模拟集成电路原理及其的应用66页PPT
合集下载
《模拟集成电路基础》PPT课件
h
20
P
N
V
PN结的接触电位
(二)PN结的接触电位:
(1).内电场的建立,使PN结 中产生电位差。从而形成接 触电位V(又称为位垒)。
(2).接触电位 V决定于材 料及掺杂浓度:
硅: V=0.7 锗: V=0.2 (3).其电位差用 表示
h
21
(三)PN结的单向导电性
U
I
P
N
扩散
Q(V-U)
1.PN结加正向电压时:
第四节 二极管的应用
h
8
第一节 半导体基础知识
一1.、什半么导是体导的体特、性绝:缘体导、电半导率量导电1级0体率-2,2:为-如110:0-154s金.sc.、mc-m1-1
(1).导体:导电性能良好导量的电级物率,质为银如。1、:0-铜橡9-、胶10铝、2 s。云.c母m-、1 (2).绝缘体:几乎不导电量砷塑的级化料物,镓等质如等。。:。硅、锗、 (3).半导体:导电能力介于导体和半导体之间。
生载流子的扩散运用动下的定结向果移产动生称空
间电荷区耗尽层为(漂多移子运运动动)。
空穴 P
(2).空间电荷区产生建立了内电场 产生载流子定向运动(漂移运动)
N
•当扩散运动↑内电场↑漂移运
动↑扩散运动↓动态平衡。
(3).扩散运动产生扩散电流;漂移运动 产生漂移电流。
•动态平衡时:扩散电流=漂移电流。 PN结内总电流=0。 PN结的宽度一定 。
1.电子空穴对: 电子和空穴是成对产生的.
h
12
两种载流子——电子和空穴
外电场E 的方向
电子流
2.自由电子——载流子:
自由电子
• 在外电场作用下形成电子流(在 导带内运动),
《模拟集成电路》课件
,以便对设计的电路进行全面的测试和评估。
PART 05
模拟集成电路的制造工艺
REPORTING
半导体材料
硅材料
硅是最常用的半导体材料,具有 稳定的物理和化学性质,成熟的 制造工艺以及低成本等优点。
化合物半导体
如砷化镓、磷化铟等化合物半导 体材料,具有高电子迁移率、宽 禁带等特点,常用于高速、高频 和高温电子器件。
《模拟集成电路》课 件
REPORTING
• 模拟集成电路概述 • 模拟集成电路的基本元件 • 模拟集成电路的分析方法 • 模拟集成电路的设计流程 • 模拟集成电路的制造工艺 • 模拟集成电路的优化与改进
目录
PART 01
模拟集成电路概述
REPORTING
定义与特点
定义
模拟集成电路是指由电阻、电容、电 感、晶体管等电子元件按一定电路拓 扑连接在一起,实现模拟信号处理功 能的集成电路。
围和失真。
信号分析方法
01
02
03
04
频域分析
将时域信号转换为频域信号, 分析信号的频率成分和频谱特
性。
时域分析
研究信号的幅度、相位、频率 和时间变化特性,分析信号的
波形和特征参数。
调制解调分析
研究信号的调制与解调过程, 分析信号的调制特性、解调失
真等。
非线性分析
研究电路的非线性效应,分析 信号的非线性失真和互调失真
音频领域
模拟集成电路在音频领域中主要用于 音频信号的放大、滤波、音效处理等 功能,如音响设备、耳机等产品中的 模拟集成电路。
模拟集成电路的发展趋势
集成度不断提高
随着半导体工艺的不断发展,模 拟集成电路的集成度不断提高, 能够实现更加复杂的模拟信号处
6-模拟集成电路原理及其应用
RC
负载中点必为
Rb
零电位。 ++
Rb
uo1
ui2
-
-ui1
T1
1 2
uo RL
1 2
RL
RC
uo2 Rb
T2
+ ui2
-
Ree
Ree
–EE
原电路 ib
–EE
uo 差模交流通路 ib
Rb
ui2 rbe ib
RC
1 2
RL
uo1 uo2
1 2
RL
ib
RC
Rb
rbe ui2
差模微变等效电路
ib
Rb
ui2=-
21uid
由有用信号决定的输入信号。
其中:1 uic 2 (ui1 ui2 )
uid ui1 ui 2
