =D. 当PBA ∠最大时,PB =12.正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A. 当1λ=时,1AB P △的周长为定值B. 当1μ=时,三棱锥1P A BC -的体积为定值C. 当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D. 当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 三、填空题:本题共4小题,每小题5分,共20分.13. 已知函数()()322xx xa f x -=⋅-是偶函数,则a =______.14. 已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.15. 函数()212ln f x x x =--的最小值为______.16. 某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nkk S==∑______2dm .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.18. 某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.19. 记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.20. 如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.21. 在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,点M的轨迹为C . (1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.22. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.2021年普通高等学校招生全国统一考试数学 答案解析一、选择题:1. B 解析:由题设有{}2,3A B ⋂=, 故选B . 2. C 解析:因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选C. 3. B 解析:设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=,解得l =故选B.4. A 解析:因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 对于函数()7sin 6f x x π⎛⎫=-⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭, 则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件; 取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭, 32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,CD 选项均不满足条件 故选A. 5. C 解析:由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选C . 6. C 解析:将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++. 故选:C . 7. D 解析:在曲线xy e =上任取一点(),tP t e,对函数xy e=求导得e x y '=,所以,曲线xy e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1t f t a t e =+-,则()()t f t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减, 所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选D.解法二:画出函数曲线xy e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x轴上方时才可以作出两条切线.由此可知0a b e <<.故选D. 8. B 解析:11561()()()()6636366P P P P =====甲,乙,丙,丁, ,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁,1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙,故选B二、选择题:9. CD 解析:()()()()D y D x D c D x =+=,故方差相同,C 正确;由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,D 正确;故选CD 10. AC 解析:A 项,1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP ==,故12||||OP OP =,正确;C 项,由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;故选AC 11. ACD 解析:圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y+=,即240x y +-=,圆心M 到直线AB45==>,所以,点P 到直线AB 的距离的最小值为425-<410<,A 选项正确; 如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,()()22052534BM =-+-=,4MP =,由勾股定理可得2232BP BM MP =-=,CD 选项正确.故选ACD. 12. BD 解析:易知,点P 在矩形11BCC B 内部(含边界).对于B ,当1μ=时,1111=BP BC BB BB BC λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫=- ⎪ ⎪⎝⎭,11,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确. 故选BD .三、填空题:13. 答案:1 解析: 因为()()322xx xa f x -=⋅-,故()()322x x f x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=, 时()()332222xx x x xa x a --⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =, 故答案为1 14. 答案:32x =- 解析:抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭, ∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p , 因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =- 故答案为32x =-. 15. 答案:1 解析:由题设知:()|21|2ln f x x x =--定义域为(0,)+∞, ∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减; 当112x <≤时,()212ln f x x x =--,有2()20f x x'=-≤,此时()f x 单调递减; 当1x >时,()212ln f x x x =--,有2()20f x x'=->,此时()f x 单调递增; 又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增; ∴()(1)1f x f ≥= 故答案为1. 16.答案: (1). 5 (2). ()41537202n n -+-解析:(1)由对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,所以对着三次的结果有:5312561032022⨯⨯⨯⨯,,;,共4种不同规格(单位2dm ); 故对折4次可得到如下规格:5124⨯,562⨯,53⨯,3102⨯,3204⨯,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120()2dm ,第n 次对折后的图形面积为111202n -⎛⎫⨯ ⎪⎝⎭,对于第n 此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为1n +种(证明从略),故得猜想1120(1)2n n n S -+=,设()0121112011202120312042222nk n k n S S -=+⨯⨯⨯==++++∑,则121112021203120120(1)22222n nn n S -⨯⨯+=++++, 两式作差得:()211201111124012022222n nn S -+⎛⎫=++++- ⎪⎝⎭ ()11601120122401212n n n -⎛⎫- ⎪+⎝⎭=+-- ()()112011203120360360222n n nn n -++=--=-, 因此,()()4240315372072022n n n n S -++=-=-. 故答案为5;()41537202n n -+-. 四、解答题:17.答案:(1)122,5b b ==;(2)300. 解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,*()k N ∈故2223k k a a +=+,即13n n b b +=+,即13n n b b +-= 所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++,因为123419201,1,,1a a a a a a =-=-=-,所以()20241820210S a a a a =++++-()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.18.答案:(1)见解析;(2)B 类. 解析:(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=; ()()200.810.60.32P X ==-=; ()1000.80.60.48P X ==⨯=.所以X 的分布列为(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=; ()()800.610.80.12P Y ==-=; ()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=. 因为54.457.6<,所以小明应选择先回答B 类问题. 19.答案:(1)证明见解析;(2)7cos 12ABC ∠=.(1)由题设,sin sin a C BD ABC =∠,由正弦定理知:sin sin c b C ABC =∠,即sin sin C cABC b=∠,∴acBD b=,又2b ac =, ∴BD b =,得证.(2)由题意知:2,,33b b BD b AD DC ===, ∴22222241399cos 24233b b b c c ADB b b b +--∠==⋅,同理2222221099cos 2233b b b a a CDB b b b +--∠==⋅, ∵ADB CDB π∠=-∠,∴2222221310994233b bc a b b --=,整理得2221123b a c +=,又2b ac =, ∴42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b =或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b+-∠==-,当2213a b =时,7cos 16ABC ∠=>不合题意;当2232a b =时,7cos 12ABC ∠=; 综上,7cos 12ABC ∠=.答案:(1)详见解析(2) 36解析:(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD , 因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥MF则EMF ∠为二面角E-BC-D 的平面角, 4EMF π∠=因为BO OD =,OCD 为正三角形,所以OCD 为直角三角形 因为2BE ED =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=21.答案:(1)()221116y x x -=≥;(2)0. 解析:因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫ ⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-, 联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >. 由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-,所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭, 设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=. 因此,直线AB 与直线PQ 的斜率之和为0.22.