Negative heat capacity of sodium clusters

合集下载

二氧化铅电极的晶体结构对放电容量的影响

二氧化铅电极的晶体结构对放电容量的影响

第17卷第1期应用化学Vol.17No.12000年2月CH IN ESE JOU RNA L O F APPL I ED CHEM IST RY Feb.2000二氧化铅电极的晶体结构对放电容量的影响黄成德*张昊朱松然(天津大学化工学院天津300072)摘要采用铅镉合金镀层经处理制备活性二氧化铅电极,利用T EM、XRD、XPS等方法研究了二氧化铅电极表层晶体结构,证实了无定形相的存在,实验结果表明,铅镉合金中铅含量越低,所形成的活性二氧化铅结晶度越大,电极的放电容量也越高.关键词铅酸蓄电池,二氧化铅电极,晶体结构,放电容量分类号:O646,T M912.1铅酸蓄电池正极活性物质)))二氧化铅晶型结构与电化学活性的关系历来受人瞩目. 1959年人们已开始研究氧空位及OH-基团的关系[1],而后许多学者又转向研究氢含量与活性的关系[2],1992年Pavlov[3]提出二氧化铅活性物质为具有质子和电子传输功能的凝胶-晶体体系的概念.但二氧化铅内在结构极为复杂,而现有的理论观点又仅仅停留于用传统电池工艺制备二氧化铅结构上,虽然对其内在特点进行了很多探讨,但均系针对二氧化铅整体颗粒.本文采用与传统电池工艺不同的方法制备了薄层活性二氧化铅,运用TEM、XRD、XPS等测试方法,对其二氧化铅表层的结构特性进行了剖析,并探讨了二氧化铅结构与活性的关系.1实验部分活性二氧化铅的制备:采用电沉积工艺,在铅锑合金板栅(8cm2)上镀覆铅镉合金.将铅镉合金放入硫酸(1110g/cm3)溶液中,以铅电极为阴极恒流通电,溶出镉后继续通电,直至阴阳极之间的电压差为215~216V时,可认为电极中的金属铅已氧化为二氧化铅,阳极氧化电流密度:6125@10-3mA/m2.电沉积之前,对铅锑合金板栅按一般电镀前处理规范进行.电沉积工艺条件:氨基磺酸铅:30g/L,氨基磺酸镉:60g/L,游离氨基磺酸:50g/L,二十一烷基酚聚氧乙烯醚:110g/L,t:25e,i:410A/dm2.二氧化铅电极容量测试:实验在自制电解池中进行,恒流放电,普通涂膏式负极为对电极,极间距117cm,室温测试,放电终止电压:1175V,电解液:H2SO4(1128g/cm3).我们制备的该电极厚度为10~20L m.利用日本产H ITACH I H-700型透射电子显微镜对活性二氧化铅进行电子衍射分析.试样制备:将活性二氧化铅电极在5%醋酸溶液中快速洗涤,使二氧化铅层溶出,再将其放入乙醇溶液中用超声波分散,载于铜网之上进行测试.采用日本D/max-C B型X射线衍射仪分析活性二氧化铅电极晶体结构的变化.Cu K A射线,石墨单色器,测试电压为30kV,电流为0103 A.X射线光电子能谱测试在美国产PERKIN ELM ER PEI5300ESCA System上进行.样品室真空度为10-8~10-9Pa,操作电压:13kV,Mg K A射线,X射线功率为250W.2结果与讨论在实验中,我们曾采用纯铅电极直接制备二氧化铅的方法,但得到的二氧化铅,大多为浮1999-07-14收稿,1999-11-08修回在电极上的小颗粒,且易脱落,若使极板容量提高,需长时间反复改变电流方向,我们用铅镉合金制备二氧化铅的研究思路较为新颖,并且由EDRX 谱测定结果证明Cd 溶出后的电极在电子探针允许的误差范围内无Cd 元素谱峰出现,因此,认为Cd 是100%溶出.2.1 无定形二氧化铅的确定从活性二氧化铅电极的电子衍射照片(图略)可见:除了二氧化铅的晶格衍射点之外,还出现了微弱的衍射环现象.说明活性二氧化铅电极中含有一定量的无定形物质.同时由图中晶Fig.1 X -r ay diffraction of lead diox ide electrode格衍射点非单一化排列的现象可以看出,该二氧化铅晶态结构中含有不同取向的二氧化铅.图1为活性二氧化铅电极的XRD 图谱.除了在2514b ,32b ,4911b 处分别出现B -PbO 2的(110),(101),(211)三族特征晶面之外,在这三组强衍射峰的背景处还出现了漫散射峰(虚线所示).在衍射图谱中均产生1个或数个漫散的衍射环.因而图1的衍射环足以表明无定形物质的存在,进一步说明了活性二氧化铅中有无定形类的物质存在.2.2 二氧化铅的表面活性物质为确定电极表面无定形二氧化铅的存在形式,曾对首次阳极氧化后的二氧化铅电极进行测试.但由于首次阳极氧化后的电极是PbO 2/PbSO 4/Pb 状态,其中Pb )O,S )O 特征峰重叠在一起,无法从中确定二氧化铅的表面结构.经20次充放电循环后的二氧化铅电极,硫酸铅F ig.2 XPS of lead -dio xide electrode after 20cycles for a .lead,b .o xyg en含量大大减少,经XPS 测试的结果见图2.图2(a )为二氧化铅中铅的XPS 谱图.由于Pb 4f 5/2与Pb 4f 7/2特征峰成对出现,因此只以低结合能的Pb 4f 7/2为分析对象.图中显示活性二氧化铅中Pb 4f 7/2结合能为13713eV,与标准值13714eV 在误差范围内(012eV)相吻合,因而可确定二氧化铅中铅的存在状态无变化.图2(b )为二氧化铅中氧的XPS 谱图.低结合能处出现52819eV 的特征峰,根据二氧化铅中Pb )O 结合能标准值(52910eV)可以断定,此峰对应于二氧化铅中Pb )O 峰.高结合能处峰形较为弥散,很可能是由几个峰重叠所致.Pavlov [3]曾提出普通铅酸蓄电池正极二氧化铅表层的无定形二氧化铅组成为Pb )OH ,其)OH 基团可在XPS 测试氧特征峰中分辨出.从图2(b )可见,样品中氧的特征峰极为复杂,并没有出现特征较为明显的O )H 峰.采用计算机模拟方法,以Pb )O,O )H,S )O 峰位置为依据(其特征峰结合能分别为52817、53012、53118eV),其拟合图与实验曲线吻合较好,其中32应用化学 第17卷Pb )O,O )H ,S )O 峰面积比值分别为39107%,29151%,31142%,O )H 峰的面积比值与文献[3]测试结果一致.因此,可以认为无定形二氧化铅有吸附)OH 基团形成Pb )OH 的能力.表1列出二氧化铅电极Pb ØO 原子比定量分析数据.结果表明:电极中的二氧化铅为非化学计量数,其中表面氧含量(119446Ø1)比按化学计量数(2Ø1)预计的少,可以断定电极表面的二氧化铅存在晶格氧空穴.