二叉树是我们都非常熟悉的一种数据结构
二叉树知识点总结
二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。
对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。
根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。
由此可知,二叉树的深度为所有叶子节点深度的最大值。
1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。
对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。
由此可知,二叉树的高度总是比深度大一。
1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。
而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。
1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。
满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。
1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。
对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。
2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。
二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。
2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。
对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。
2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。
对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。
2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。
数据结构树的种类
数据结构树的种类树是一种基本的数据结构,用于表示具有层次结构的数据。
它由一组节点组成,其中的每个节点都可以有零个或多个子节点。
树可以有不同的种类,每种种类具有不同的特点和应用场景。
以下是一些常见的树的种类:1. 二叉树(Binary Tree):二叉树是一种每个节点最多只有两个子节点的树结构。
它可以是空树,或者由一个根节点、左子树和右子树组成。
二叉树具有简单的结构,常用于二分和排序。
2. 二叉树(Binary Search Tree):二叉树是一种具有以下特点的二叉树:左子树中的所有节点都比根节点小,右子树中的所有节点都比根节点大。
二叉树支持快速的查找、插入和删除操作,并在树中保持有序性。
3. 平衡二叉树(Balanced Binary Tree):平衡二叉树是一种二叉树,但它在插入和删除节点时会自动调整树的结构以保持树的平衡性。
平衡二叉树的常见实现包括 AVL 树和红黑树,它们可以提供在最坏情况下仍保持对数时间复杂度的查找、插入和删除操作。
4. B树(B-Tree):B树是一种自平衡的树结构,它具有以下特点:每个节点可以有多个子节点,每个节点中的键值有序排列,并且每个节点中的键值数量有一个上限和下限。
B树通常用于大规模数据的存储和数据库系统。
5. Trie树(Trie Tree):Trie树,也称为字典树或前缀树,是一种专门用于处理字符串集合的树结构。
Trie树的每个节点都代表一个字符串前缀,通过将字符逐级插入树中,可以高效地完成字符串的和查找操作。
6. 线段树(Segment Tree):线段树是一种用于处理区间查询问题的树结构。
它将要处理的区间划分为一系列离散的线段,并为每个线段创建一个节点。
线段树可以高效地回答关于区间的统计性质,如区间最小值、区间最大值、区间和等。
7. 堆(Heap):堆是一种完全二叉树,它具有以下特点:对于每个节点,它的值都大于等于(或小于等于)它的子节点的值。
堆被广泛应用于优先队列、排序算法(如堆排序)以及图算法中。
《二叉树的概念》课件
05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。
树习题解答
数据结构——树习题解答1、单词查找树(word.pas)【问题描述】在进行文法分析的时候,通常需要检测一个单词是否在我们的单词列表中。
为了提高查找和定位的速度,通常都画出与单词列表所对应的单词查找树,其特点如下:(1)根节点不包含字母,除根街店为每一个节点都包含一个大写英文字母;(2)从根节点到某一节点,路径上经过的字母依次连起来所构成的字母序列,称为该结点对应的单词。
单词列表中的每个单词,都是该单词查找树某个节点所对应的单词;(3)在满足上述条件下,该单词查找树的节点数最少。
要求:对一个确定的单词列表,请统计对应的单词查找树的结点数(包括根节点).输入:输入文件名为word.in,该文件为一个单词列表,每行仅包含一个单词和一个换行/回车符。
每个单词仅由大写字母组成,长度不超过63个字符。
文件总长度不超过32K,至少有一行数据。
输出:输出文件名为word.out,该文件仅包含一个整数,该整数为单词列表对应的单词查找树的结点数。
【样例输入】AANASPASASCASCIIBASBASIC【样例输出】13【题解】首先要对建树的过程有一个了解。
对于当前被处理的单词和当前树:在根节点的子节点中找单词的为第一位字母,若存在则进而在该节点的子节点中寻找第二位……,如此直到单词结束,既不需要在该书中添加节点;若单词的第n个字母不能找到,即将单词的第n个字母及其后的字母依次加入单词查找树中。
但本题只是问你结点总数,而非建树方案,且有32K大小的单词文件,所以应该考虑能不能通过不建树就直接算出结点数。
为了说明问题本质,我们定义单词相对于另一个单词的差:设单词1的长度为L,且与单词2从第N位开始不一致,则定义单词1相对于单词2的差为L-N+1,这是描述单词相似程度的量。