答案:(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 解析:(1)函数的定义域为()0,∞+, 又()1ln 1ln f x x x '=--=-,当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<, 故()f x 的递增区间为()0,1,递减区间为()1,+∞.(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=, 故11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 设1211,x x a b==,由(1)可知不妨设1201,1x x <<>. 因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<, 故21x e <<. 先证:122x x +>,若22x ≥,122x x +>必成立.若22x <, 要证:122x x +>,即证122x x >-,而2021x <-<, 故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<. 设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦, 因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=, 故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立, 综上,122x x +>成立.设21x tx =,则1t >, 结合ln 1ln +1a b a b+=,1211,x x a b ==可得:()()11221ln 1ln x x x x -=-,即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t tx t --=-,要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<, 即证:()1ln ln 111t t tt t --++<-,即证:()()1ln 1ln 0t t t t -+-<,令()()()1ln 1ln ,1S t t t t t t =-+->, 则()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭, 先证明一个不等式:()ln 1x x ≤+. 设()()ln 1u x x x =+-,则()1111xu x x x -'=-=++, 当10x -<<时,()0u x '>;当0x >时,()0u x '<,故()u x 在()1,0-上为增函数,在()0,+∞上为减函数,故()()max 00u x u ==, 故()ln 1x x ≤+成立由上述不等式可得当1t >时,112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭,故()0S t '<恒成立, 故()S t 在()1,+∞上为减函数,故()()10S t S <=, 故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立. 综上所述,112e a b<+<.。
2013年高考文科数学全国新课标卷1试题与答案word解析版
2013年普通高等学校招生全国统一考试(新课标全国卷I)数学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( ).A.{1,4} B.{2,3} C.{9,16} D.{1,2}(2) = ( )(A)-1 - i (B)-1 + i (C)1 + i (D)1 - i3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A.12 B.13 C.14 D.164.已知双曲线C:2222=1x ya b-(a>0,b>0)C的渐近线方程为( ).A. B.C.12y x=± D .5.已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=1-x2,则下列命题中为真命题的是( ).A.p∧q B.⌝p∧qC.p∧⌝q D.⌝p∧⌝q(6)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()(A)S n=2a n-1 (B)S n =3a n-2 (C)S n=4-3a n(D)S n =3-2a n7.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.[-3,4]B.[-5,2] C.[-4,3]D.[-2,5]8.O为坐标原点,F为抛物线C:y2=的焦点,P为C上一点,若|PF|=,则△POF的面积为( ).A.2 B...49.函数f(x)=(1-cos x)sin x在[-π,π]的图像大致为( ).10.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b=( ).A.10 B.9 C.8 D.511.某几何体的三视图如图所示,则该几何体的体积为( ).A.16+8πB.8+8π C.16+16πD.8+16π12已知函数f(x)=22,0,ln(1),0.x x xx x⎧-+≤⎨+>⎩若|f(x)|≥ax,则a的取值范围是( ).A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a,b的夹角为60°,c=t a+(1-t)b.若b·c=0,则t =______.14.设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______.15.已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.星期一已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和. 星期二如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C,求三棱柱ABC -A 1B 1C 1的体积.星期三为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.12.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.22.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?星期四已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 星期五已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.星期六(三选一)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC= ,延长CE 交AB 于点F ,求△BCF 外接圆的半径。
2021年全国高考真题乙卷数学试卷真题(文科)(word版,含答案)
2021年普通高等学校招生全国统一考试试题数学(乙卷·文科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},集合M ={1,2},N ={3,4},则 U (M ∪N)=( ) A .{5}B .{1,2}C .{3,4}D .{1,2,3,4}2.设iz =4+3i ,则z =( ) A .−3−4iB .−3+4iC .3−4iD .3+4i3.已知命题p :∃x ∈R ,sinx <1;命题q :∀x ∈R ,e |x|⩾1,则下列命题中为真命题的是( ) A .p ∧qB .¬p ∧qC .p ∧¬qD .¬(p ∨q)4.函数f(x)=sin x 3+cos x 3的最小正周期和最大值分别是( ) A .3π和√2B .3π和2C .6π和√2D .6π和25.若x ,y 满足约束条件{x +y ⩾4,x −y ⩽2,则z =3x +y 的最小值为y ⩽3,( )A .18B .10C .6D .46.cos 2π12−cos 25π12=( )A .12B .√33C .√22D .√327.在区间(0,12)随机取1个数,则取到的数小于12的概率为( ) A .34B .23C .13D .168.下列函数中最小值为4的是( ) A .y =x 2+2x +4 B .y =|sinx|+4|sinx|C .y =2x +22xD .y =lnx +4lnx9.设函数f(x)=1−x 1+x,则下列函数中为奇函数的是( ) A .f(x −1)−1B .f(x −1)+1C .f(x +1)−1D .f(x +1)+110.在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A .π2B .π3C .π4D .π611.设B 是尼圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A .52B .√6C .√5D .212.设a ≠0,若x =a 为函数f(x)=a(x −a)2(x −b)的极大值点,则( )A.a<b B.a>b C.ab<a2D.ab>a2二、填空题:本题共4小题,每小题5分,共20分。
2022年全国高考甲卷数学(文)试题(解析版)
2022年普通高等学校招生全国统一考试(全国甲卷文科)注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎩⎭∣,则A B = ()A.{}0,1,2 B.{2,1,0}-- C.{0,1}D.{1,2}【答案】A 【解析】【分析】根据集合的交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.3.若1i z =+.则|i 3|z z +=()A. B. C. D.【答案】D 【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +==故选:D.4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B 【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=⨯⨯=.故选:B.5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是()A.16B.14C.13D.12【答案】C 【解析】【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0>ω,故当0k =时,ω的最小值为13.故选:C.6.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15 B.13C.25D.23【答案】C 【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.7.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A. B.C. D.【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.8.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=()A.1-B.12-C.12D.1【答案】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.9.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则()A.2AB AD =B.AB 与平面11AB C D 所成的角为30°C.1AC CB =D.1B D 与平面11BB C C 所成的角为45︒【答案】D 【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D== ,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为2tan 2c BAE a ∠==,所以30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,112sin 22CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确.故选:D .10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙()A.B.C.D.5104【答案】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高13h ==,乙圆锥的高23h ==,所以22112221453931122393r h l V V r h ππ⨯==甲乙.故选:C.11.已知椭圆2222:1(0)x y C a a b+=>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A.2211816x y += B.22198x y += C.22132x y += D.2212x y +=【答案】B 【解析】【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率13c e a ===,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B.12.已知910,1011,89m m m a b ==-=-,则()A.0a b >>B.0a b >> C.0b a >> D.0b a>>【答案】A 【解析】【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m =可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =______________.