同时由Pb ØO 原子数比值看出:在计算二氧化铅的非化学计量数时,含与不含O )H 峰差异很大,即电极表面状态对晶体中的氧含量比值起着很大作用.Tab.1 Analysis of lead dioxide electrode ElementAtomic fracti on/%Atomic proportion of lead to oxygen Containing O )H Uncontaini ng O )H Containing O )H Uncontaining O )H O 1s66.0452.551Ø1.94461Ø1.1076Pb 4f 33.9647.442.3 无定形二氧化铅与电极活性的关系由于本文的二氧化铅电极是通过铅镉合金阳极氧化而形成,故合金电极中铅含量大小将影响到二氧化铅电极中无定形物质的含量,进而影响电极的性能.本文测试了铅含量分别为38175%,19114%,9105%的合金电极阳极氧化后形成二氧化铅电极的XRD 谱图,并采用晶型二氧化铅峰高与非晶型二氧化铅峰高比值来表征各样品中无定形二氧化铅的相对含量[4](见表2).表2结果表明,随着合金电极中铅含量的降低其充电态二氧化铅电极的衍射峰高度随之增强,而无定形二氧化铅的峰高虽有变化,但其变化趋势不甚明显.使合金电极中铅含量降低,其二氧化铅结晶性增大,无定形二氧化铅的相对含量随之减小.这种现象是由于合金电极金属含量的不同,造成其界面缺陷度的差异,使得阳极氧化后的二氧化铅缺陷数目有所不同,表现出其结晶性随铅含量降低而增大.Tab.2 C rystallinity and crystal plane parameters of lead dioxideX (Pb)/%Crystal face (110)(101)(211)Noncrystalline Crystallinity 38.75d /nm35.2828.0718.60 3.162H /(b )25.2231.8648.94Diffraction peak /cm -11097123877039219.14d /nm35.1527.9618.55 5.012H /(b )25.3231.9849.06Diffractioni peak/cm -12763340822926809.05d /nm35.1728.0018.589.992H /(b )25.3031.9449.00Diffractioni peak/cm -1443155133235552 图3为合金电极金属含量与放电容量的测试曲线.图中的横坐标为二氧化铅电极的活性物质利用率,为二氧化铅电极放出的实际容量与理论容量之比.理论容量是假设活性物质,全部参加电极的成流反应所给出的电量,它是根据活性物质的质量按照法拉第定律计算求得.以活性物质利用率的高低更能确切地表明电极放电活性的高低.本文采用含铅量不同的电极,在同一标准下比较其电极活性,由图中可以看出合金中铅含量越低,其活性物质利用率越高.由上述结果认为,二氧化铅电极的结晶性越大,其活性物质利用率越高,可以说:无定形二氧化铅对电极的初始电化学活性并非有利.Ruetschi [5]认为二氧化铅的非化学计量数是由二氧化铅晶体中的空穴缺陷引起的子晶格紊乱所造成.这种缺陷引起颗粒间电子传输受阻,影响了二氧化铅晶体整体电化学活性.33第1期黄成德等:二氧化铅电极的晶体结构对放电容量的影响Fig.3 Relation betw een metal content ofalloy elect rode and discharg e capacity oflead diox ide electrode Pavlov [6]认为,在铅酸蓄电池中,二氧化铅存在水化的无定形相,其质子和电子放电机理为:PbO(OH)2+2H ++2e -Pb(OH )2+H 2O Pb(OH)2+H 2SO 4PbSO 4+2H 2O即等量的电子和质子H +分别从板栅和体相溶液中进入二氧化铅(包括未水化的晶体Pb O Pb O 及水化的无定形相OH )Pb )O )Pb )OH),故二氧化铅电极的反应速率以及电化学活性受控于电子和质子在其中的输送.当二氧化铅的无定形相增多时,其晶体的完整度降低.同时无定形相水化后将成为具有类似高分子链性质的链接.由于高分子链的长度有限,以至于不能连接各个晶体,且链间距对导电性也有影响.而二氧化铅电极放电反应所需的电子是由板栅进入二氧化铅,再经过二氧化铅晶体之间的传递到达表面反应区.活性二氧化铅的无定形相越多,则水化程度越高,电极表层的导电性越差,电子在晶格之间的传递将严重受阻,导致电极的电化学活性降低,故电极放出的容量就越小.参 考 文 献1 Anderson J S,Stern M.I nor g N ucl Chem ,1959,11:2722 Caulder S M ,Simon A C.J Electrochem Soc ,1973,120:23943 Pavlov D.J Electr ochem Soc ,1992,139(11):30754 黄成德(HU AN G Cheng -De).[博士学位论文](Doctor al Dissertation).天津(T ianjin):天津大学(T ianjin U niversity),19965 Ruetschi P.J Electrochem Soc ,1992,139(5):13476 Pavlov D,Balkanov I.J Electrochem Soc ,1992,139(7):1830Effect of Crystal Structure of PbO 2Electrodeon Its Discharge CapacityH UANG Cheng -De *,ZHANG H ao,ZHU Song -Ran(School of Chemical Engineering and Technology ,Tianj in Univer sity ,Tianj in 300072)Abstract An active PbO 2electrode w as prepared from Pb -Cd alloy.The existence of amorphous phase in the electrode surface has been confirmed by TEM ,XRD and XPS.The results show ed that the lower the content of Pb in alloy,the higher the crystallinity of the active PbO 2and the discharg e capacity of the electrode.Keywords lead acid battery,PbO 2electrode,crystal structure,discharge capacity 34应用化学 第17卷。