2 、共模输入信号 :
例如:ui1=10mV,ui2=6mV
ui1=ui2=uic
由温度、干扰等引起的等效 输入信号。
3 、任意输入信号:
可分解为差模输入和 共模输入的线性组合
uo
ic2
T1 ui1
uo1
uo2 T2
ue
ui2
RC
RC
ic1
uo
ic2
T ui1 1
uo1
uo2 T2
ve
ui2
RC
RC
ic1
uo
ic2
T ui1 1
uo1 uo2 T2
vE
ui2
置零 Io
Ree
置零
–EE
Ree
导线 对差模信号 代替 差模交流通路
ue 0
差模交流通道
电子线路基础课件第6章模拟集成电路原理及其应用
号相反,即
ui
iB1
iB2
Rs
2 hie
输入电压的增量为
ui ui1ui22iB1(Rshie) uo uC1uC2 2hfeRCiB1
第6章 模拟集成电路原理及其应用
由于输出电压取自两管集电极之间,输出端任一端均不 接地,这种输出形式称作双端输出。于是差动放大器双端输出 电压放大倍数为
Auduuoi
图中REE为射极耦合电阻,假设电路完全对称,则两管的 静态工作电流为
IE1
IE2
EE UBE
Rs
1
2REE
通常,[Rs/(1+β)]<< 2REE, 故有
IE1
IE2
EE 0.7 2REE
第6章 模拟集成电路原理及其应用
1) REE
差模信号:输入信号为Δui1=-Δui2, 即两管输入信号大小相 等、相位相反,我们把这样一对信号称为差模输入信号,记 为Δuid。
ui1
ui+ 2- +
ui 2-
ui2
Rs iB1 hie
hfe iB1
Rs hie
hfe iB2
Rid
iB2
图 6-4 差动放大器增量等效电路
uC1 + RC
uo
RC - uC2
Ro
第6章 模拟集成电路原理及其应用
1) 电压放大倍数Aud 由图6-4不难看出,两管的基极电流增量大小相等、符
第6章 模拟集成电路原理及其应用
6.2 直流信号的放大
1. 级与级之间的直流工作状态互相影响
RB1 RC1
Rs V1
RC2
V2 RE1
+EC RC3
+
V3 RE2
Uo -
第七章 模拟集成电路系统优秀课件
(7—12b)
画出理想积分器的频率响应如图7—8所示。
在时域,设电容电压的初始值为零(uC(0)=0),则
输出电压u o(t)为
uo (t)
iC (t )dt C
式中,电容C的充电电流
iC
ui (t) R
u o (t )
1 RC
u i (t )dt
所以
| A u (jω )| / dB
- 20dB/ 10 倍 频 程
)(
R
2
R3
R1 R3
R1
)(
u
i1
ui2 )
(7—3) (7—4)
7—1—2相减器(差动放大器)
相减器的输出电压与两个输入信号之差成正比。
这在许多场合得到应用。要实现相减,必须将信号分
别送入运算放大器的同相端和反相端,如图7—4所示。
我们应用叠加原理来计算。首先令ui2=0,则电路相当于
同相比例放大器,得
uo
R2 R1 Rx
ui2
R2
R2 R1
R
(1
R2 R1
)ui1
若保证R1
R 2
,
R1
R
||
Rx
,则
uo
R2 R1
(ui1
ui 2 )
R2 R1
Er
(1 2
Rx R Rx
)
R2 2R1
( R Rx R Rx
)Er
(7—9)
重量(压力)变化R,x随之变化,则uo也随之变化,所以
测量uo就可以换算出重量或力压。
-
Rp +
uo
5 0k
图7—2 满足例1要求的反相相加器电路
二、同相相加器
模拟集成电路教学课件PPT
2. 微电流源
4. 组合电流源
6.1.2 FET电流源
1. MOSFET镜像电流源 2. MOSFET多路电流源 3. JFET电流源
6.1.1 BJT电流源电路
1. 镜像电流源
T1、T2的参数全同 即β1=β2,ICEO1=ICEO2
UBE2 =UBE1 IE2 = IE1 IC2 = IC1