【答案】34-##0.75-【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.14.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.【答案】22(1)(1)5x y -++=【解析】【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点的距离相等且为半径R ,==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=15.记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.【答案】2(满足1e <≤皆可)【解析】【分析】根据题干信息,只需双曲线渐近线by x a =±中02b a<≤即可求得满足要求的e 值.【详解】解:2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以==≤c e a又因为1e >,所以1e <≤,故答案为:2(满足1e <≤皆可)16.已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.【答案】1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥--,当且仅当311mm +=+即1m =-时,等号成立,所以当ACAB取最小值时,1m=.1-.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A 24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k 0.1000.0500.010k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算2K ,再利用临界值表比较即可得结论.【小问1详解】根据表中数据,A 共有班次260次,准点班次有240次,设A 家公司长途客车准点事件为M ,则24012()26013==P M ;B 共有班次240次,准点班次有210次,设B 家公司长途客车准点事件为N ,则210()27840==P N .A 家公司长途客车准点的概率为1213;B 家公司长途客车准点的概率为78.【小问2详解】列联表准点班次数未准点班次数合计A 24020260B 21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.18.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析;(2)78-.【解析】【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【小问1详解】解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n +-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.【小问2详解】解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.19.小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2【解析】【分析】(1)分别取,AB BC 的中点,M N ,连接MN ,由平面知识可知,EM AB FN BC ⊥⊥,EM FN =,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,即可知四边形EMNF //EF MN ,最后根据线面平行的判定定理即可证出;(2)再分别取,AD DC 中点,K L ,由(1)知,该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍,即可解出.【小问1详解】如图所示:,分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC 为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .【小问2详解】如图所示:,分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍.因为MN NL LK KM ====,8sin 60EM == B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =(2143V =⨯⨯⨯==.20.已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线.(1)若11x =-,求a ;(2)求a 的取值范围.【答案】(1)3(2)[)1,-+∞【解析】【分析】(1)先由()f x 上的切点求出切线方程,设出()g x 上的切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围.【小问1详解】由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处的切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;【小问2详解】2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭0()0,11()1,+∞()h x '-+0-+()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.21.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.【答案】(1)24y x =;(2):4AB x =+.【解析】【分析】(1)由抛物线的定义可得=2pMF p +,即可得解;(2)设点的坐标及直线:1MN x my =+,由韦达定理及斜率公式可得2MN AB k k =,再由差角的正切公式及基本不等式可得2AB k =,设直线:AB x n =+,结合韦达定理可解.【小问1详解】抛物线的准线为2px =-,当MD 与x 轴垂直时,点M 的横坐标为p ,此时=32pMF p +=,所以2p =,所以抛物线C 的方程为24y x =;【小问2详解】设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,120,4y y ∆>=-,由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-,直线112:2x MD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,130,8y y ∆>=-,所以322y y =,同理可得412y y =,所以()34124422MNAB k k y y y y ===++又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===,若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 12tan 11tan tan 1242k k k k αβαβαβ--===≤+++,当且仅当12k k =即2k =时,等号成立,所以当αβ-最大时,2AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C的参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C的参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.【答案】(1)()2620y x y =-≥;(2)31,C C 的交点坐标为1,12⎛⎫⎪⎝⎭,()1,2,32,C C 的交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【解析】【分析】(1)消去t ,即可得到1C 的普通方程;(2)将曲线23,C C 的方程化成普通方程,联立求解即解出.【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 的普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 的普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 的普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23.已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据()22222242a b c a b c ++=++,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c <+≤,即可得到1143a c ≥+,再根据权方和不等式即可得证.【小问1详解】证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;【小问2详解】证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥.。
(完整版)2019年高考新课标(全国卷1)文数真题(word版,含解析)(2)
2019年高考新课标全国1卷(文科数学)一、选择题:本题共12小题,每小题5分,共60分。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A I A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(51-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A .165 cm B .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-23B .-3C .23D .38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A +B .A =12A +C .A =112A +D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2023年高考数学(四川卷)(文科)(word版+答案)全解析
2023年普通高等学校招生全国统一考试(四川)数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到8页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己地姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出解析后,用铅笔把答题卡上对应题目地解析标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它解析标号。
不能答在试卷卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出地四个选项中,只有一项是符合题目要求地。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24RS π=如果事件A 、B 相互独立,那么 其中R 表示球地半径)()()(B P A P B A P ⋅=⋅ 球地体积公式如果事件A 在一次试验中发生地概率是P,那么334R V π=n 次独立重复试验中恰好发生k 次地概率 其中R 表示球地半径kn k kn n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出地四个选项中,只有一项是符合题目要求地。
1、设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4} ,则C U (A ∩B )=(A ){2,3} (B ) {1,4,5} (C ){4,5} (D ){1,5}2、函数1ln(21),()2y x x =+>-地反函数是(A )11()2x y e x R =- ∈ (B )21()x y e x R =- ∈ (C ) 1(1()2xy e x R =- ) ∈ (D )21()xy e x R =- ∈3、 设平面向量(3,5(2,1)a b = ) ,=- ,则2a b -=(A )(7,3) (B )(7,7) (C )(1,7) (D )(1,3)4、(tanx+cotx)cos 2x=(A )tanx (B )sinx (C )cosx (D )cotx 5、不等式2||2x x -<地解集为(A )(-1,2) (B )(-1,1) (C )(-2,1) (D )(-2,2)6、将直线3y x =绕原点逆时针旋转90°,再向右平移1个单位,所得到地直线为(A )1133y x =-+ (B )113y x =-+ (C )33y x =- (D )31y x =+7、△ABC 地三个内角A 、B 、C 地对边边长分别是a b c 、、 ,若a =,A=2B,则cosB=(A ) (B (C (D学校 班级 姓名 考号/密///////////封/////////////线/////////////内/////////////不/////////////要/////////////答/////////////题///////8、设M 是球O 地半径OP 地中点,分别过M 、O 作垂直于OP 地平面,截球面得到两个圆,则这两个圆地面积比值为(A )14(B )12(C )23(D )349、定义在R 上地函数()f x 满足:()(2)13,(1)2,f x f x f ∙+==则(99)f =(A )13 (B ) 2 (C )132(D )21310、设直线l α⊂平面,过平面α外一点A 且与l 、α都成30°角地直线有且只有(A )1条 (B )2条 (C )3条 (D )4条11、已知双曲线22:1916x y C -=地左右焦点分别为F 1、F 2 ,P 为C 地右支上一点,且||||212PF F F =,则△PF 1F 2 地面积等于(A )24 (B )36 (C )48 (D )9612、若三棱柱地一个侧面是边长为2地正方形,另外两个侧面都是有一个内角为60°地菱形,则该棱柱地体积为(A(B) (C)(D)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2019年新课标全国卷高考文科数学试卷及答案【word版】