有关铌酸钾钠基无铅压电陶瓷的英文文献翻译

有关铌酸钾钠基无铅压电陶瓷的英文文献翻译

Fe掺杂的钽铌酸钾钠无铅压电陶瓷的结构和压电性能通过传统的陶瓷烧结工艺已经得到一系列的无铅压电陶瓷(1- x/2) K0.5Na0.5Nb0。

95Ta0.05O3-x/2Fe2O3,(其中x=0,0.2,0.4,0.6,0.8,1.0,2.0,3.0mol%)。

研究掺杂离子对陶瓷结构、介电性、压电性能的影响。

Fe2O3的引入,细化了晶粒尺寸、减少了微孔数、增加了陶瓷的密度,从而改善了陶瓷的压电性能和烧结特性。

陶瓷的体密度达到了稳定值,大约为4.52%g/cm3,是理论值的96%。

x=0.4mol%的样品的压电系数(d33=130pC/N)和二维的机电耦合系数(K p=37.2%)最大,这两项与未掺杂样品相比都有显著地提高。

K+、Na+的空位和陶瓷中分散的Fe离子的电荷补偿减小了畴壁运动,这可能是导致陶瓷结构和电学性能提高的原因。

低浓度掺杂时,Fe2O3被认为是碱性铌酸盐的“软性”添加物。

一、简介(K,Na)NbO3基的无铅压电陶瓷作为铅基压电陶瓷的潜在替代物,已被广泛地研究。

因为它不仅有很好的压电性能而且环保。

然而,与传统的含铅压电陶瓷相比,它离商业应用还很远。

传统的压电陶瓷如:Pb(Zr,Ti)O3和Pb(Mg1/3Nb2/3)O3-PbTiO3。

提高铌酸钾钠基无铅压电陶瓷的性能,可通过Li、Ta、Sb改性或是与其他ABO3型化合物(如:BaTiO3、SrTiO3、BiMeO3、AgNbO3、Bi0.5Na0.5TiO3)形成固溶体,在这方面人们作出了很多的努力。