可见,将一个单词加入单词树的时候,须加入的节点数等于该单词树中已有的单词的差得最小值。
单词的字典顺序排列后的序列则具有类似的特性,即在一个字典顺序序列中,第m个单词相对于第m-1个单词的差必定是它对于前m-1个单词的差中最小的。
二叉树的现实中典型例子
二叉树的现实中典型例子二叉树是一种常用的数据结构,它具有广泛的应用。
下面列举了十个二叉树在现实中的典型例子。
一、文件系统文件系统是计算机中常见的二叉树应用之一。
文件系统中的目录和文件可以组织成一棵树,每个目录称为一个节点,而文件则是叶子节点。
通过树的结构,我们可以方便地对文件和目录进行管理和查找。
二、组织架构企业或组织的组织架构通常可以用二叉树来表示。
每个部门可以看作是一个节点,而员工则是叶子节点。
通过组织架构树,我们可以清晰地了解到企业或组织内部的管理层级关系。
三、家谱家谱是一个家族的血缘关系的记录,一般可以用二叉树来表示。
每个人可以看作是一个节点,而父子关系则是节点之间的连接。
通过家谱树,我们可以追溯家族的历史和血缘关系。
四、编译器编译器是将高级语言转换为机器语言的程序。
在编译过程中,编译器通常会使用语法分析树来表示源代码的结构。
语法分析树是一种特殊的二叉树,它将源代码表示为一个树状结构,方便进行语法分析和编译优化。
五、数据库索引数据库中的索引是一种用于提高数据查询效率的数据结构。
常见的索引结构包括B树和B+树,它们都是二叉树的变种。
通过索引树,数据库可以快速地定位到需要查询的数据,提高数据库的检索性能。
六、表达式求值在数学计算中,表达式求值是一项重要的任务。
通过使用二叉树,我们可以方便地表示和计算表达式。
二叉树的叶子节点可以是操作数,而内部节点可以是运算符。
通过遍历二叉树,我们可以按照正确的顺序对表达式进行求值。
七、电路设计在电路设计中,二叉树也有广泛的应用。
例如,我们可以使用二叉树来表示逻辑电路的结构,每个门电路可以看作是一个节点,而连接线则是节点之间的连接。
通过电路设计树,我们可以方便地进行电路的布线和优化。
八、图像处理图像处理是一项常见的计算机技术,而二叉树在图像处理中也有重要的应用。
例如,我们可以使用二叉树来表示图像的像素信息,每个像素可以看作是一个节点,而像素之间的关系则是节点之间的连接。
二叉树的知识点总结
引言概述:二叉树是计算机科学中一种重要的数据结构,其特点是每个节点最多有两个子节点。
在计算机科学中,二叉树被广泛应用于搜索、排序和组织数据等领域。
本文将对二叉树的知识点进行总结和详细阐述,以帮助读者更好地理解和应用二叉树。
正文内容:一、二叉树的基本概念1.二叉树的定义:二叉树是一种特殊的树结构,每个节点最多只有两个子节点。
2.二叉树的特点:每个节点最多有两个子节点,左子节点和右子节点。
3.二叉树的性质:二叉树的左子树和右子树也是二叉树,每个节点的左子树中的所有节点都小于该节点,右子树中的所有节点都大于该节点。
二、二叉树的遍历方式1.前序遍历:先访问根节点,然后递归遍历左子树和右子树。
2.中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
3.后序遍历:先递归遍历左子树和右子树,然后访问根节点。
4.层序遍历:按层次从上到下依次访问每个节点。
三、二叉搜索树1.二叉搜索树的定义:二叉搜索树是一种特殊的二叉树,其中的节点按一定的顺序排列。
2.二叉搜索树的性质:对于任意节点,其左子树中的所有节点都小于该节点,右子树中的所有节点都大于该节点。
3.二叉搜索树的插入操作:将待插入节点与当前节点比较,根据大小关系决定是插入左子树还是右子树。
4.二叉搜索树的删除操作:删除节点时需要考虑其子节点个数,根据不同情况分为三种情况进行处理。
5.二叉搜索树的查找操作:从根节点开始,根据节点值与目标值的大小关系,逐渐向左子树或右子树遍历,直至找到目标值或到达叶子节点。
四、平衡二叉树1.平衡二叉树的定义:平衡二叉树是一种特殊的二叉搜索树,其中的节点满足平衡条件。
2.平衡二叉树的性质:对于任意节点,其左子树和右子树的高度差不超过1。
3.平衡二叉树的实现:通过旋转操作来调整树结构,使其满足平衡条件。
4.平衡二叉树的插入操作:插入节点后,通过旋转操作保持树的平衡性。
5.平衡二叉树的删除操作:删除节点后,通过旋转操作保持树的平衡性。
二叉树应用场景
二叉树应用场景二叉树是计算机科学中最基本的数据结构之一。
它是一种树状结构,每个节点最多有两个子节点。
在计算机科学中,二叉树被广泛应用于各种算法和数据结构中。
本文将介绍二叉树在不同领域的应用场景。
1. 数据库数据库系统的设计和实现是计算机科学中的一个重要领域。
在数据库中,二叉树被广泛应用于实现索引。
索引是一种用于加速数据库查询的数据结构。
通常情况下,索引是基于二叉树的。
在二叉树索引中,每个节点都包含一个键值和指向左、右子树的指针。
通过不断比较键值,查询可以快速定位所需的数据。
2. 编程语言编程语言是计算机科学中的另一个重要领域。
在编程语言中,二叉树被广泛应用于解析和生成语法树。
语法树是一种表示程序语法结构的树状结构。
在语法树中,每个节点表示一个语法元素,例如变量、运算符或函数调用。
通过构建语法树,编译器可以将源代码转换为可执行代码。
3. 图形学图形学是计算机科学中的一个重要领域,它涉及到计算机图形的生成、处理和显示。
在图形学中,二叉树被广泛应用于构建几何图形的数据结构。
例如,二叉树可以用于实现三角网格的分割和细分。
在这种情况下,每个节点表示一个三角形,而左、右子树分别表示三角形的左、右子三角形。
通过递归地细分三角形,可以生成复杂的几何形状。
4. 人工智能人工智能是计算机科学中的一个快速发展的领域。
在人工智能中,二叉树被广泛应用于实现决策树和搜索树。
决策树是一种用于分类和预测的数据结构。
在决策树中,每个节点表示一个属性,例如年龄、性别或收入水平。
通过比较属性值,可以将数据集分成更小的子集。
搜索树是一种用于搜索最优解的数据结构。
在搜索树中,每个节点表示一个状态,例如一个棋盘上的局面。
通过不断扩展搜索树,可以找到最优的解决方案。
5. 系统设计系统设计是计算机科学中的一个重要领域,它涉及到软件和硬件的设计和实现。
在系统设计中,二叉树被广泛应用于实现数据结构和算法。
例如,二叉搜索树是一种用于快速查找和插入数据的数据结构。
二叉树 c语言
二叉树 c语言在计算机科学领域中,树型数据结构是一种非常重要的数据结构,在实际开发中也得到了广泛的应用。