2019年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合12|,31|x x B x x M ,则M B ()A. )1,2(B. )1,1(C. )3,1(D. )3,2((2)若0tan ,则A.0sinB. 0cosC. 02sinD. 02cos (3)设i i z 11,则||z A. 21 B. 22C. 23D. 2(4)已知双曲线)0(13222a y a x 的离心率为2,则aA. 2B. 26C. 25D. 1(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC 的三边AB CA BC ,,的中点,则FCEB A.AD B. AD 21C. BC 21D. BC(7)在函数①|2|cos x y ,②|cos |x y ,③)62cos(x y ,④)42tan(x y 中,最小正周期为的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M ( )。
2019年高考文科数学全国1卷(附答案)
10 .双曲线
2
C: x
2
2
y
的一条渐近线的倾斜角为
2 1( 0, 0)
ab
专业资料
14.记 Sn 为等比数列 { an} 的前 n 项和 .若 a 1 1, S3
3 ,则 S4=___________ .
4
3π
f (x) sin(2 x
) 3cos x 的最小值为 ___________ .
.
长度之比也是
5
若
1
某
人
满
2
足
上述两个黄金分割比 例,且腿长为 105cm ,头顶至脖子下
端的长度为 26 cm , 则其身高可能是
A. 165 cm B. 175 cm
C. 185 cm D. 190cm
在 [ — π, π的] 图像大致为
sin x x
函数 f(x)=
2
cos x x
专业资料
班-
12B-SX-0000022
_-
_______ :
-
绝密 ★ 启用前
2019 年普通高等学校招生全国统一考试
文科数学 全国 I 卷
本试卷共 23 小题,满分 150 分,考试用时 120 分钟
号学
(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福 建
)
_ - 注意事项:
___________________ :
12B-SX-0000022
附: 2
K (a
2
P( K ≥k)
2
n( ad bc)
.
b)(c d )(a c)(b d)
0.050
0.010
2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析
2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析2021年普通高等学校招生全国统一考试数学试卷,共22小题,满分150分,考试用时120分钟。
请考生注意以下事项:1.在答题卡上填写姓名、考生号、考场号和座位号,并用2B铅笔填涂试卷类型(A)。
2.选择题答案用2B铅笔在答题卡上涂黑,如需改动,用橡皮擦干净后再涂其他答案。
非选择题必须用黑色字迹的钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液。
3.考试结束后,请将试卷和答题卡一并交回。
一、选择题:共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合$A=x-2<x<4$,$B=\{2,3,4,5\}$,则$A$为()A。
$\{2\}$。
B。
$\{2,3\}$。
C。
$\varnothing$。
D。
$\{3,4\}$2.已知$z=2-i$,则$z(z+i)$为()A。
$6-2i$。
B。
$4-2i$。
C。
$6+2i$。
D。
$4+2i$3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。
2.B。
2$\sqrt{2}$。
C。
4.D。
4$\sqrt{2}$4.下列区间中,函数$f(x)=7\sin\left(x-\dfrac{\pi}{6}\right)$单调递增的区间是()A。
$\left(0,\dfrac{\pi}{2}\right)$。
B。
$\left(\dfrac{\pi}{2},\pi\right)$。
C。
$\left(\dfrac{3\pi}{2},2\pi\right)$。
D。
$\left(\dfrac{\pi}{2},\dfrac{3\pi}{2}\right)$5.已知$F_1,F_2$是椭圆$C:x^2+y^2=1$的两个焦点,点$M$在$C$上,则$MF_1\cdot MF_2$的最大值为()A。
2016年高考全国Ⅰ文科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅰ,文1,5分】设集合{}1,3,5,7A =,{}25B x x =≤≤,则A B = ( )(A ){}1,3 (B ){}3,5 (C ){}5,7 (D ){}1,7【答案】B【解析】集合A 和集合B 公共元素有3,5,所以{}3,5A B = ,所以A B 中有2个元素,故选B .【点评】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)【2016年全国Ⅰ,文2,5分】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a =( )(A )3- (B )2- (C )2 (D )3【答案】A【解析】()()()12i i 212i a a a ++=-++,由已知,得212a a -=+,解得3a =-,故选A .【点评】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)【2016年全国Ⅰ,文3,5分】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )(A )13(B )12 (C )23 (D )56 【答案】A【解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为23,故选A . 【点评】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.(4)【2016年全国Ⅰ,文4,5分】ABC ∆的内角A B C 、、的对边分别为a b c 、、.已知a =2c =,2cos 3A =,则b =( )(A (B (C )2 (D )3【答案】D 【解析】由余弦定理得2254223b b =+-⨯⨯⨯,解得3b =(13b =-舍去),故选D . 【点评】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b .运算失误是基础题失分的主要原因,请考生切记!(5)【2016年全国Ⅰ,文5,5分】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13(B )12 (C )23 (D )34 【答案】B【解析】如图,由题意得在椭圆中,OF c =,OB b =,11242OD b b =⨯=,在Rt OFB ∆中,OF OB BF OD ⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B . 【点评】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .(6)【2016年全国Ⅰ,文6,5分】若将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函 数为( )(A )2sin 24y x π⎛⎫=+ ⎪⎝⎭ (B )2sin 23y x π⎛⎫=+ ⎪⎝⎭ (C )2sin 24y x π⎛⎫=- ⎪⎝⎭ (D )2sin 23y x π⎛⎫=- ⎪⎝⎭ 【答案】D 【解析】函数=2sin(2+)6y x π的周期为π,将函数=2sin(2+)6y x π的图像向右平移14个周期即4π个单位,所得函数为=2sin 2()+2sin 2463y x x πππ⎡⎤⎛⎫-=- ⎪⎢⎥⎣⎦⎝⎭,故选D . 【点评】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.(7)【2016年全国Ⅰ,文7,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条 相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π(B )18π (C )20π (D )28π【答案】A 【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=,解得2r =, 2271431784S r r πππ∴=⋅+⋅=,故选A . 【点评】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(8)【2016年全国Ⅰ,文8,5分】若0a b >>,01c <<,则( ) (A )log log a b c c < (B )log log c c a b < (C )c c a b < (D )a b c c >【答案】B【解析】由01c <<可知log c y x =是减函数,又0a b >>,所以log log c c a b <.故选B .本题也可以用特殊值代入验证,故选B .【点评】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)【2016年全国Ⅰ,文9,5分】函数22xy x e =-在[]2,2-的图像大致为( ) (A )(B )(C )(D )【答案】D【解析】解法一(排除法):2()2x f x x e =- 为偶函数,且2(2)887.40.6f e =-≈-=,故选D . 解法二:2()2xf x x e =- 为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如 图),故存在实数0(0,1)x ∈,使得'0()0f x =,且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时,'0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.(10)【2016年全国Ⅰ,文10,5分】执行右面的程序框图,如果输入的0,1,1x y n ===,则输出,x y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x =【答案】C【解析】第一次循环:0,1,2x y n ===,第二次循环:1,2,32x y n ===,第三次循环: 3,6,32x y n ===,此时满足条件2236x y +≥,循环结束,3,62x y ==,满足 4y x =,故选C .【点评】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(11)【2016年全国Ⅰ,文11,5分】平面α过正方体1111ABCD A B C D -的顶点A ,11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为( )(A (B (C (D )13 【答案】A【解析】如图,设平面11CB D 平面ABCD m '=,平面11CB D 11ABB A n '=,因为α∥平面11CB D ,所以m m '∥,n n '∥,则,m n 所成的角.延长AD ,过1D 作11D E B C ∥,连接CE ,11B D ,则CE 为m ',同理11B F 为n ',而BD CE ∥,111B F A B ∥,则,m n ''所成的角即为1A B ,BD所成的角即为60︒,故,m n 故选A . 【点评】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12)【2016年全国Ⅰ,文12,5分】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦ (C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦ 【答案】C【解析】()21cos2cos 03f x x a x '=-+≥对x ∈R 恒成立,故()2212cos 1cos 03x a x --+≥,245cos cos 033a x x -+≥恒成立,即245033at t -+≥对[]1,1t ∈-恒成立,构造()24533f t at t =-+,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()11031103f t f t ⎧-=-≥⎪⎪⎨⎪-=+≥⎪⎩,解得1133t -≤≤,故选C . 【点评】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性. 