这一系列陶瓷的高的压电效应,归因于立方相与单斜相的变形的相界的影响。

有报道给出铌酸钾钠基无铅压电陶瓷的压电系数很高d33>200 pC/N。

但是最后发现铌酸钾钠基陶瓷的性能的提高实际上是由于铁电立方相——单斜相的相变温度降至室温附近引起的。

这种由于替代产生的相变成为多晶相变。

然而,相变温度的变化会导致强烈的温度依赖性,对于实际应用来说这是个致命的问题。

含硒光催化剂

含硒光催化剂

含硒光催化剂下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!含硒光催化剂在环境保护和能源利用领域具有重要应用价值。

物理化学基本概念

物理化学基本概念

物理化学概念及术语A B C D E F G H I J K L M N O P Q R S T U V W X Y Z概念及术语 (16)BET公式BET formula (16)DLVO理论 DLVO theory (16)HLB法hydrophile-lipophile balance method (16)pVT性质 pVT property (16)ζ电势 zeta potential (16)阿伏加德罗常数 Avogadro’number (16)阿伏加德罗定律 Avogadro law (16)阿累尼乌斯电离理论Arrhenius ionization theory (16)阿累尼乌斯方程Arrhenius equation (17)阿累尼乌斯活化能 Arrhenius activation energy (17)阿马格定律 Amagat law (17)艾林方程 Erying equation (17)爱因斯坦光化当量定律 Einstein’s law of photochemical equivalence (17)爱因斯坦-斯托克斯方程 Einstein-Stokes equation (17)安托万常数 Antoine constant (17)安托万方程 Antoine equation (17)盎萨格电导理论Onsager’s theory of conductance (17)半电池half cell (17)半衰期half time period (18)饱和液体 saturated liquids (18)饱和蒸气 saturated vapor (18)饱和吸附量 saturated extent of adsorption (18)饱和蒸气压 saturated vapor pressure (18)爆炸界限 explosion limits (18)比表面功 specific surface work (18)比表面吉布斯函数 specific surface Gibbs function (18)比浓粘度 reduced viscosity (18)标准电动势 standard electromotive force (18)标准电极电势 standard electrode potential (18)标准摩尔反应焓 standard molar reaction enthalpy (18)标准摩尔反应吉布斯函数 standard Gibbs function of molar reaction (18)标准摩尔反应熵 standard molar reaction entropy (19)标准摩尔焓函数 standard molar enthalpy function (19)标准摩尔吉布斯自由能函数 standard molar Gibbs free energy function (19)标准摩尔燃烧焓 standard molar combustion enthalpy (19)标准摩尔熵 standard molar entropy (19)标准摩尔生成焓 standard molar formation enthalpy (19)标准摩尔生成吉布斯函数 standard molar formation Gibbs function (19)标准平衡常数 standard equilibrium constant (19)标准氢电极 standard hydrogen electrode (19)标准态 standard state (19)标准熵 standard entropy (20)标准压力 standard pressure (20)标准状况 standard condition (20)表观活化能apparent activation energy (20)表观摩尔质量 apparent molecular weight (20)表观迁移数apparent transference number (20)表面 surfaces (20)表面过程控制 surface process control (20)表面活性剂surfactants (21)表面吸附量 surface excess (21)表面张力 surface tension (21)表面质量作用定律 surface mass action law (21)波义尔定律 Boyle law (21)波义尔温度 Boyle temperature (21)波义尔点 Boyle point (21)玻尔兹曼常数 Boltzmann constant (22)玻尔兹曼分布 Boltzmann distribution (22)玻尔兹曼公式 Boltzmann formula (22)玻尔兹曼熵定理 Boltzmann entropy theorem (22)泊Poise (22)不可逆过程 irreversible process (22)不可逆过程热力学thermodynamics of irreversible processes (22)不可逆相变化 irreversible phase change (22)布朗运动 brownian movement (22)查理定律 Charle’s law (22)产率 yield (23)敞开系统 open system (23)超电势 over potential (23)沉降 sedimentation (23)沉降电势 sedimentation potential (23)沉降平衡 sedimentation equilibrium (23)触变 thixotropy (23)粗分散系统 thick disperse system (23)催化剂 catalyst (23)单分子层吸附理论 mono molecule layer adsorption (23)单分子反应 unimolecular reaction (23)单链反应 straight chain reactions (24)弹式量热计 bomb calorimeter (24)道尔顿定律 Dalton law (24)道尔顿分压定律 Dalton partial pressure law (24)德拜和法尔肯哈根效应Debye and Falkenhagen effect (24)德拜立方公式 Debye cubic formula (24)德拜-休克尔极限公式 Debye-Huckel’s limiting equation (24)等焓过程 isenthalpic process (24)等焓线isenthalpic line (24)等几率定理 theorem of equal probability (24)等温等容位Helmholtz free energy (25)等温等压位Gibbs free energy (25)等温方程 equation at constant temperature (25)低共熔点 eutectic point (25)低共熔混合物 eutectic mixture (25)低会溶点 lower consolute point (25)低熔冰盐合晶 cryohydric (26)第二类永动机 perpetual machine of the second kind (26)第三定律熵 Third-Law entropy (26)第一类永动机 perpetual machine of the first kind (26)缔合化学吸附 association chemical adsorption (26)电池常数 cell constant (26)电池电动势 electromotive force of cells (26)电池反应 cell reaction (27)电导 conductance (27)电导率 conductivity (27)电动势的温度系数 temperature coefficient of electromotive force (27)电动电势 zeta potential (27)电功electric work (27)电化学 electrochemistry (27)电化学极化 electrochemical polarization (27)电极电势 electrode potential (27)电极反应 reactions on the electrode (27)电极种类 type of electrodes (27)电解池 electrolytic cell (28)电量计 coulometer (28)电流效率current efficiency (28)电迁移 electro migration (28)电迁移率 electromobility (28)电渗 electroosmosis (28)电渗析 electrodialysis (28)电泳 electrophoresis (28)丁达尔效应 Dyndall effect (28)定容摩尔热容 molar heat capacity under constant volume (28)定容温度计 Constant voIume thermometer (28)定压摩尔热容 molar heat capacity under constant pressure (29)定压温度计 constant pressure thermometer (29)定域子系统 localized particle system (29)动力学方程kinetic equations (29)动力学控制 kinetics control (29)独立子系统 independent particle system (29)对比摩尔体积 reduced mole volume (29)对比体积 reduced volume (29)对比温度 reduced temperature (29)对比压力 reduced pressure (29)对称数 symmetry number (29)对行反应reversible reactions (29)对应状态原理 principle of corresponding state (29)多方过程polytropic process (30)多分子层吸附理论 adsorption theory of multi-molecular layers (30)二级反应second order reaction (30)二级相变second order phase change (30)法拉第常数 faraday constant (31)法拉第定律 Faraday’s law (31)反电动势back E.M.F. (31)反渗透 reverse osmosis (31)反应分子数 molecularity (31)反应级数 reaction orders (31)反应进度 extent of reaction (32)反应热heat of reaction (32)反应速率rate of reaction (32)反应速率常数 constant of reaction rate (32)范德华常数 van der Waals constant (32)范德华方程 van der Waals equation (32)范德华力 van der Waals force (32)范德华气体 van der Waals gases (32)范特霍夫方程 van’t Hoff equation (32)范特霍夫规则 van’t Hoff rule (33)范特霍夫渗透压公式 van’t Hoff equation of osmotic pressure (33)非基元反应 non-elementary reactions (33)非体积功 non-volume work (33)非依时计量学反应 time independent stoichiometric reactions (33)菲克扩散第一定律 Fick’s first law of diffusion (33)沸点 boiling point (33)沸点升高 elevation of boiling point (33)费米-狄拉克统计Fermi-Dirac statistics (33)分布 distribution (33)分布数 distribution numbers (34)分解电压 decomposition voltage (34)分配定律 distribution law (34)分散系统 disperse system (34)分散相 dispersion phase (34)分体积 partial volume (34)分体积定律 partial volume law (34)分压 partial pressure (34)分压定律 partial pressure law (34)分子反应力学 mechanics of molecular reactions (34)分子间力 intermolecular force (34)分子蒸馏molecular distillation (35)封闭系统 closed system (35)附加压力 excess pressure (35)弗罗因德利希吸附经验式 Freundlich empirical formula of adsorption (35)负极 negative pole (35)负吸附 negative adsorption (35)复合反应composite reaction (35)盖.吕萨克定律 Gay-Lussac law (35)盖斯定律 Hess law (35)甘汞电极 calomel electrode (35)感胶离子序 lyotropic series (35)杠杆规则 lever rule (35)高分子溶液 macromolecular solution (36)高会溶点 upper consolute point (36)隔离法the isolation method (36)格罗塞斯-德雷珀定律 Grotthus-Draoer’s law (36)隔离系统 isolated system (37)根均方速率 root-mean-square speed (37)功 work (37)功函work content (37)共轭溶液 conjugate solution (37)共沸温度 azeotropic temperature (37)构型熵configurational entropy (37)孤立系统 isolated system (37)固溶胶 solid sol (37)固态混合物 solid solution (38)固相线 solid phase line (38)光反应 photoreaction (38)光化学第二定律 the second law of actinochemistry (38)光化学第一定律 the first law of actinochemistry (38)光敏反应 photosensitized reactions (38)光谱熵 spectrum entropy (38)广度性质 extensive property (38)广延量 extensive quantity (38)广延性质 extensive property (38)规定熵 stipulated entropy (38)过饱和溶液 oversaturated solution (38)过饱和蒸气 oversaturated vapor (38)过程 process (39)过渡状态理论 transition state theory (39)过冷水 super-cooled water (39)过冷液体 overcooled liquid (39)过热液体 overheated liquid (39)亥姆霍兹函数 Helmholtz function (39)亥姆霍兹函数判据 