其中,二叉树又是一种非常常见的树型结构。
二叉树在很多情况下都能够提供更好的算法效率,同时也易于理解和实现,因此我们可以通过通过学习和掌握二叉树的特点以及优点,来更好的应用到实际开发中。
一、二叉树的定义二叉树是一种树型结构,树型结构是由节点构成的。
二叉树与一般的树型结构不同,它的每个节点最多只有两个子节点,分别称为左子树和右子树。
它们可以为空或者不为空,其子节点的数量时不固定且没有任何限制的。
二叉树的定义如下:(1)空树是树的一种特殊的状态。
我们可以把它称为二叉树;(2)若不是空树,那么它就是由一个称为根节点(root)的元素和左右两棵分别称为左子树(left subtree)和右子树(right subtree)的二叉树组成。
二、二叉树的特性(1)每个节点最多只有两个子节点,分别称为左子节点和右子节点;(2)左子树和右子树是二叉树;(3)二叉树没有重复的节点。
三、二叉树的应用二叉树是一种非常实用的数据结构,因为它可以模拟很多实际生活中的情况。
例如,我们可以利用二叉树来对某些数据进行分类和排序。
在二叉树的基础上,我们还可以构造二叉堆、哈夫曼树等更高级的数据结构。
除此之外,二叉树还可以应用到程序设计中。
例如,我们可以构造一个二叉树来表示某个程序的控制流,这个程序在执行时可以沿着二叉树的各个节点进行分支和选择,实现不同的功能。
此外,我们还可以利用二叉树来加快某些算法的执行效率,比如二分查找算法等。
四、二叉树的遍历方式对于二叉树的遍历,有三种基本方式,即前序遍历、中序遍历、后序遍历。
它们的遍历顺序不同,因此也得到了不同的称呼。
下面我们来简要介绍一下这三种遍历方式的特点和应用。
(1)前序遍历前序遍历是指首先访问树的根节点,然后按照从左到右的顺序依次遍历左子树和右子树。
前序遍历的应用非常广泛,可以用于生成表达式树、构造二叉树等等。
二叉树结构的特点
二叉树结构的特点二叉树是一种常见的数据结构,它具有以下特点:1. 结构简单:二叉树是一种有序树结构,每个节点最多只有两个子节点,分别称为左子节点和右子节点。
这种结构的简洁性使得二叉树在实际应用中得到广泛使用。
2. 层次性:二叉树具有明显的层次性,即树的每一层都可以通过节点间的父子关系来确定。
根节点是第一层,根节点的子节点是第二层,以此类推。
3. 有序性:在二叉树中,每个节点的左子节点小于它,右子节点大于它。
这种有序性使得二叉树在查找和排序方面具有很高的效率。
4. 高度平衡:二叉树的高度平衡性是指树的左右子树的高度差不超过1。
高度平衡的二叉树可以保证查找、插入和删除操作的平均时间复杂度为O(log n)。
5. 递归性:二叉树的定义是递归的,即每个子树都是二叉树。
这种递归性质使得在二叉树上的操作可以通过递归算法来实现。
6. 存储结构灵活:二叉树的存储结构可以采用顺序存储和链式存储两种方式。
顺序存储是将二叉树的节点按照层次顺序存储在一维数组中,链式存储是通过每个节点的指针来连接各个节点。
在二叉树的基础上,还可以扩展出以下几种特殊的二叉树结构:1. 完全二叉树:完全二叉树是指除了最后一层外,其他层的节点个数都达到最大值,并且最后一层的节点依次从左到右排列。
完全二叉树的特点是高度平衡,可以用数组来存储。
2. 满二叉树:满二叉树是指每个节点都有两个子节点的二叉树,即除了叶子节点外,每个节点都有两个子节点。
满二叉树的特点是节点个数达到最大值,高度平衡。
3. 平衡二叉树:平衡二叉树是指任意节点的左右子树的高度差不超过1的二叉树。
平衡二叉树的特点是高度平衡,可以保证各种操作的时间复杂度较低。
4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它具有以下性质:对于树中的任意节点,其左子树中的节点值都小于它,右子树中的节点值都大于它。
二叉搜索树的特点是可以高效地进行查找、插入和删除操作。
5. 线索二叉树:线索二叉树是对二叉树的一种扩展,它的特点是在每个节点上增加了指向前驱节点和后继节点的指针。
计算机二级二叉树
计算机二级二叉树1. 概述二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
在计算机科学中,二叉树有着广泛的应用,例如在算法和数据存储中都能够发挥重要作用。
本文将介绍计算机二级二叉树的基本概念、性质以及相关操作。
2. 二叉树的定义二叉树是一种有序树,其中每个节点最多有两个子节点。
它通常用来表示层次关系、排序关系、树形结构等。
二叉树的子节点分为左子节点和右子节点,子节点的顺序是固定的。
3. 二叉树的性质(1) 二叉树的第i层最多有2^(i-1)个节点。
(2) 深度为k的二叉树最多有2^k-1个节点。
(3) 对于任意一棵二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则n0=n2+1。
(4) 对于完全二叉树,假设其深度为h,则其节点数为2^h-1(h≥1)。
4. 二叉树的遍历二叉树的遍历主要分为前序遍历、中序遍历和后序遍历。
下面分别介绍这三种遍历方式的定义和实现。
(1) 前序遍历:遍历顺序为根节点、左子树、右子树。
(2) 中序遍历:遍历顺序为左子树、根节点、右子树。
(3) 后序遍历:遍历顺序为左子树、右子树、根节点。
二叉树的遍历可以用递归或者迭代的方法实现。
5. 二叉树的插入在二叉树中插入节点是一种常见的操作。
下面介绍一种基本的插入算法:(1) 如果树为空,则将节点作为根节点插入。
(2) 如果树不为空:- 将节点与根节点进行比较,若小于根节点,则插入到左子树中。
- 若大于根节点,则插入到右子树中。
- 对左子树或右子树递归执行插入操作。
6. 二叉树的删除二叉树的删除操作比插入操作稍微复杂一些。
一般情况下,可以按照以下步骤进行删除:(1) 如果要删除的节点是叶子节点,直接删除即可。
(2) 如果要删除的节点只有一个子节点,将其子节点代替要删除的节点。
(3) 如果要删除的节点有两个子节点,则需要找到其右子树中的最小节点(或左子树中的最大节点)来代替要删除的节点,并删除那个最小节点。
7. 二叉树的应用二叉树在计算机科学中有着广泛的应用,下面介绍几种常见的应用场景:(1) 搜索二叉树:可以在O(log n)的时间复杂度内进行搜索操作。
C语言数据结构系列篇二叉树的概念及满二叉树与完全二叉树
C语⾔数据结构系列篇⼆叉树的概念及满⼆叉树与完全⼆叉树链接:0x00 概念定义:⼆叉树既然叫⼆叉树,顾名思义即度最⼤为2的树称为⼆叉树。