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,文13,5分】设向量(),1x x =+a ,()1,2=b ,且⊥a b ,则x = .【答案】23-【解析】由题意,20,2(1)0,3x x x ⋅=++=∴=-a b . 【点评】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)【2016年全国Ⅰ,文14,5分】已知θ是第四象限角,且3sin 45πθ⎛⎫+= ⎪⎝⎭,则tan 4πθ⎛⎫-= ⎪⎝⎭ . 【答案】43- 【解析】由题意sin sin 442θθπ⎡ππ⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭,因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z ,从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 【点评】三角函数求值,若涉及到开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换.(15)【2016年全国Ⅰ,文15,5分】设直线2y x a =+与圆22220C x y ay +--=:相交于A ,B 两点,若AB =,则圆C 的面积为 .【答案】4π【解析】有题意直线即为20x y a -+=,圆的标准方程为()2222x y a a +-=+,所以圆心到直线的距离d =,所以AB ==2224a r +==,所以244S r ππ==. 【点评】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:2222l r d ⎛⎫=+ ⎪⎝⎭在求圆的方程时常常用到. (16)【2016年全国Ⅰ,文16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000【解析】设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元, 那么 1.50.5150,0.390,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩①目标函数2100900z x y =+.①等价于3300,103900,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩ ②作出二元一次不等式组②表示的平面区域(如图),即可行域将2100900z x y =+变形得73900z y x =-+,平行直线73y x =-,当直线73900z y x =-+经过点M 时,z取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标()60,100.所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=.故生产产品A 、产品B 的利润之和的最大值为216000元.【点评】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2016年全国Ⅰ,文17,12分】已知{}n a 是公差为3的等差数列,数列{}n b满足11b =,213b =,11n n n n a b b nb +++=.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.解:(1)由已知1221a b b b +=,11b =,213b =,得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-.(2)由(1)和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则111()313122313nn n S --==-⨯-. 【点评】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(18)【2016年全国Ⅰ,文18,12分】如图,在已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 解:(1)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正 投影为E ,所以.AB DE ⊥所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得, PA PB =,从而G 是AB 的中点. (2)在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,PB PC ⊥,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故2.3CD CG =由题设可得PC ⊥平面PAB ,DE ⊥平面PAB , 所以//DE PC ,因此21,.33PE PG DE PC ==由已知,正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE == 在等腰直角三角形EFP 中,可得 2.EF PF ==所以四面体PDEF 的体积114222323V =⨯⨯⨯⨯=. 【点评】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.(19)【2016年全国Ⅰ,文19,12分】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若19n =,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求的n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买PA B D C GE19个还是20个易损零件?解:(1)当19x ≤时,3800y =;当19x >时,()3800500195005700y x x =+-=-,所以y 与x 的函数解析式为()3800,195005700,19x y x x x ≤⎧=∈⎨->⎩Ν. (2)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯+⨯=.比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 【点评】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20)【2016年全国Ⅰ,文20,12分】在直角坐标系xOy 中,直线():0l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OH ON; (2)除H 以外,直线M H 与C 是否有其它公共点?说明理由.解:(1)由已知得()0,M t ,2,2t P t p ⎛⎫ ⎪⎝⎭.又N 为M 关于点P 的对称点,故2,t N t p ⎛⎫ ⎪⎝⎭,ON 的方程为2y px =,整理得2220px t x -=,解得10x =,222t x p =,因此22,2t H t p ⎛⎫ ⎪⎝⎭.所以N 为OH 的中点,即2OH ON =. (2)直线M H 与C 除H 以外没有其它公共点.理由如下:直线M H 的方程为2p y t x t-=,即2()t x y t p =-. 代入22y px =得22440y ty t -+=,解得122y y t ==,即直线M H 与C 只有一个公共点,所以除H 以外 直线M H 与C 没有其它公共点.【点评】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)【2016年全国Ⅰ,文21,12分】已知函数()()()22e 1x f x x a x =-+-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解:(1)()()()()()'12112x x f x x e a x x e a =-+-=-+.(i) 设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >.所以在(),1-∞单调递减,在()1,+∞单调递增.(ii) 设0a <,由()'0f x =得1x =或()ln 2x a =-. ①若2e a =-,则()()()'1xf x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2e a >-,则()ln 21a -<,故当()()(),ln 21,x a ∈-∞-+∞ 时,()'0f x >;当()()ln 2,1x a ∈-时, ()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减. ③若2e a <-,则()ln 21a ->,故当()()(),1ln 2,x a ∈-∞-+∞ 时,()'0f x >,当()()1,ln 2x a ∈-时, ()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(2)(i) 设0a >,则由(1)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增.又()1f e =-,()2f a =,取b 满足0b <且ln 22b a <,则()()()23321022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭,所以()f x 有两个零点. (ii)设0a =,则()()2x f x x e =-,所以()f x 有一个零点.(iii)设0a <,若2e a ≥-,则由(1)知,()f x 在()1,+∞单调递增.又当1x ≤时,()0f x <,故()f x 不 存在两个零点;若2e a <-,则由(1)知,()f x 在()()1,ln 2a -单调递增,在()()ln 2,a -+∞单调递增.又 当1x ≤时,()0f x <,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.【点评】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2016年全国Ⅰ,文22,10分】(选修4-1:几何证明选讲)如图,OAB ∆是等腰三角形,120AOB ∠=︒.以O 为圆心,12OA 为半径作圆. (1)证明:直线AB 与O 相切;(2)点C ,D 在⊙O 上,且A B C D ,,,四点共圆,证明://AB CD .解:(1)设E 是AB 的中点,连接OE ,因为OA OB =,120AOB ∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半 径,所以直线AB 与O e 相切. (2)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥.同理可证,'OO CD ⊥.所以//AB CD .【点评】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)【2016年全国Ⅰ,文23,10分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (1)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .解:(1)cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数),∴()2221x y a +-= ① ∴1C 为以()01,为圆心,a 为半径的圆.方程为 222210x y y a +-+-=∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+= ② 3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①-②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.【点评】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)【2016年全国Ⅰ,文24】(本小题满分10分)(选修4-5:不等式选讲)已知函数()123f x x x =+--.(1)在答题卡题图中画出()y f x =的图像;O D C B A E O'D C O BA(2)求不等式()1f x >的解集.解:(1)4,13()12332,1234,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=--≤<⎨⎪⎪-+≥⎪⎩,如图所示: (2)①当1x <-时,()41f x x =->,解得3x <或5x >,1x ∴<-; ②当312x -≤<时,()321f x x =->,解得13x <或1x >, 113x ∴-≤<或312x <<; ③当32x ≥时,()41f x x =-+>,解得3x <或5x >,332x ∴≤<或5x >. 综上可知,不等式()1f x >的解集为()()1,1,35,3⎛⎫-∞+∞ ⎪⎝⎭ . 【点评】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。
2020年高考真题——数学(文)(全国卷Ⅰ)+Word版含解析【KS5U+高考】