当β较大时,IB可忽略
6.2.1 差分式放大电路的一般结构 6.2.2 射极耦合差分式放大电路 6.2.3 源极耦合差分式放大电路
6.2.1 差分式放大电路的一般结构
1. 引入原因:直接耦合电路的特殊问题
问题 1
前后级Q点相互影响
ui
R1 RC1
R2 T1
解决办法
增加R2 、RE2 : 用于设置合适的Q点。
+UCC RC2
T2 uo RE2
7
问题 2 零点漂移
uo
指输入信号电压为零时,输出电压发
生缓慢地、无规则地变化的现象。
O
t
产生的原因:晶体管参数随温度变化、
电源电压波动、电路元件参数的变化。 危害:
直接影响对输入信号测量的准确程度和分辨能力。
严重时,可能淹没有效信号电压,无法分辨是有效
信号电压还是漂移电压。
解决办法 输入级采用差动放大电路
+ -
RC
uO1
T1
uO2 uO
T2
RC
ui2 =uic
uid 2
IO –VEE
+VCC
ui2 + -
共模信号大小相等,相位相同;
差模信号大小相等,相位相反。
共模信号相当于两个输入端信号中相同的部分
《模拟集成电路系统》课件
滤波器电路
总结词
详细描述
滤波器电路用于提取特定频率范围的信号 ,实现信号的选择性传输。
滤波器电路由电阻、电容、电感等元件组 成,通过调整元件参数,实现对特定频率 信号的选择性传输或抑制。
滤波器电路的分类
滤波器电路的应用
根据工作原理和应用场景,滤波器电路可 分为低通、高通、带通、带阻等类型,每 种类型具有不同的性能特点。
正确性和可制造性。
制程加工
将版图转化为实际电路 ,进行制程加工和封装
测试。
制程优化
根据制程结果,对制程 进行优化,提高电路性
能和成品率。
模拟集成电路系统
05
应用
通信系统应用
01
02
03
信号放大和处理
模拟集成电路系统在通信 系统中主要用于信号的放 大和处理,以确保信号的 稳定传输。
调制与解调
在通信系统中,模拟集成 电路系统还用于信号的调 制和解调,实现信号的转 换和还原。
详细描述
稳压电源电路由电源变压器、整 流器、滤波器和稳压器组成,通 过调整元件参数,实现输出电压 或电流的稳定。
稳压电源电路的分类
根据工作原理和应用场景,稳压 电源电路可分为线性稳压电源和 开关稳压电源等类型,每种类型 具有不同的性能特点。
模拟集成电路系统
04
设计
设计流程与方法
确定设计目标
明确电路的功能、性能指标和 限制条件,为后续设计提供指
滤波器设计
模拟集成电路系统能够实 现各种滤波器设计,用于 信号的选择和处理,提高 通信质量。
音频系统应用
音频信号处理
模拟集成电路系统在音频 系统中主要用于音频信号 的处理,如音频放大、音 效处理等。
模拟集成电路-课件
2021/6/20
31
NMOS沟道电势示意图(0<VDS< VGS-VT )
dq(x) = -CoxWdx[vGS - v(x) - VTH ] 边界条件:V(x)|x=0=0, V(x)|x=L=VDS
2021/6/20
32
I/V特性的推导(1)
沟道单位长度电荷(C/m)
电荷移 动速度
I = Qd .v (m/s)
组合二进制数据 DAC 多电平信号 ADC 确定所传送电平
传送端
接收端
磁盘驱动电子学
存储数据 恢复数据
硬盘存储和读出后的数据
无线接收机
无线接收天线接收到的信号(幅度只有几微伏)和噪声频谱
接收机放大低电平信号时必须具有极小噪 声、工作在高频并能抑制大的有害成分。
光接收机
转换为一个小电流 高速电流处理器
假定 “1”电平为3V, “0”电平为0V,VTP =-0.5V,试确定C1、C2的终值电压。
2021/6/20
45
MOS管的开启电压VT及体效应
VTH = ΦMS + 2ΦF + Qdep , where Cox
ΦMS = Φgate - Φsilicon
ΦF = kT q ln
Nsub ni
模拟集成电路的特点是什么?