它的度可以为 1 也可以为 0,但是度最⼤为 2 。
⼀颗⼆叉树是节点的⼀个有限集合,该集合:①由⼀个根节点加上两颗被称为左⼦树和右⼦树的⼆叉树组成②或者为空观察上图我们可以得出如下结论:①⼆叉树不存在度⼤于 2 的节点,换⾔之⼆叉树最多也只能有两个孩⼦。
②⼆叉树的⼦树有左右之分,分别为左孩⼦和右孩⼦。
次序不可颠倒,因此⼆叉树是有序树。
注意:对于任意的⼆叉树都是由以下⼏种情况复合⽽成的:0x01 满⼆叉树定义:⼀个⼆叉树,如果每⼀层的节点数都达到了最⼤值(均为2),则这个⼆叉树就可以被称作为 "满⼆叉树" 。
换⾔之,如果⼀个⼆叉树的层数为,且节点总数是,则他就是⼀个满⼆叉树。
计算公式:①已知层数求总数:②已知总数求层数:⼗亿个节点,满⼆叉树是多少层?≈ 10亿多0x02 完全⼆叉树定义:对于深度为的,有个结点的⼆叉树,当且仅当其每⼀个结点都与深度为的满⼆叉树中编号从 1 ⾄的结点⼀⼀对应时称之为完全⼆叉树。
前层是满的,最后⼀层不满,但是最后⼀层从左到右是连续的。
完全⼆叉树是效率很⾼的数据结构,完全⼆叉树是由满⼆叉树⽽引出来的。
所以,满⼆叉树是⼀种特殊的完全⼆叉树(每⼀层节点均为2)。
常识:①完全⼆叉树中,度为 1 的最多只有 1 个。
②⾼度为的完全⼆叉树节点范围是0x03 ⼆叉树的性质①若规定根节点的层数为 1 ,则⼀颗⾮空⼆叉树的第层上最多有个节点。
②若规定根节点的层数为 1 ,则深度为的⼆叉树最⼤节点数是 .③对任何⼀颗⼆叉树,如果度为 0 其叶⼦结点个数为,度为 2 的分⽀节点个数为,则有。
换⾔之,度为 0 的永远⽐度为 2 的多⼀个叶⼦结点。
④若规定根节点的层数为 1 ,具有个节点的满⼆叉树的深度(log是以2为底,n+1的对数)。
对于有个节点的完全⼆叉树,如果按照从上⾄下从左⾄右的数组顺序对所有节点从 0 开始编号,则对于序号为的节点有:(⾮完全⼆叉树,也可以⽤数组存放,但会浪费很多空间)假设是⽗节点在数组中的下标,此公式仅适⽤于完全⼆叉树:①求左孩⼦:②求右孩⼦:③求⽗亲(假设不关注是左孩⼦还是右孩⼦):④判断是否有左孩⼦:⑤判断是否由右孩⼦:PS:⼆叉树不⼀定要标准,⽐如这个其实也是⼆叉树:课后练习:1. 某⼆叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该⼆叉树中的叶⼦结点数为()A. 不存在这样的⼆叉树B. 200C. 1982. 在具有 2n 个结点的完全⼆叉树中,叶⼦结点个数为()A. nB. n+1C. n-1D. n/23. ⼀棵完全⼆叉树的节点数位为531个,那么这棵树的⾼度为()A. 11B. 10C. 8D. 125. ⼀个具有767个节点的完全⼆叉树,其叶⼦节点个数为()A. 383B. 384C. 385D. 386参考资料:Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .笔者:王亦优更新: 2021.11.24勘误:⽆声明:由于作者⽔平有限,本⽂有错误和不准确之处在所难免,本⼈也很想知道这些错误,恳望读者批评指正!本篇完。
二叉树知识点总结
二叉树知识点总结二叉树是一种常见的数据结构,它由节点和边组成,每个节点最多有两个子节点。
以下是关于二叉树的知识点总结。
1. 二叉树的基本概念二叉树是一种树形结构,它由节点和边组成。
每个节点最多有两个子节点,分别称为左子节点和右子节点。
如果一个节点没有子节点,则称其为叶子节点。
二叉树可以为空。
2. 二叉树的遍历方式遍历是指按照一定顺序访问二叉树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历:先访问当前节点,然后递归访问左子树和右子树。
中序遍历:先递归访问左子树,然后访问当前节点,最后递归访问右子树。
后序遍历:先递归访问左子树和右子树,最后访问当前节点。
3. 二叉搜索树二叉搜索树(Binary Search Tree)也称为有序二叉树或排序二叉树。
它是一种特殊的二叉树,在满足以下条件的情况下被称为“搜索”:对于任意节点,其左子树中的所有节点的值都小于该节点的值。
对于任意节点,其右子树中的所有节点的值都大于该节点的值。
左右子树也分别为二叉搜索树。
二叉搜索树支持快速查找、插入和删除操作。
它还有一些变种,如平衡二叉搜索树(AVL Tree)和红黑树(Red-Black Tree)等。
4. 二叉堆二叉堆是一种特殊的完全二叉树,它分为最大堆和最小堆两种类型。
最大堆满足父节点的值大于等于其子节点的值,最小堆满足父节点的值小于等于其子节点的值。
在最大堆中,根节点是整个堆中最大的元素;在最小堆中,根节点是整个堆中最小的元素。
二叉堆常用来实现优先队列(Priority Queue),即按照一定优先级顺序处理元素。
5. 二叉树常见问题5.1 判断是否为平衡二叉树平衡二叉树(Balanced Binary Tree)是指任意节点左右子树高度差不超过1的二叉搜索树。
判断一个二叉搜索树是否为平衡二叉树可以通过递归遍历每个节点,计算其左右子树的高度差。
5.2 判断是否为完全二叉树完全二叉树(Complete Binary Tree)是指除了最后一层外,其他层都是满的,并且最后一层的节点都靠左排列的二叉树。
【数据结构】二叉树
【数据结构】⼆叉树【⼆叉树】 ⼆叉树是最为简单的⼀种树形结构。
所谓树形结构,其特征(部分名词的定义就不明确给出了,毕竟不是学术⽂章。
)在于: 1. 如果是⾮空的树形结构,那么拥有⼀个唯⼀的起始节点称之为root(根节点) 2. 除了根节点外,其他节点都有且仅有⼀个“⽗节点”;除此外这些节点还都可以有0到若⼲个“⼦节点” 3. 树中的所有节点都必须可以通过根节点经过若⼲次后继操作到达 4. 节点之间不会形成循环关系,即任意⼀个节点都不可能从⾃⾝出发,经过不重复的径路再回到⾃⾝。
说明了树形结构内部蕴含着⼀种“序”,但是不是线性表那样的“全序” 5. 从树中的任意两个节点出发获取到的两个任意⼦树,要不两者⽆交集,要不其中⼀者是另⼀者的⼦集 限定到⼆叉树,⼆叉树就是任意⼀个节点⾄多只能有两个⼦节点的树形结构。
也就是说,某个节点的⼦节点数可以是0,1或2。
由于可以有两个⼦节点,所以区别两个⼦节点可以将其分别定义为左⼦节点和右⼦节点。
但是需要注意的是,若⼀个节点只有⼀个⼦节点,那么也必须明确这个⼦节点是左⼦节点还是右⼦节点。