Helmholtz function criterion (39)亥姆霍兹自由能 Helmholtz free energy (39)亥氏函数 Helmholtz function (39)焓 enthalpy (39)亨利常数 Henry constant (39)亨利定律 Henry law (39)恒沸混合物 constant boiling mixture (40)恒容摩尔热容 molar heat capacity at constant volume (40)恒容热 heat at constant volume (40)恒外压 constant external pressure (40)恒压摩尔热容 molar heat capacity at constant pressure (40)恒压热 heat at constant pressure (40)化学动力学chemical kinetics (40)化学反应计量式 stoichiometric equation of chemical reaction (40)化学反应计量系数 stoichiometric coefficient of chemical reaction (40)化学反应进度 extent of chemical reaction (41)化学亲合势 chemical affinity (41)化学热力学chemical thermodynamics (41)化学势 chemical potential (41)化学势判据 chemical potential criterion (41)化学吸附 chemisorptions (41)环境 environment (41)环境熵变 entropy change in environment (41)挥发度volatility (41)混合熵 entropy of mixing (42)混合物 mixture (42)活度 activity (42)活化控制 activation control (42)活化络合物理论 activated complex theory (42)活化能activation energy (43)霍根-华森图 Hougen-Watson Chart (43)基态能级 energy level at ground state (43)基希霍夫公式 Kirchhoff formula (43)基元反应elementary reactions (43)积分溶解热 integration heat of dissolution (43)吉布斯-杜亥姆方程 Gibbs-Duhem equation (43)吉布斯-亥姆霍兹方程 Gibbs-Helmhotz equation (43)吉布斯函数 Gibbs function (43)吉布斯函数判据 Gibbs function criterion (44)吉布斯吸附公式Gibbs adsorption formula (44)吉布斯自由能 Gibbs free energy (44)吉氏函数 Gibbs function (44)极化电极电势 polarization potential of electrode (44)极化曲线 polarization curves (44)极化作用 polarization (44)极限摩尔电导率 limiting molar conductivity (44)几率因子 steric factor (44)计量式 stoichiometric equation (44)计量系数 stoichiometric coefficient (45)价数规则 rule of valence (45)简并度 degeneracy (45)键焓bond enthalpy (45)胶冻 broth jelly (45)胶核 colloidal nucleus (45)胶凝作用 demulsification (45)胶束micelle (45)胶体 colloid (45)胶体分散系统 dispersion system of colloid (45)胶体化学 collochemistry (45)胶体粒子 colloidal particles (45)胶团 micelle (45)焦耳Joule (45)焦耳-汤姆生实验 Joule-Thomson experiment (46)焦耳-汤姆生系数 Joule-Thomson coefficient (46)焦耳-汤姆生效应 Joule-Thomson effect (46)焦耳定律 Joule's law (46)接触电势contact potential (46)接触角 contact angle (46)节流过程 throttling process (46)节流膨胀 throttling expansion (46)节流膨胀系数 coefficient of throttling expansion (46)结线 tie line (46)结晶热heat of crystallization (47)解离化学吸附 dissociation chemical adsorption (47)界面 interfaces (47)界面张力 surface tension (47)浸湿 immersion wetting (47)浸湿功 immersion wetting work (47)精馏 rectify (47)聚(合)电解质polyelectrolyte (47)聚沉 coagulation (47)聚沉值 coagulation value (47)绝对反应速率理论 absolute reaction rate theory (47)绝对熵 absolute entropy (47)绝对温标absolute temperature scale (48)绝热过程 adiabatic process (48)绝热量热计adiabatic calorimeter (48)绝热指数 adiabatic index (48)卡诺定理 Carnot theorem (48)卡诺循环 Carnot cycle (48)开尔文公式 Kelvin formula (48)柯诺瓦洛夫-吉布斯定律 Konovalov-Gibbs law (48)科尔劳施离子独立运动定律 Kohlrausch’s Law of Independent Migration of Ions (48)可能的电解质potential electrolyte (49)可逆电池 reversible cell (49)可逆过程 reversible process (49)可逆过程方程 reversible process equation (49)可逆体积功 reversible volume work (49)可逆相变 reversible phase change (49)克拉佩龙方程 Clapeyron equation (49)克劳修斯不等式 Clausius inequality (49)克劳修斯-克拉佩龙方程 Clausius-Clapeyron equation (49)控制步骤 control step (50)库仑计 coulometer (50)扩散控制 diffusion controlled (50)拉普拉斯方程 Laplace’s equation (50)拉乌尔定律 Raoult law (50)兰格缪尔-欣谢尔伍德机理 Langmuir-Hinshelwood mechanism (50)雷利公式 Rayleigh equation (50)兰格缪尔吸附等温式 Langmuir adsorption isotherm formula (50)冷冻系数coefficient of refrigeration (50)冷却曲线 cooling curve (51)离解热heat of dissociation (51)离解压力dissociation pressure (51)离域子系统 non-localized particle systems (51)离子的标准摩尔生成焓 standard molar formation of ion (51)离子的电迁移率 mobility of ions (51)离子的迁移数 transport number