绝密★启用前2020 年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {x | x2- 3x - 4 < 0}, B = {-4,1, 3, 5},则A B =()A. {-4,1}B. {1, 5}C. {3, 5}D. {1, 3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得A B ,得到结果.【详解】由x2- 3x - 4 < 0 解得-1 <x < 4 ,所以A ={x | -1 <x < 4},又因为B ={-4,1, 3, 5},所以A B ={1, 3},故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.2.若z =1 + 2i + i3,则|z | = ()A. 0B. 1212 +12 2 b 2- a2 4b 2 b CD. 2【答案】C【解析】【分析】先根据i 2 = -1将 z 化简,再根据向量的模的计算公式即可求出.【详解】因为 z = 1+2i + i 3 = 1+2i - i = 1+ i ,所以 z = = .故选:C .【点睛】本题主要考查向量的模的计算公式的应用,属于容易题.1. 胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.5 -1 4B.5 -1 2C.5 +1 4D.5 +1 2【答案】D【解析】【分析】设CD = a , PE = b ,利用 PO 2 = 1CD ⋅ PE 得到关于a , b 的方程,解方程即可得到答案.2CD = a , PE = b【详解】如图,设,则 PO=由题意 PO 2= 1 ab ,即b 2- a 2 =1 4( ) -2 ⋅ -1 = 0 ,化简得,ab 24 2aaPE 2 - OE 2解得b=1 + 5 (负值舍去).a 4故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.为正方形ABCD 的中心,在O,A,B,C,D 中任取3 点,则取到的3 点共线的概率为()1 2A. B.5 514C. D.25【答案】A【解析】【分析】列出从5 个点选3 个点的所有情况,再列出3 点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O,A,B,C,D 5 个点中任取3 个有{O, A, B},{O, A, C},{O, A, D},{O, B, C}{O, B, D},{O,C, D},{A, B,C},{A, B, D}{A,C, D},{B,C, D} 共10 种不同取法,3 点共线只有{A,O, C} 与{B,O, D} 共2 种情况,由古典概型的概率计算公式知,取到 3 点共线的概率为2= 1 .故选:A10 5【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.3. 一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位:°C )的关系,在 20个不同的温度条件下进行种子发芽实验,由实验数据(x i , y i )(i = 1, 2,, 20) 得到下面的散点图:由此散点图,在 10°C 至 40°C 之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x的回归方程类型的是()A. y = a + bxB. y = a + bx 2C. y = a + b e xD. y = a + b ln x【答案】D【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是y =a +b ln x .故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.4.圆x2+y2- 6x = 0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据直线和圆心与点(1, 2) 连线垂直时,所求的弦长最短,即可得出结论.【详解】圆x2+y2- 6x = 0 化为(x - 3)2+y2= 9 ,所以圆心C 坐标为C(3, 0) ,半径为3 ,设P(1, 2) ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为= 2 = 2 .故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.5.数f (x) = cos(ωx +π) 在[-π,π]的图像大致如下图,则f(x)的最小正周期为()610π7πA. B.96 4π3πC. D.32【答案】C9- | CP |29 -8+= -【解析】【分析】由图可得:函数图象过点⎛ - 4π ,0⎫ ,即可得到cos ⎛ - 4π ⋅ω + π ⎫ = 0 ,结合⎛ - 4π ,0⎫是 9 ⎪ 9 6 ⎪ 9 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭函数 f (x ) 图象与 x 轴负半轴的第一个交点即可得到- 4π⋅ω + π = - π ,即可求得ω = 3, 9 6 2 2再利用三角函数周期公式即可得解.【详解】由图可得:函数图象过点⎛ - 4π ,0⎫,9 ⎪ ⎝ ⎭将它代入函数 f (x ) 可得: cos ⎛ - 4π⋅ω + π ⎫ = 0 9 6 ⎪ ⎝ ⎭又⎛ - 4π ,0⎫是函数 f (x ) 图象与 x 轴负半轴的第一个交点, 9 ⎪ ⎝ ⎭所以-4π ⋅ω ππ,解得:ω = 39622T =2π = 2π = 4π所以函数 f (x ) 的最小正周期为故选:Cω 3 32【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.6. l og 3 4 = 2 ,则4- a= ()1 1 1 1 A.B.C.D.16986【答案】B【解析】【分析】首先根据题中所给的式子,结合对数的运算法则,得到log 3 4a= 2 ,即 4a = 9 ,进而求得4-a = 1,得到结果.9【详解】由a log 3 4 = 2 可得log 3 4a= 2 ,所以4a = 9 ,所以有4-a = 1,9故选:B.【点睛】该题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目. 7. 下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C【解析】【分析】根据程序框图的算法功能可知,要计算满足1+ 3 + 5 + + n > 100 的最小正奇数n ,根据等差数列求和公式即可求出.【详解】依据程序框图的算法功能可知,输出的n 是满足1+ 3 + 5 ++ n > 100 的最小正奇数,因为1+ 3 + 5 += 1 (n +1)2 4> 100 ,解得n > 19 ,所以输出的n =21.故选:C【点睛】本题主要考查程序框图的算法功能的理解,以及等差数列前n 项和公式的应用,属于基础题.8.n } 是等比数列,且a 1 + a 2 + a 3 = 1 ,a 2 + a 3 +a 4 = 2 ,则a 6 + a 7 + a 8 = ( )A. 12B. 24C. 30D. 32(1+ n )⨯⎛ n -1 +1⎫⎪ + n =⎝ 2 2 ⎭1 2 1 2 1 2 n 1 2 3 1 2 3 4 1 1 1 1 6 7 8 1 1 1 1 【答案】D【解析】【分析】根据已知条件求得q 的值,再由a + a + a = q 5(a + a + a ) 可求得结果.678123【详解】设等比数列{a } 的公比为q ,则a + a + a = a (1+ q + q 2)= 1 , a + a + a = a q + a q 2 + a q 3 = a q (1+ q + q 2) = q = 2 , 因此, a + a + a = a q 5 + a q 6 + a q 7 = a q 5 (1+ q + q 2 )= q 5 = 32 .故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.F , F2y 2 | OP |= 29. 2 是双曲线C : x-= 1 的两个焦点,O 为坐标原点,点 P 在C 上且 ,3则△PF 1F 2 的面积为()A.725 B. 3C.2D. 2【答案】B【解析】【分析】由是以 P 为直角直角三角形得到| PF |2 + | PF|2= 16 ,再利用双曲线的定义得到| PF | - | PF | = 2 ,联立即可得到| PF || PF| ,代入 S △= 1 | PF || PF |中计算即可.1212F 1F 2 P 21 2【详解】由已知,不妨设 F 1(-2, 0), F 2 (2, 0) , 则 a = 1, c = 2 ,因为| OP |= 1 = 1| F F | ,21 2所以点 P 在以 F 1F 2 为直径的圆上,即 F 1F 2 P 是以 P 为直角顶点的直角三角形,故| PF |2 + | PF |2 =| F F |2 ,121 2即| PF |2+ | PF |2 = 16 ,又 | PF | - | PF | = 2a = 2 ,F 1F 2 P3 3 1 2 1 2 所以4 = | PF 1 | - | PF 2 | 2= | PF |2 + | PF |2-2 | PF|| PF |= 16 - 2 | PF 1 || PF 2 | ,解得| PF || PF |= 6 ,所以 S △= 1 | PF || PF|= 3 12故选:BF 1F 2 P 21 2【点晴】本题考查双曲线中焦点三角面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.10. , B , C 为球O 的球面上的三个点,⊙ O 1 为 ABC 的外接圆,若⊙ O 1 的面积为4π ,AB = BC = AC = OO 1 ,则球O 的表面积为() A. 64π B. 48πC. 36πD. 32π【答案】A【解析】【分析】由已知可得等边 ABC 的外接圆半径,进而求出其边长,得出OO 1 的值,根据球截面性质,求出球的半径,即可得出结论.【详解】设圆O 1 半径为 r ,球的半径为 R ,依题意,得π r 2 = 4π ,∴r = 2 ,由正弦定理可得 AB = 2r sin 60︒ = 2 ,∴OO 1 = AB = 2 ,根据圆截面性质OO 1 ⊥ 平面 ABC ,∴OO ⊥ O A , R = OA === 4 ,1 1∴球O 的表面积 S = 4π R 2 = 64π .故选:AOO 2 + O A 2 1 1 OO 2 + r 2 1⎨⎩⎩ 【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.⎧2x + y - 2 ≤ 0,11. y 满足约束条件⎪x - y -1 ≥ 0, 则z =x +7y 的最大值为 .⎪ y +1 ≥ 0,【答案】1【解析】【分析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值.【详解】绘制不等式组表示的平面区域如图所示,目标函数 z = x + 7 y 即: y = - 1 x + 1z ,77其中 z 取得最大值时,其几何意义表示直线系在 y 轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点 A 处取得最大值, 联立直线方程:⎧2x + y - 2 = 0 ,可得点 A 的坐标为: A (1, 0),⎨x - y -1 = 0据此可知目标函数的最大值为: z max = 1+ 7 ⨯ 0 = 1 . 故答案 :1.【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0 时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0 时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.x 12. a = (1, -1), b = (m +1, 2m - 4) ,若a ⊥ b ,则m =.【答案】5【解析】【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果.【详解】由a ⊥ b 可得a ⋅ b = 0 ,又因为a = (1, -1), b = (m +1, 2m - 4),所以a ⋅ b = 1⋅(m +1) + (-1) ⋅ (2m - 4) = 0 ,即 m = 5 , 故答案为:5.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.13. = ln x + x +1的一条切线的斜率为 2,则该切线的方程为 .【答案】 y = 2x【解析】【分析】设切线的切点坐标为(x 0 , y 0 ) ,对函数求导,利用 y ' |x = 2 ,求出 x 0 ,代入曲线方程求出 y 0 ,得到切线的点斜式方程,化简即可.【详解】设切线的切点坐标为( x , y ), y = ln x + x + 1, y ' = 1+ 1 ,y ' |=1 + 1 = 2, x = 1, y 0 0x= 2,所以切点坐标为(1, 2) ,x = x 00 0所求的切线方程为 y - 2 = 2(x -1) ,即 y = 2x . 故答案为: y = 2x .【点睛】本题考查导数的几何意义,属于基础题.14. a } 满足a+ (-1)n a = 3n -1,前 16 项和为 540,则a =.nn +2n1【答案】7n +2 n 【解析】【分析】对 n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用a 1 表示,由偶数项递推公式得出偶数项的和,建立a 1 方程,求解即可得出结论.【详解】a + (-1)n a = 3n -1,当 n 为奇数时, a n +2 = a n + 3n - 1 ;当n 为偶数时, a n +2 + a n = 3n - 1 . 设数列{a n } 的前n 项和为 S n ,S 16 = a 1 + a 2 + a 3 + a 4 += a 1 + a 3 + a 5= a 1 + (a 1 + 2) + (a 1 + 10) + (a 1 + 24) + (a 1 + 44) + (a 1 + 70)+(a 1 + 102) + (a 1 + 140) + (5 + 17 + 29 + 41)= 8a 1 + 392 + 92 = 8a 1 + 484 = 540 ,∴a 1 = 7 .