不存在“中⼦节点”或者“单⼦节点”这种表述。
由于上述规则对所有节点都⽣效,所以⼆叉树也是⼀个递归的结构。
事实上,递归就是⼆叉树⼀个⾮常重要的特点,后⾯还会提到很多通过递归的思想来建⽴的例⼦。
对于左⼦节点作为根节点的那颗⼆叉树被称为相对本节点的左⼦树,右⼦树是同理。
■ 基本概念 空树 不包含任何节点的⼆叉树,连根节点也没有 单点树 只包含⼀个根节点的⼆叉树是单点树 ⾄于兄弟关系,⽗⼦关系,长辈后辈关系是⼀⾔既明的就不说了。
树中没有⼦节点的节点被称为树叶(节点),其余的则是分⽀节点。
⼀个节点的⼦节点个数被称为“度数”。
正如上所说,⼆叉树任意节点的度数取值可能是0,1或2。
节点与节点之间存在关联关系,这种关联关系的基本长度是1。
通过⼀个节点经过若⼲个关联关系到达另⼀个节点,经过的这些关联关系合起来被称为⼀个路径。
数据结构与算法(3):二叉树
1.3.3 性质三
包含n个结点的二二叉树的高高度至至少为log2(n + 1);
证明:根据"性质2"可知,高高度为h的二二叉树最多有2{h}–1个结点。反之,对于包含n个节点的二二
叉树的高高度至至少为log2(n + 1)。
1.3.4 性质四
对任何一一颗二二叉树T,如果其终端结点数为n0 ,度为2的结点数为n2 ,则n0 = n2 + 1 证明:因为二二叉树中所有结点的度数均不不大大于2,所以结点总数(记为n)="0度结点数(n0)" + "1度 结点数(n1)" + "2度结点数(n2)"。由此,得到等式一一。(等式一一) n = n0 + n1 + n2
}
还有一一种方方式就是利利用用栈模拟递归过程实现循环先序遍历二二叉树。这种方方式具备扩展性,它模拟 了了递归的过程,将左子子树不不断的压入入栈,直到null,然后处理理栈顶节点的右子子树。
java
public void preOrder(Node root){ if(root==null)return;
2. 叶子子数为2h 3. 第k层的结点数是:2k−1; 4. 总结点数是2k − 1,且总节点数一一定是奇数。
1.4.2 完全二二叉树
定义:一一颗二二叉树中,只有最小小面面两层结点的度可以小小于2,并且最下一一层的叶结点集中在靠左 的若干干位置上。这样现在最下层和次下层,且最小小层的叶子子结点集中在树的左部。显然,一一颗 满二二叉树必定是一一颗完全二二叉树,而而完全二二叉树未必是满二二叉树。
} root = s.pop(); root = root.right;//如果是null,出栈并处理理右子子树 } }
二叉树各种计算公式总结
二叉树各种计算公式总结二叉树是一种常见的数据结构,它由一个根节点和最多两个子节点组成。
许多计算问题可以通过对二叉树进行各种操作和遍历来解决。
在本文中,将总结二叉树的各种计算公式。
1.二叉树节点个数:二叉树节点个数的计算公式是N=N1+N2+1,其中N表示二叉树的节点个数,N1表示左子树的节点个数,N2表示右子树的节点个数。
2. 二叉树的高度:二叉树的高度是指从根节点到最远叶子节点的最长路径上的节点数量。
计算二叉树的高度的公式是H = max(H1, H2) + 1,其中H表示二叉树的高度,H1表示左子树的高度,H2表示右子树的高度。
3.二叉树的深度:二叉树的深度是指从根节点到当前节点的路径的长度。
计算二叉树的深度的公式是D=D1+1,其中D表示二叉树的深度,D1表示父节点的深度。
4.二叉查找树:二叉查找树是一种有序二叉树,它要求对于树中的每个节点,左子树的值都小于节点的值,右子树的值都大于节点的值。
在二叉查找树中进行的公式是:-如果目标值等于当前节点的值,则返回当前节点;-如果目标值小于当前节点的值,则在左子树中继续;-如果目标值大于当前节点的值,则在右子树中继续。
5.二叉树的遍历:二叉树的遍历是指按照一定的顺序访问二叉树中的所有节点。
常见的二叉树遍历方式有三种:- 前序遍历:先访问根节点,然后递归地访问左子树,最后递归地访问右子树。
可以表示为:root -> 左子树 -> 右子树。
- 中序遍历:先递归地访问左子树,然后访问根节点,最后递归地访问右子树。
可以表示为:左子树 -> root -> 右子树。
- 后序遍历:先递归地访问左子树,然后递归地访问右子树,最后访问根节点。
可以表示为:左子树 -> 右子树 -> root。
6.二叉树的最大路径和:二叉树的最大路径和是指二叉树中两个节点之间路径上的节点值的最大和。
可以通过递归地计算每个子树的最大路径和,然后选择最大的子树路径和来得出最终结果。
二叉树的遍历代码
二叉树的遍历代码二叉树是一种非常常见的数据结构,它由根节点、左子树和右子树组成,可以用于实现各种算法和应用。
在使用二叉树时,我们常常需要进行遍历来获取树中的节点信息。
下面,我们将详细介绍二叉树的遍历方法及其代码实现。
二叉树的遍历方法分为三种:前序遍历、中序遍历和后序遍历。
它们的不同之处在于遍历节点的顺序不同。
我们分别来介绍一下这三种遍历方法。
1.前序遍历前序遍历的顺序是:先访问根节点,然后递归访问左子树和右子树。
实现前序遍历的代码如下:```pythondef preorder_traversal(node):if node:print(node.data)preorder_traversal(node.left)preorder_traversal(node.right)```在代码中,我们首先输出根节点的值,然后分别递归访问左子树和右子树,直到遍历完整个树。
2.中序遍历中序遍历的顺序是:先递归访问左子树,然后访问根节点,最后递归访问右子树。
实现中序遍历的代码如下:```pythondef inorder_traversal(node):if node:inorder_traversal(node.left)print(node.data)inorder_traversal(node.right)```在代码中,我们先递归访问左子树,然后输出根节点的值,最后递归访问右子树。
3.后序遍历后序遍历的顺序是:先递归访问左子树和右子树,然后访问根节点。
实现后序遍历的代码如下:```pythondef postorder_traversal(node):if node:postorder_traversal(node.left)postorder_traversal(node.right)print(node.data)```在代码中,我们先递归访问左子树和右子树,然后输出根节点的值。