从模拟集成电路的工作机理和功能要求来考虑,与数 字集成电路相比,概括起来,有以下5个特点:
1) 电路所要处理的是连续变化的模拟信号(模拟 量);
2) 除了需要功率输出的输出级外,电路中信号的电 平值是比较小的,即模拟集成电路一般多工作于小信 号状态,不象逻辑集成电路那样只工作于大信号开关 状态;
ID
= 2ID VGS - VTH
模拟集成电路原理及其应用
模拟集成电路基础 模拟集成电路的定义
01
02
03
04
05
模拟集成电路:模拟集 模拟集成电路的特点 成电路是一种电子电路, 用于处理连续变化的模 拟信号,如声音、温度、 光线等。它由多个电子 元件集成在一块芯片上, 实现信号的放大、滤波、 转换等功能。
模拟集成电路的发展历 程
模拟集成电路的应用领 域
在传感器接口电路中的应用
信号调理
模拟集成电路用于传感器 输出信号的调理,将传感 器输出的微弱信号转换为 适合后续处理的信号。
信号放大与滤波
模拟集成电路可以对传感 器输出信号进行放大和滤 波,以提高信号的信噪比 和稳定性。
信号转换
模拟集成电路可以将传感 器输出的模拟信号转换为 数字信号,以适应数字系 统的需求。
04 模拟集成电路的应用
在通信领域的应用
信号放大与传输
模拟集成电路用于信号的放大和 传输,确保信号的稳定性和可靠
性。
调制解调
在通信系统中,模拟集成电路用于 信号的调制和解调,实现信号的转 换和处理。
滤波器设计
模拟集成电路可以用于设计各种滤 波器,如低通、高通、带通和带阻 滤波器,以实现信号的选择和过滤。
模拟集成电路原理及其应用
目录
• 引言 • 模拟集成电路基础 • 模拟集成电路原理 • 模拟集成电路的应用 • 模拟集成电路的挑战与展望 • 结论
01 引言
主题简介
模拟集成电路
模拟集成电路是电子学中一种处理模 拟信号的集成电路,通过模拟信号处 理实现各种功能。
模拟集成电路的应用
模拟集成电路广泛应用于通信、音频 处理、电源管理、传感器接口等领域 。
目的和意义
目的
模拟集成电路.ppt
采用差分式放大电路
6.2.0 概述
4. 差分式放大电路中的一般概念
vi d=vi 1vi 2 差模信号 两个输入信号的差值
1 vic =2(vi1vi2)
共模信号
两个输入信号的算术平均值
根据以上两式可以得到
vi1 = vic
vi2 = vic
AVD AVC
= =
vod vviodc v ic
vid
+
ro
Io
-
+
ro v
_
6.1.1.1 镜像电流源(P258)
一、电路组成
三极管T1、T2对称
二、恒流特性
当较大(>>2)时:
VB E2=VB E1 IE2 = IE1
IC2 =IC1IREF2IREF
= VCC VBE V CC
R
R
结论:
无论Rc值如何, IC2电流值保持不变(前提:电源要稳定)
概述
一、集成电路(integrated circuit): 在半导体制造工艺基础上,把整个电
路中的器件(电阻、电容、三极管等)制 造在一块Si 基片上,并引出相应的引线, 构成特定功能的电子电路。 如:运放、各种芯片等。
二、按功能分类:
模拟集成电路
数字集成电路
三、集成度:
小规模集成电路(SSI)<102
可以放大直流信号
# 为什么一般的集成运 算放大器都要采用直接 耦合方式?
2.直接耦合放大电路 的零点漂移
零漂:输入短路时,输出仍有缓慢 变化的电压产生。
主要原因:主要由温度变化引起,也称温漂。
温漂指标:温度每升高1度时,输出漂移电压按电压增益折算 到输入端的等效输入漂移电压值。
第六章 模拟集成电路-PPT课件
2. 微电流源
IC 2IE2
VBE1 VBE2 Re2
V BE R e2
由于 VBE 很小,
所以IC2也很小
3. 多路电流源
4. 电流源作有源负载
镜像电流源 共射电路的电压增益为:
Rc r be
对于此电路Rc就是镜像
电流源的交流电阻,
因此增益比用电阻Rc作负载时大大提高了。
3. 中间级:
T16和T17是复合管组成的共射放大电路,T13管作这一级 的集电级有源负载。
4. 输出级:
T14和T20管组成互补对称输出级,T18、T19和 R8为其 提供静态偏置以克服交越失真。 T15和 R9保护T14管,使其在正向电流过大时不致烧坏。 T21、T23、T22管和 R10保护 T20管在负向电流过大时 不致烧坏。 5. 相位分析: 用“瞬时极性法”判定,3号腿为同相端;2号腿为反相端。
放大管
6.2 差动放大电路
一.结构: 对称性结构
即: 1=2= VBE1=VBE2= VBE rbe1= rbe2= rbe RC1=RC2= RC Rb1=Rb2= Rb
二. 几个基本概念
1. 差动放大电路一般有两个输 入端:
双端输入——从两输入端同时加 信号。
单端输入——仅从一个输入端对 地加信号。
VCE1=VCE2
V CC IC R C( 0 .7)
IB1
IB1
IC
VO=VC1 VC20
2.抑制零漂的原理:
当vi1 = vi2 = 0 时, vC1 = vC2
vo= vC1 - vC2 = 0
当温度变化时:
vC1 = vC2 vo= (vC1 + vC1 ) - (vC2 + vC2 ) = 0
《模拟集成电路基础》PPT课件_OK
规率↑。
U
PN结的理想特性
•当加反向电压时: I=Is ,基本不变。
25
I
(三).实测伏安特性:
•与理想的伏安特性的差别:
Is
1.正向起始部分有门限电压:
0
Ur
U 硅:Ur=0.5-0.6v;
锗:
硅管的伏安特性
Ur=0.1-0.2v
I
2.加反向电压时,相同温度下:
Is硅(nA,10-9)<Is锗(A,10-6) 硅管
定。 最大工作电流 IZmax,取决于最大
耗散功率。 U 2.特点:
(1).工作在反向工作区。 (2).工作电压要超过反向击穿电压。
32
六.晶体二极管的电容和变容二极管:
(一).势垒电容CT:
把PN结看成平板电容
器,加正向电压或反向电压时像电容的充放电。(此电容效
应为势垒电容)
(二).扩散电容CD:
•当加正向电压时: I IseU /UT ;(U UT )
•当加正向电压时: I-Is
24
三.二极管的结构与伏安特性:
结构
(一) . 二极管的结构:如图所示。
P
N
符号
(二).理想伏安特性:
二极管两端电压与流过电流之间关系:
I
I I s (eU /UT 1)
Is
• 当加正向电压时:I随U↑,呈指数
20
P
N
+++ +++ +++
V
PN结的接触电位
(二)PN结的接触电位:
(1).内电场的建立,使PN结 中产生电位差。从而形成接 触电位V(又称为位垒)。 (2).接触电位 V决定于材料
相关主题