故答案为: 7 .【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为 必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分.15. 受了一项加工业务,加工出来 产品(单位:件)按标准分为 A ,B ,C ,D 四个等级.加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取加工费 90 元,50 元,20 元;对于D 级品,厂家每件要赔偿原料损失费 50 元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25 元/件,乙分厂加工成本费为20 元/件.厂家为决定由哪个分厂承接加工业务, 在两个分厂各试加工了 100 件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表 + a 16+ a 15 + (a 2 + a 4 ) +(a 14 + a 16 )等级ABCD乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100 件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】(1)甲分厂加工出来的A 级品的概率为0.4 ,乙分厂加工出来的A 级品的概率为0.28 ;(2)选甲分厂,理由见解析.【解析】【分析】(1)根据两个频数分布表即可求出;(2)根据题意分别求出甲乙两厂加工100 件产品的总利润,即可求出平均利润,由此作出选择.40【详解】(1)由表可知,甲厂加工出来的一件产品为A 级品的概率为= 0.4 ,乙厂加工出10028= 0.28 ;来的一件产品为A 级品的概率为100(2)甲分厂加工100 件产品的总利润为40⨯(90 - 25)+ 20⨯(50 - 25)+ 20⨯(20 - 25)- 20⨯(50 + 25)= 1500 元,所以甲分厂加工100 件产品的平均利润为15 元每件;乙分厂加工100 件产品的总利润为28⨯(90 - 20)+17 ⨯(50 - 20)+ 34⨯(20 - 20)- 21⨯(50 + 20)= 1000 元,所以乙分厂加工100 件产品的平均利润为10 元每件.故厂家选择甲分厂承接加工任务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出3 A + C = 决策,属于基础题.16. 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知 B =150°.(1)若 a = c ,b =2 ,求 ABC 的面积;(2)若 sin A +【答案】(1) sin C =2 ,求 C .2;(2)15︒ .【解析】【分析】(1) 已知角 B 和b 边,结合 a , c 关系,由余弦定理建立c 的方程,求解得出 a , c ,利用面积公式,即可得出结论;(2) 将 A = 30︒ - C 代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【详解】(1)由余弦定理可得b 2 = 28 = a 2 + c 2 - 2ac ⋅ cos150︒ = 7c 2 ,∴c = 2, a = 2 3,∴△ABC 的面积S = 1ac sin B = ; 2(2) 30︒ ,∴sin A + 3 sin C = sin(30︒ - C ) + 3 sin C= 1 cos C + 3 sin C = sin(C + 30︒) =2, 2 2 20︒ < C < 30︒,∴30︒ < C + 30︒ < 60︒ , ∴C + 30︒ = 45︒,∴C = 15︒ .【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.17. D 为圆锥的顶点,O 是圆锥底面的圆心, ABC 是底面的内接正三角形,P 为 DO上一点,∠APC =90°.3 7 3 33 3= 3(1) 证明:平面 PAB ⊥平面 PAC ;(2) 设 DO =,圆锥的侧面积为 3π ,求三棱锥 P −ABC 的体积.【答案】(1)证明见解析;(2)6 .8【解析】【分析】(1) 根据已知可得 PA = PB = PC ,进而有△PAC ≅ △PBC ,可得∠APC = ∠BPC = 90,即PB ⊥ PC ,从而证得 PC ⊥ 平面 PAB ,即可证得结论; (2) 将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形 ABC 边长,在等腰直角三角形 APC 中求出 AP ,在 Rt APO 中,求出 PO ,即可求出结论.【详解】(1) Q D 为圆锥顶点, O 为底面圆心,∴OD ⊥ 平面 ABC ,P 在 DO 上, OA = OB = OC ,∴ PA = PB = PC ,ABC 是圆内接正三角形,∴ AC = BC , △PAC ≅ △PBC ,∴∠APC = ∠BPC = 90︒ ,即PB ⊥ PC , PA ⊥ PC , PA PB = P ,∴ PC ⊥ 平面 PAB , PC ⊂ 平面 PAC ,∴平面 PAB ⊥ 平面 PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为π rl =3π , rl = ,OD 2 = l 2 - r 2 = 2 ,解得r = 1, l = , AC = 2r sin 60 ,在等腰直角三角形 APC 中, AP =2 AC =6 ,22在 Rt PAO 中, PO ==2 ,22 AP 2 - OA 26 - 1 4∴三棱锥 P - ABC 的体积为V= 1PO ⋅ S= 1 ⨯ 2 ⨯ 3 ⨯ 3 = 6 . P - ABC 3 △ABC3 24 8【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.18. 数 f (x ) = e x - a (x + 2) .(1) 当a = 1 时,讨论 f (x ) 的单调性; (2) 若 f (x ) 有两个零点,求a 的取值范围.【答案】(1)减区间为(-∞, 0) ,增区间为(0, +∞) ;(2)(1, +∞) . e 【解析】【分析】(1) 将a = 1 代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2) 若 f (x ) 有两个零点,即e x- a (x + 2) = 0 有两个解,将其转化为a = ex x + 2有两个解,令h (x ) = e xx + 2(x ≠ -2) ,求导研究函数图象的走向,从而求得结果.【详解】(1)当a = 1 时, f (x ) = e x - (x + 2) , f ' (x ) = ex -1,令f ' (x ) < 0 ,解得 x < 0 ,令 f ' (x ) > 0 ,解得 x > 0 ,所以 f (x ) 的减区间为(-∞, 0) ,增区间为(0, +∞) ;(2)若 f (x ) 有两个零点,即e x - a (x + 2) = 0 有两个解,1+2从方程可知, x = 2 不成立,即a = e x x + 2有两个解,ex'e x (x + 2) - e x e x (x +1) 令 h (x ) =(x ≠ -2) ,则有h (x ) =x + 2(x + 2)2=(x + 2)2,令 h ' (x ) > 0,解得 x > -1 ,令h ' (x ) < 0 ,解得 x < -2 或-2 < x < -1 ,所以函数h (x ) 在(-∞, -2) 和(-2, -1) 上单调递减,在(-1, +∞) 上单调递增,且当 x < -2 时, h (x ) < 0 ,而 x → -2+ 时, h (x ) → +∞ ,当 x → +∞时, h (x ) → +∞ ,所以当a =e x x + 2有两个解时,有a > h (-1) = 1 ,e所以满足条件的a 的取值范围是: ( , +∞) .e【点睛】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线 y = e x 和直线 y = a ( x + 2) 有两个交点,利用过点(-2, 0) 的曲线 y = e x 的切线 斜率,结合图形求得结果.19. 、B 分别为椭圆 E :x 2a 2y= 1(a >1)的左、右顶点,G 为 E 的上顶点,AG ⋅ GB = 8 ,P 为直线 x =6 上的动点,PA 与 E 的另一交点为 C ,PB 与 E 的另一交点为 D .(1) 求 E 的方程;(2) 证明:直线 CD 过定点.x 2 2【答案】(1)+ y 9= 1;(2)证明详见解析.【解析】 【分析】(1)由已知可得: A (-a ,0) , B (a ,0) , G (0,1) ,即可求得 AG ⋅ G B = a 2 -1 ,结合已知 即可求得: a 2 = 9 ,问题得解.AG ⋅ G B = a 2 x 0 ⎝ ⎭y (2)设 P (6, y 0 ) ,可得直线 AP 的方程为: y = y(x + 3) ,联立直线 AP 的方程与椭圆方 9⎛ -3y 2 + 27 6 y ⎫ 程即可求得点C 的坐标为 0 , 0 ⎪ ,同理可得点D 的坐标为 y 2 + 9 y 2 + 9 ⎝ 0 0 ⎭⎛ 3y 2 - 3 -2 y ⎫ 0 , 0 ⎪ ,即可表示出直线CD 的方程,整理直线CD 的方程可得: y 2 +1 y 2 +1⎝ 0 0 y =4 y 0⎭⎛ x - 3 ⎫,命题得证. 3(3 - y 2 )2 ⎪【详解】(1)依据题意作出如下图象:2由椭圆方程 E : + a2 y 2 = 1(a > 1) 可得: A (-a ,0) , B (a ,0) , G (0,1)∴ AG = (a ,1) , GB = (a , -1)∴ -1 = 8 ,∴ a 2 = 9∴ x 2 2椭圆方程为: + y = 19(2)证明:设 P (6, y 0 ) ,则直线 AP 的方程为: y =y 0 - 0 6 - (-3) ( x + 3) ,即: y = y 0 ( x + 3) 9 ⎧ x 2+ 2 = ⎪ 9联立直线 AP 的方程与椭圆方程可得: ⎨ y ,整理得: ⎪ y = 0 ( x + 3)⎪⎩9 1-3y 2 + 27 0 0 0 0⎝ 0 0 0 0 6 (3 - y )0 ⎩ 0 ⎭ ⎝ 2 0 ⎭ ( y 2 + 9) x 2 + 6 y 2 x + 9 y 2 - 81 = 0 ,解得: x = -3 或 x = 0-3y 2 + 27 y6 y 0y 2 + 9将x =代入直线y = 0 ( x + 3) 可得: y = 2y 2+ 99⎛ -3y 2 + 27 6 y ⎫ y 0 + 9所以点C 的坐标为 0 , 0 ⎪ .y 2 + 9 y 2 + 9 ⎝ 0 0 ⎭⎛ 3y 2- 3 -2 y ⎫ 同理可得:点 D 的坐标为 0 , 0 ⎪ y 2 +1 y 2 +1 ⎝ 0 0 ⎭6 y 0 - ⎛ -2 y 0 ⎫ ⎛ -2 y ⎫y 2 + 9 y 2 +1 ⎪ ⎛ 3y 2 - 3 ⎫ ∴直线CD 的方程为: y - 0 ⎪ = 0 ⎝ 0 ⎭ x - 0 ⎪ , ⎝ y 2 +1 ⎭ -3y 2 + 27 3y 2- 3 - y 2 +1 ⎭ y 2 + 9 y 2 +12 y 8 y (y 2+ 3)⎛ 03y 2 - 3 ⎫ 8 y⎛ 3y 2 - 3 ⎫ 整理可得: y + 0= y 2 +1 0 0 6 (9 - y 4)x - ⎝ y 2 +1 ⎪ = 0 x - 0 y 2 +1 ⎪ 整理得: y =4 y 0 x + 2 y 0= 4 y 0 ⎛ x - 3 ⎫ 3(3 - y 2) y 2 - 3 3(3 - y 2 )2 ⎪ 00 故直线CD 过定点⎛ 3 ,0 ⎫ 0 ⎝ ⎭ 2 ⎪ ⎝ ⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.(二)选考题:共 10 分。
2020年山东高考数学试卷(word版+详细解析版)
2020年普通高等学校招生全国统一考试新高考全国一卷(山东卷)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|13}A x x =≤≤,{|24}B x x =<<,则A B =A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<答案:C解析:利用并集的定义可得{|14}AB x x =≤<,故选C.2.2i 12i -=+ A .1 B .−1C .iD .−i答案:D 解析:222i (2i)(12i)(22)(41)i i 12i 125----+--===-++,故选D3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A .120种B .90种C .60种D .30种答案:C解析:不同的安排方法有123653C C C 60⋅⋅=4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°答案:B解析:因为晷面与赤道所在平面平行,晷针垂直晷面,所以晷针垂直赤道所在平面,如图所示,设AB 表示晷针所在直线,且AB OB ⊥,AC 为AB 在点A 处的水平面上的射影,则晷针与点A 处的水平面所成角为BAC ∠,因为OA AC ⊥,AB OB ⊥,所以BAC AOB ∠=∠,由已知40AOB ∠=︒,所以40BAC ∠=︒,故选BCBO赤道A5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%答案:C解析:既喜欢足球又喜欢游泳的学生数占该校学生总数的比例=60%+82%-96%=46%,故选C6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天答案:B 解析:设从1t 到2t 累计感染数增加1倍,即21()2()I t I t =,因为(e )rt I t =,所以21e 2ert rt =,所以21()e 2r t t -=,所以21()ln 2r t t -=.因为R 0 =1+rT ,所以01R r T-=,所以210ln 2ln 260.69 1.81 2.28T t t r R ⨯-==≈≈- 7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-答案:A解析:如图,过P 作PG AB ⊥,G 为垂足,则()||||cos ,AP AB AG GP AB AG AB AG AB AG AB ⋅=+⋅=⋅=⋅〈〉,当G 点落在AB 的反向延长线上时,cos ,1AG AB 〈〉=-,这时0||||cos 60AG AF <<︒,即0||1AG <<,所以这时20AP AB -<⋅<;当G 点落在AB 上或AB 的延长线上时,cos ,1AG AB 〈〉=,这时0||||cos 60AG AB BC ≤<+︒,即0||3AG ≤<,所以06AP AB ≤⋅<.综上所述,AP AB ⋅的取值范围是()2,6-,故选A。