通过前序遍历、中序遍历和后序遍历,我们可以获取二叉树中每个节点的值。
常见基本数据结构——树,二叉树,二叉查找树,AVL树
常见基本数据结构——树,⼆叉树,⼆叉查找树,AVL树常见数据结构——树处理⼤量的数据时,链表的线性时间太慢了,不宜使⽤。
在树的数据结构中,其⼤部分的运⾏时间平均为O(logN)。
并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界。
树的定义有很多种⽅式。
定义树的⾃然的⽅式是递归的⽅式。
⼀棵树是⼀些节点的集合,这个集合可以是空集,若⾮空集,则⼀棵树是由根节点r以及0个或多个⾮空⼦树T1,T2,T3,......,Tk组成,这些⼦树中每⼀棵的根都有来⾃根r的⼀条有向的边所连接。
从递归的定义中,我们发现⼀棵树是N个节点和N-1条边组成的,每⼀个节点都有⼀条边连接⽗节点,但是根节点除外。
具有相同⽗亲的节点为兄弟,类似的⽅法可以定义祖⽗和孙⼦的关系。
从节点n1到nk的路径定义为节点n1,n2,...,nk的⼀个序列,并且ni是ni+1的⽗亲。
这个路径的长是路径上的边数,即k-1。
每个节点到⾃⼰有⼀条长为0的路径。
⼀棵树从根到叶⼦节点恰好存在⼀条路径。
对于任意的节点ni,ni的深度为从根到ni的唯⼀路径长。
ni的⾼是从ni到⼀⽚叶⼦的最长路径的长。
因此,所有的树叶的⾼度都是0,⼀棵树的⾼等于它的根节点的⾼。
⼀棵树的深度总是等于它最深叶⼦的深度;该深度等于这棵树的⾼度。
树的实现实现树的⼀种⽅法可以是在每⼀个节点除数据外还要有⼀些指针,使得该节点的每⼀个⼉⼦都有⼀个指针指向它。
但是由于每个节点的⼉⼦树可以变化很⼤⽽且事先不知道,故在各个节点建⽴⼦节点的链接是不可⾏的,这样将会浪费⼤量的空间。
实际的做法很简单:将每个节点的所有⼉⼦都放在树节点的链表中。
下⾯是典型的声明:typedef struct TreeNode *PtrToNodestruct TreeNode{ ElementType Element; PtrToNode FirstChild; PtrToNode NextSibling}下⾯是⼉⼦兄弟表⽰法的图⽰:树的遍历及应⽤⼀个常见的使⽤是操作系统中的⽬录结构。
二叉树实践原理
二叉树实践原理二叉树是一种常用的数据结构,它由节点组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的实践原理包括二叉树的构建、遍历和搜索等操作。
一、二叉树的构建二叉树的构建有多种方法,常见的有递归和迭代两种方式。
递归构建二叉树时,可以通过递归地构建左子树和右子树来构建整个二叉树。
迭代构建二叉树时,可以借助栈或队列等数据结构来辅助实现。
无论是递归还是迭代,构建二叉树的关键是确定节点的左右子节点。
二、二叉树的遍历二叉树的遍历是指按照一定顺序访问二叉树中的每个节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后依次访问左子树和右子树;中序遍历先访问左子树,然后访问根节点,最后访问右子树;后序遍历先访问左子树,然后访问右子树,最后访问根节点。
遍历二叉树时,可以使用递归或迭代的方式实现。
三、二叉树的搜索二叉树的搜索是指在二叉树中找到符合条件的节点。
常见的搜索方式有深度优先搜索和广度优先搜索。
深度优先搜索是通过递归或栈实现的,它按照根节点、左子树、右子树的顺序搜索二叉树;广度优先搜索是通过队列实现的,它按照层级顺序搜索二叉树。
搜索二叉树时,可以根据具体情况选择适合的搜索方式。
四、二叉树的应用二叉树在计算机科学领域有广泛的应用。
例如,在数据库中,二叉树可以用来实现索引,提高数据的检索效率;在编译器中,二叉树可以用来构建语法树,实现语法分析;在图像处理中,二叉树可以用来表示图像的像素点,实现图像的压缩和重建等。
二叉树的应用非常广泛,它可以帮助我们解决各种实际问题。
总结:二叉树是一种重要的数据结构,它具有构建、遍历和搜索等基本操作。
二叉树的构建可以通过递归或迭代的方式实现;二叉树的遍历有前序、中序和后序三种方式;二叉树的搜索可以采用深度优先搜索或广度优先搜索。
在实际应用中,二叉树可以用来实现索引、语法分析、图像处理等功能。
掌握二叉树的实践原理,对于理解和应用其他数据结构和算法也具有重要意义。
(2)递归与递推
2.1 遍历问题【问题描述】我们都很熟悉二叉树的前序、中序、后序遍历,在数据结构中常提出这样的问题:已知一棵二叉树的前序和中序遍历,求它的后序遍历,相应的,已知一棵二叉树的后序遍历和中序遍历序列你也能求出它的前序遍历。
然而给定一棵二叉树的前序和后序遍历,你却不能确定其中序遍历序列,考虑如下图中的几棵二叉树:所有这些二叉树都有着相同的前序遍历和后序遍历,但中序遍历却不相同。
【输入】输入数据共两行,第一行表示该二叉树的前序遍历结果s1,第二行表示该二叉树的后序遍历结果s2。
【输出】输出可能的中序遍历序列的总数,结果不超过长整型数。
【样例】travel.inabcbcatravel.out42.2 产生数【问题描述】给出一个整数n(n<1030)和m个变换规则(m≤20)。
约定:一个数字可以变换成另一个数字,规则的右部不能为零,即零不能由另一个数字变换而成。
而这里所说的一个数字就是指一个一位数。
现在给出一个整数n和m个规则,要你求出对n的每一位数字经过任意次的变换(0次或多次),能产生出多少个不同的整数。
【输入】共m+2行,第一行是一个不超过30位的整数n,第2行是一个正整数m,接下来的m 行是m个变换规则,每一规则是两个数字x、y,中间用一个空格间隔,表示X可以变换成Y。
【输出】仅一行,表示可以产生的不同整数的个数。
【样例】build.in1 2 321 22 3build.out62.3 出栈序列统计【问题描述】栈是常用的一种数据结构,有n个元素在栈顶端一侧等待进栈,栈顶端另一侧是出栈序列。
你已经知道栈的操作有两种:push和pop,前者是将一个元素进栈,后者是将栈顶元素弹出。
现在要使用这两种操作,由一个操作序列可以得到一系列的输出序列。
请你编程求出对于给定的n,计算并输出由操作数序列1,2,…,n,经过一系列操作可能得到的输出序列总数。
【输入】就一个数n(1≤n≤1000)。
【输出】一个数,即可能输出序列的总数目。
二叉树先序遍历c语言
二叉树先序遍历c语言在计算机科学的领域中,二叉树是一种非常重要且常用的数据结构。
它由节点组成,每个节点可以存储一个值,并且最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以用来解决许多实际问题,例如在编写搜索算法时,可以使用二叉树来快速定位目标值。
同时,二叉树还可以用于构建更复杂的数据结构,例如堆和红黑树。
在二叉树中,先序遍历是一种遍历方式。
它的步骤如下:1. 访问根节点。
2. 遍历左子树。
3. 遍历右子树。
下面我们将用C语言来实现二叉树的先序遍历。
首先,我们需要定义一个二叉树节点的结构体,如下所示:```ctypedef struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;} TreeNode;```然后,我们可以通过递归的方式来实现先序遍历函数,代码如下:```cvoid preorderTraversal(TreeNode* root) {if (root == NULL) {return;}printf("%d ", root->val); // 访问根节点preorderTraversal(root->left); // 遍历左子树preorderTraversal(root->right); // 遍历右子树}```在这个递归函数中,我们首先判断根节点是否为空,如果为空则返回。
然后,我们访问根节点的值,并依次递归地遍历左子树和右子树。
接下来,我们可以创建一个二叉树并测试我们的先序遍历函数。
下面是一个简单的示例:```cint main() {TreeNode* root = malloc(sizeof(TreeNode));root->val = 1;TreeNode* node1 = malloc(sizeof(TreeNode));node1->val = 2;TreeNode* node2 = malloc(sizeof(TreeNode));node2->val = 3;root->left = node1;root->right = node2;printf("先序遍历结果:");preorderTraversal(root);printf("\n");return 0;}```在这个示例中,我们创建了一个具有三个节点的二叉树,并调用先序遍历函数进行遍历。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉树是我们都非常熟悉的一种数据结构。
它支持包括查找、插入、删除等一系列的操作。
但它有一个致命的弱点,就是当数据的随机性不够时,会导致其树型结构的不平衡,从而直接影响到算法的效率。
跳跃表(Skip List)是1987年才诞生的一种崭新的数据结构,它在进行查找、插入、删除等操作时的期望时间复杂度均为O(logn),有着近乎替代平衡树的本领。
而且最重要的一点,就是它的编程复杂度较同类的AVL树,红黑树等要低得多,这使得其无论是在理解还是在推广性上,都有着十分明显的优势。
跳跃表由多条链构成(S0,S1,S2……,Sh),且满足如下三个条件:(1)每条链必须包含两个特殊元素:+∞ 和 -∞(2)S0包含所有的元素,并且所有链中的元素按照升序排列。
(3)每条链中的元素集合必须包含于序数较小的链的元素集合,即:【基本操作】在对跳跃表有一个初步的认识以后,我们来看一下基于它的几个最基本的操作。
一、查找目的:在跳跃表中查找一个元素x在跳跃表中查找一个元素x,按照如下几个步骤进行:i)从最上层的链(Sh)的开头开始ii)假设当前位置为p,它向右指向的节点为q(p与q不一定相邻),且q的值为y。
将y与x作比较(1) x=y 输出查询成功及相关信息(2) x>y 从p向右移动到q的位置(3) x<y 从p向下移动一格iii) 如果当前位置在最底层的链中(S),且还要往下移动的话,则输出查询失败二、插入目的:向跳跃表中插入一个元素x首先明确,向跳跃表中插入一个元素,相当于在表中插入一列从S中某一位置出发向上的连续一段元素。
有两个参数需要确定,即插入列的位置以及它的“高度”。
关于插入的位置,我们先利用跳跃表的查找功能,找到比x小的最大的数y。
根据跳跃表中所有链均是递增序列的原则,x必然就插在y的后面。
而插入列的“高度”较前者来说显得更加重要,也更加难以确定。
由于它的不确定性,使得不同的决策可能会导致截然不同的算法效率。
为了使插入数据之后,保持该数据结构进行各种操作均为O(logn)复杂度的性质,我们引入随机化算法(Randomized Algorithms)。
我们定义一个随机决策模块,它的大致内容如下:·产生一个0到1的随机数r r ← random()·如果r小于一个常数p,则执行方案A, if r<p then do A否则,执行方案B else do B初始时列高为1。
插入元素时,不停地执行随机决策模块。
如果要求执行的是A操作,则将列的高度加1,并且继续反复执行随机决策模块。
直到第i次,模块要求执行的是B操作,我们结束决策,并向跳跃表中插入一个高度为i的列。
性质1:根据上述决策方法,该列的高度大于等于k的概率为p k-1。
此处有一个地方需要注意,如果得到的i比当前跳跃表的高度h还要大的话,则需要增加新的链,使得跳跃表仍满足先前所提到的条件。
我们来看一个例子:假设当前我们要插入元素“40”,且在执行了随机决策模块后得到高度为4·步骤一:找到表中比40小的最大的数,确定插入位置,步骤二:插入高度为4的列,并维护跳跃表的结构三、删除目的:从跳跃表中删除一个元素x删除操作分为以下三个步骤:(1)在跳跃表中查找到这个元素的位置,如果未找到,则退出*(2)将该元素所在整列从表中删除*(3)将多余的“空链”删除*所谓“记忆化”查找,就是在前一次查找的基础上进行进一步的查找。
它可以利用前一次查找所得到的信息,取其中可以被当前查找所利用的部分。
利用“记忆化”查找可以将一次查找的复杂度变为O(logk),其中k为此次与前一次两个被查找元素在跳跃表中位置的距离。
下面来看一下记忆化搜索的具体实现方法:假设上一次操作我们查询的元素为i,此次操作我们欲查询的元素为j。
我们用一个update数组来记录在查找i时,指针在每一层所“跳”到的最右边的位置。
如图4.1中橘黄色的元素。
(蓝色为路径上的其它元素),在插入元素j时,分为两种情况:(1)i<=j 从S层开始向上遍历update数组中的元素,直到找到某个元素,它向右指向的元素大于等于j,并于此处开始新一轮对j的查找(与一般的查找过程相同)(2)i>j 从S层开始向上遍历update数组中的元素,直到找到某个元素小于等于j,并于此处开始新一轮对j的查找(与一般的查找过程相同)图4.2十分详细地说明了在查找了i=37之后,继续查找j=15或53时的两种不同情况。