2020年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)
2020年全国高考新课标1卷文科数学试题一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-3x -4≤0},B ={-4,1,3,5},且A ∩B =( )A .{-4,1}B .{1,5}C .{3,5}D .{1,3} 2.若z =1+2i +i 3,则|z |=( )A .0B .1C 2D .2 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积 等于该四棱锥一个侧面三角形的面积,则其侧面三角形 底边上的高与底面正方形的边长的比值为( )A .514B .512C .514D .5124.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A .15B .25C .12D .455.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C)的关系,在20个不同的温度条件下 进行种子发芽实验,由实验数据 (x i . y i )(i =1,2,···,20)得到散点图:由此散点图,在10°C 至40°C 之 间,下面四个回归方程类型中最 适宜作为发芽率y 和温度x 的回 归方程类型的是( ) A .y=a+bx B .y=a+bx 2 C .y=a+be xD .y=a+b ln x6.已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .47.设函数f (x )=cos(ωx +6π)在[-π,π]的图像大致如下图,则f (x )的最小正周期为( )A .109πB .76πC .43πD .32π8.设a log 34=2,则4-a =( )A .116B .19C .18D .169.执行下面的程序框图,则输出的n =( )A .17B .19C .21D .2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=( ) A.12 B.24 C.30 D.3211.设F1, F2是双曲线C:2213yx-=的两个焦点,O为坐标原点,点P在C上且|OP|=2,则∆PF1F2的面积为( )A.72B.3 C.52D.212.已知A,B,C为球O的球面上的三个点,⊙O1为∆ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为( )AA.64πB.48πC.36πD.32π二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.若x,y满足约束条件220,10,10,x yx yy+-≤⎧⎪--≥⎨⎪+≥⎩则z=x+7y的最大值为.14.设为(1,1)(1,24),a b m m a b-=+-⊥=,若,则m= .15.曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为.16.数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1= .三、解答题:解答应写出文字说明,证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年普通高等学校招生全国统一考试1卷文科数学本试卷共5页,满分150分。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ﻩﻩﻩﻩ B.AB =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭ﻩﻩD.AB=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A . 2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A.x 1,x2,…,xn 的平均数ﻩB.x 1,x2,…,x n的标准差C.x 1,x 2,…,x n 的最大值ﻩﻩﻩﻩD .x 1,x2,…,x n 的中位数 【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.下列各式的运算结果为纯虚数的是 A.i(1+i)2 ﻩB.i 2(1-i)ﻩ ﻩC .(1+i)2 ﻩﻩD .i (1+i)【答案】C【解析】由2(1)2i i +=为纯虚数知选C.4.如图,正方形AB CD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A.14ﻩﻩﻩB.π8ﻩﻩC.12D.π4【答案】B5.已知F是双曲线C:x2-23y=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为A.13ﻩﻩﻩﻩB.12ﻩﻩﻩC.23ﻩﻩD.32【答案】D【解析】由2224c a b=+=得2c=,所以(2,0)F,将2x=代入2213yx-=,得3y=±,所以3PF=,又A的坐标是(1,3),故APF的面积为133(21)22⨯⨯-=,选D.6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是【答案】A【解析】由B,AB∥MQ,则直线AB∥平面MNQ;由C,AB∥MQ,则直线AB∥平面MNQ;由D,AB∥NQ,则直线AB∥平面MNQ.故A不满足,选A.7.设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0ﻩﻩB.1 ﻩﻩC.2 ﻩD.3【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D.8..函数sin21cos xy x=-的部分图像大致为【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B;当x π=时,0y =,排除D;当1x =时,sin 201cos 2y =>-,排除A.故选C.9.已知函数()ln ln(2)f x x x =+-,则 A.()f x 在(0,2)单调递增 ﻩﻩB.()f x 在(0,2)单调递减C.y =()f x 的图像关于直线x =1对称ﻩ D .y =()f x 的图像关于点(1,0)对称【答案】C10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n+1 ﻩ ﻩB.A >1000和n=n +2C.A≤1000和n =n+1ﻩﻩﻩ ﻩD .A ≤1000和n =n +2 【答案】D【解析】由题意选择321000nn->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D .11.△A BC 的内角A、B 、C的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C = A .π12ﻩﻩ ﻩB.π6C .π4ﻩﻩ D.π3【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即sin (sin cos )2sin()04C A A C A π+=+=,所以34A π=.由正弦定理sin sin a c A C =得23sin sin 4C π=,即1sin 2C =,得6C π=,故选B. 12.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞ﻩ ﻩﻩB .[9,)+∞C .(0,1][4,)+∞ﻩﻩD.[4,)+∞【答案】A【解析】当03m <<,焦点在x 轴上,要使C 上存在点M满足120AMB ∠=,则tan 603ab ≥=≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M满足120AMB ∠=,则tan 603ab ≥=,即≥,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A.二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a =(–1,2),b =(m ,1).若向量a+b 与a 垂直,则m =______________. 【答案】7【解析】由题得(1,3)a b m +=- 因为()0a b a +⋅= 所以(1)230m --+⨯= 解得7m = 14.曲线21y x x=+在点(1,2)处的切线方程为_________________________. 【答案】1y x =+ 【解析】设()y f x = 则21()2f x x x'=-所以(1)211f '=-=所以在(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+ 15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
【答案】3101016.已知三棱锥S-A BC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________。
【答案】36π【解析】取SC 的中点O ,连接,OA OB 因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥ 因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=所以球的表面积为2436r ππ=三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)记Sn 为等比数列{}n a 的前n 项和,已知S 2=2,S3=-6. (1)求{}n a 的通项公式;(2)求S n,并判断S n +1,S n ,S n +2是否成等差数列。
18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面P AD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.【解析】①∵90BAP AB PA ∠=︒⇒⊥90CDP CD PD ∠=︒⇒⊥ ∵,AB CD PA PD P ⋂=∴AB PAD ⊥平面 ∵AB PAD ⊂平面∴PAB PAD ⊥平面平面 ②由①知AB PAD ⊥平面 ∵90APB ∠=︒ PA PD AB DC === 取AD 中点O,所以OP ABCD ⊥底面,OP AB AD ==∴1833P ABCD V AB AB -=⨯=∴AO =2∴PB PC BC ===∴2PADPABPBCS SSS=++例1112222sin60222=⨯⨯+⨯⨯⨯⨯︒=2+19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.(ii ) 剔除9.22,这条生产线当天生产的零件尺寸的均值为169.22169.979.2210.021515x -⨯-== ,标准差为()162211[(10.02)9.2210.2]0.0080.0916i i s x ==---==∑()221610.029.220.0115s --≈20.(12分)设A ,B为曲线C :y =24x 上两点,A 与B的横坐标之和为4.(1)求直线A B的斜率;(2)设M 为曲线C 上一点,C 在M处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【解析】(1)设()()1122,,,A x y B x y ,则2221212121214414ABx x y y x x K x x x x --+====--(2)设200,4x M x ⎛⎫ ⎪⎝⎭,则C 在M 处的切线斜率'00112AB y K K x x x ====- ∴02x =则()12,1A ,又AM ⊥BM ,22121212121111442222AM BM x x y y K K x x x x ----==----()()()121212222411616x x x x x x +++++===-即()12122200x x x x +++=又设AB:y =x +m代入24x y =得2440x x m --=∴124x x +=,124x x m =--4m+8+20=0∴m=7故AB :x +y=721.(12分)已知函数()f x =e x (e x ﹣a )﹣a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.(二)选考题:共10分。