【复杂度分析】一个数据结构的好坏大部分取决于它自身的空间复杂度以及基于它一系列操作的时间复杂度。
跳跃表之所以被誉为几乎能够代替平衡树,其复杂度方面自然不会落后。
我们来看一下跳跃表的相关复杂度:空间复杂度: O(n) (期望)跳跃表高度: O(logn) (期望)相关操作的时间复杂度:查找: O(logn) (期望)插入: O(logn) (期望)删除: O(logn) (期望)之所以在每一项后面都加一个“期望”,是因为跳跃表的复杂度分析是基于概率论的。
有可能会产生最坏情况,不过这种概率极其微小。
下面我们来一项一项分析。
一、空间复杂度分析 O(n)假设一共有n个元素。
根据性质1,每个元素插入到第i层(Si)的概率为p i-1,则在第i层插入的期望元素个数为np i-1,跳跃表的元素期望个数为,当p取小于0.5的数时,次数总和小于2n。
所以总的空间复杂度为O(n)二、跳跃表高度分析 O(logn)根据性质1,每个元素插入到第i层(Si)的概率为p i,则在第i层插入的期望元素个数为np i-1。
考虑一个特殊的层:第1+ 层。
层的元素期望个数为 = 1/n2,当n取较大数时,这个式子的值接近0,故跳跃表的高度为O(logn)级别的。
三、查找的时间复杂度分析 O(logn)我们采用逆向分析的方法。
假设我们现在在目标节点,想要走到跳跃表最左上方的开始节点。
这条路径的长度,即可理解为查找的时间复杂度。
设当前在第i层第j列那个节点上。
i)如果第j列恰好只有i层(对应插入这个元素时第i次调用随机化模块时所产生的B决策,概率为1-p),则当前这个位置必然是从左方的某个节点向右跳过来的。
ii)如果第j列的层数大于i(对应插入这个元素时第i次调用随机化模块时所产生的A决策,概率为p),则当前这个位置必然是从上方跳下来的。
(不可能从左方来,否则在以前就已经跳到当前节点上方的节点了,不会跳到当前节点左方的节点)设C(k)为向上跳k层的期望步数(包括横向跳跃)有:C(0) = 0C(k) = (1-p)(1+向左跳跃之后的步数)+p(1+向上跳跃之后的步数)= (1-p)(1+C(k)) + p(1+C(k-1))C(k) = 1/p + C(k-1)C(k) = k/p而跳跃表的高度又是logn级别的,故查找的复杂度也为logn级别。
对于记忆化查找(Search with fingers)技术我们可以采用类似的方法分析,很容易得出它的复杂度是O(logk)的(其中k为此次与前一次两个被查找元素在跳跃表中位置的距离)。
四、插入与删除的时间复杂度分析 O(logn)插入和删除都由查找和更新两部分构成。
查找的时间复杂度为O(logn),更新部分的复杂度又与跳跃表的高度成正比,即也为O(logn)。
所以,插入和删除操作的时间复杂度都为O(logn)五、实际测试效果(1)不同的p对算法复杂度的影响P平均操作时间平均列高总结点数每次查找跳跃次数(平均值)每次插入跳跃次数(平均值)每次删除跳跃次数(平均值)2/3 0.0024690ms3.004 91233 39.878 41.604 41.566 1/2 0.0020180ms1.995 60683 27.807 29.947 29.072 1/e 0.0019870 1.584 47570 27.332 28.238 28.452ms1/4 0.0021720ms1.330 40478 28.726 29.472 29.6641/8 0.0026880ms1.144 34420 35.147 35.821 36.007表1 进行106次随机操作后的统计结果从表1中可见,当p取1/2和1/e的时候,时间效率比较高(为什么?)。
而如果在实际应用中空间要求很严格的话,那就可以考虑取稍小一些的p,如1/4。
(2)运用“记忆化”查找 (Search with fingers) 的效果分析所谓“记忆化”查找,就是在前一次查找的基础上进行进一步的查找。
它可以利用前一次查找所得到的信息,取其中可以被当前查找所利用的部分。
利用“记忆化”查找可以将一次查找的复杂度变为O(logk),其中k为此次与前一次两个被查找元素在跳跃表中位置的距离。
P数据类型平均操作时间(不运用记忆化查找)平均操作时间(运用记忆化查找)平均每次查找跳跃次数(不运用记忆化查找)平均每次查找跳跃次数(运用记忆化查找)0.5随机(相邻被查找元素键值差的绝对值较大)0.0020150 ms0.0020790 ms23.26226.5090.5前后具备相关性(相邻被查找元素键值差的绝对值较小)0.0008440 ms0.0006880 ms26.157 4.932表1 进行106次相关操作后的统计结果从表2中可见,当数据相邻被查找元素键值差绝对值较小的时候,我们运用“记忆化”查找的优势是很明显的,不过当数据随机化程度比较高的时候,“记忆化”查找不但不能提高效率,反而会因为跳跃次数过多而成为算法的瓶颈。
合理地利用此项优化,可以在特定的情况下将算法效率提升一个层次。
【跳跃表的应用】高效率的相关操作和较低的编程复杂度使得跳跃表在实际应用中的范围十分广泛。
尤其在那些编程时间特别紧张的情况下,高性价比的跳跃表很可能会成为你的得力助手。
能运用到跳跃表的地方很多,与其去翻陈年老题,不如来个趁热打铁,拿NOI2004第一试的第一题——郁闷的出纳员(Cashier)来“小试牛刀”吧。
例题一:NOI2004 Day1 郁闷的出纳员(Cashier)这道题解法的多样性给了我们一次对比的机会。
用不同的算法和数据结构,在效率上会有怎样的差异呢?首先定义几个变量R –工资的范围N –员工总数我们来看一下每一种适用的算法和数据结构的简要描述和理论复杂度:(1)线段树简要描述:以工资为关键字构造线段树,并完成相关操作。
I命令时间复杂度:O(logR)A命令时间复杂度:O(1)S命令时间复杂度:O(logR)F命令时间复杂度:O(logR)(2)伸展树(Splay tree)简要描述:以工资为关键字构造伸展树,并通过“旋转”完成相关操作。
I命令时间复杂度:O(logN)A命令时间复杂度:O(1)S命令时间复杂度:O(logN)F命令时间复杂度:O(logN)(3)跳跃表(Skip List)简要描述:运用跳跃表数据结构完成相关操作。