of ions (51)离子独立运动定律 law of the independent migration of ions (51)离子氛 ionic atmosphere (51)离子强度 ionic strength (51)理想混合物 perfect mixture (52)理想气体 ideal gas (52)理想气体的绝热指数 adiabatic index of ideal gases (52)理想气体的微观模型 micro-model of ideal gas (52)理想气体反应的等温方程 isothermal equation of ideal gaseous reactions (52)理想气体绝热可逆过程方程 adiabatic reversible process equation of ideal gases (52)理想气体状态方程 state equation of ideal gas (52)理想稀溶液 ideal dilute solution (52)理想液态混合物 perfect liquid mixture (52)粒子 particles (52)粒子的配分函数 partition function of particles (53)连串反应consecutive reactions (53)链的传递物 chain carrier (53)链反应 chain reactions (53)量热熵 calorimetric entropy (53)量子统计quantum statistics (53)量子效率 quantum yield (53)临界参数 critical parameter (53)临界常数 critical constant (53)临界点 critical point (53)临界胶束浓度critical micelle concentration (53)临界摩尔体积 critical molar volume (54)临界温度 critical temperature (54)临界压力 critical pressure (54)临界状态 critical state (54)零级反应zero order reaction (54)流动电势 streaming potential (54)流动功 flow work (54)笼罩效应 cage effect (54)路易斯-兰德尔逸度规则 Lewis-Randall rule of fugacity (54)露点 dew point (54)露点线 dew point line (54)麦克斯韦关系式 Maxwell relations (55)麦克斯韦速率分布 Maxwell distribution of speeds (55)麦克斯韦能量分布 MaxwelIdistribution of energy (55)毛细管凝结 condensation in capillary (55)毛细现象 capillary phenomena (55)米凯利斯常数 Michaelis constant (55)摩尔电导率 molar conductivity (56)摩尔反应焓 molar reaction enthalpy (56)摩尔混合熵 mole entropy of mixing (56)摩尔气体常数 molar gas constant (56)摩尔热容 molar heat capacity (56)摩尔溶解焓 mole dissolution enthalpy (56)摩尔稀释焓 mole dilution enthalpy (56)内扩散控制 internal diffusions control (56)内能 internal energy (56)内压力 internal pressure (56)能级 energy levels (56)能级分布 energy level distribution (57)能量均分原理 principle of the equipartition of energy (57)能斯特方程 Nernst equation (57)能斯特热定理 Nernst heat theorem (57)凝固点 freezing point (57)凝固点降低 lowering of freezing point (57)凝固点曲线 freezing point curve (58)凝胶 gelatin (58)凝聚态 condensed state (58)凝聚相 condensed phase (58)浓差超电势 concentration over-potential (58)浓差极化 concentration polarization (58)浓差电池 concentration cells (58)帕斯卡pascal (58)泡点 bubble point (58)泡点线 bubble point line (58)配分函数 partition function (58)配分函数的析因子性质 property that partition function to be expressed as a product of the separate partition functions for each kind of state (58)碰撞截面 collision cross section (59)碰撞数 the number of collisions (59)偏摩尔量 partial mole quantities (59)平衡常数(理想气体反应) equilibrium constants for reactions of ideal gases (59)平动配分函数 partition function of translation (59)平衡分布 equilibrium distribution (59)平衡态 equilibrium state (60)平衡态近似法 equilibrium state approximation (60)平衡状态图 equilibrium state diagram (60)平均活度 mean activity (60)平均活度系统 mean activity coefficient (60)平均摩尔热容 mean molar heat capacity (60)平均质量摩尔浓度 mean mass molarity (60)平均自由程mean free path (60)平行反应parallel reactions (61)破乳 demulsification (61)铺展 spreading (61)普遍化范德华方程 universal van der Waals equation (61)其它功 the other work (61)气化热heat of vaporization (61)气溶胶 aerosol (61)气体常数 gas constant (61)气体分子运动论 kinetic theory of gases (61)气体分子运动论的基本方程 foundamental equation of kinetic theory of gases (62)气溶胶 aerosol (62)气相线 vapor line (62)迁移数 transport number (62)潜热latent heat (62)强度量 intensive quantity (62)强度性质 intensive property (62)亲液溶胶 hydrophilic sol (62)氢电极 hydrogen electrodes (62)区域熔化zone melting (62)热 heat (62)热爆炸 heat explosion (62)热泵 heat pump (63)热功当量mechanical equivalent of heat (63)热函heat content (63)热化学thermochemistry (63)热化学方程thermochemical equation (63)热机 heat engine (63)热机效率 efficiency of heat engine (63)热力学 thermodynamics (63)热力学第二定律 the second law of thermodynamics (63)热力学第三定律 the third law of thermodynamics (63)热力学第一定律 the first law of thermodynamics (63)热力学基本方程 fundamental equation of thermodynamics (64)热力学几率 thermodynamic probability (64)热力学能 thermodynamic energy (64)热力学特性函数characteristic thermodynamic function (64)热力学温标thermodynamic scale of temperature (64)热力学温度thermodynamic temperature (64)热熵thermal entropy (64)热效应heat effect (64)熔点曲线 melting point curve (64)熔化热heat of fusion (64)溶胶 colloidal sol (65)溶解焓 dissolution enthalpy (65)溶液 solution (65)溶胀 swelling (65)乳化剂 emulsifier (65)乳状液 emulsion (65)润湿 wetting (65)润湿角 wetting angle (65)萨克尔-泰特洛德方程 Sackur-Tetrode equation (66)三相点 triple point (66)三相平衡线 triple-phase line (66)熵 entropy (66)熵判据 entropy criterion (66)熵增原理 principle of entropy increase (66)渗透压 osmotic pressure (66)渗析法 dialytic process (67)生成反应 formation reaction (67)升华热heat of sublimation (67)实际气体 real gas (67)舒尔采-哈迪规则 Schulze-Hardy rule (67)松驰力relaxation force (67)松驰时间time of relaxation (67)速度常数reaction rate constant (67)速率方程rate equations (67)速率控制步骤rate determining step (68)塔费尔公式 Tafel equation (68)态-态反应 state-state reactions (68)唐南平衡 Donnan equilibrium (68)淌度 mobility (68)特鲁顿规则 Trouton rule (68)特性粘度 intrinsic viscosity (68)体积功 volume work (68)统计权重 statistical weight (68)统计热力学 statistic thermodynamics (68)统计熵 statistic entropy (68)途径 path (68)途径函数 path function (69)外扩散控制 external diffusion control (69)完美晶体 perfect crystalline (69)完全气体 perfect gas (69)微观状态 microstate (69)微态 microstate (69)韦斯顿标准电池 Weston standard battery (69)维恩效应Wien effect (69)维里方程 virial equation (69)维里系数 virial coefficient (69)稳流过程 steady flow process (69)稳态近似法 stationary state approximation (69)无热溶液athermal solution (70)无限稀溶液 solutions in the limit of extreme dilution (70)物理化学 Physical Chemistry (70)物理吸附 physisorptions (70)吸附 adsorption (70)吸附等量线 adsorption isostere (70)吸附等温线 adsorption isotherm (70)吸附等压线 adsorption isobar (70)吸附剂 adsorbent (70)吸附量 extent of adsorption (70)吸附热 heat of adsorption (70)吸附质 adsorbate (70)析出电势 evolution or deposition potential (71)稀溶液的依数性 colligative properties of dilute solutions (71)稀释焓 dilution enthalpy (71)系统 system (71)系统点 system point (71)系统的环境 environment of system (71)相 phase (71)相变 phase change (71)相变焓 enthalpy of phase change (71)相变化 phase change (71)相变热 heat of phase change (71)相点 phase point (71)相对挥发度relative volatility (72)相对粘度 relative viscosity (72)相律 phase rule (72)相平衡热容heat capacity in phase equilibrium (72)相图 phase diagram (72)相倚子系统 system of dependent particles (72)悬浮液 suspension (72)循环过程 cyclic process (72)压力商 pressure quotient (72)压缩因子 compressibility factor (73)压缩因子图 diagram of compressibility factor (73)亚稳状态 metastable state (73)盐桥 salt bridge (73)盐析 salting out (73)阳极 anode (73)杨氏方程 Young’s equation (73)液体接界电势 liquid junction potential (73)液相线 liquid phase lines (73)一级反应first order reaction (73)一级相变first order phase change (74)依时计量学反应 time dependent stoichiometric reactions (74)逸度 fugacity (74)逸度系数 coefficient of fugacity (74)阴极 cathode (75)荧光 fluorescence (75)永动机 perpetual motion machine (75)永久气体 Permanent gas (75)有效能 available energy (75)原电池 primary cell (75)原盐效应 salt effect (75)增比粘度 specific viscosity (75)憎液溶胶 lyophobic sol (75)沾湿 adhesional wetting (75)沾湿功 the work of adhesional wetting (75)真溶液 true solution (76)真实电解质real electrolyte (76)真实气体 real gas (76)真实迁移数true transference number (76)振动配分函数 partition function of vibration (76)振动特征温度 characteristic temperature of vibration (76)蒸气压下降 depression of vapor pressure (76)正常沸点 normal point (76)正吸附 positive adsorption (76)支链反应 branched chain reactions (76)直链反应 straight chain reactions (77)指前因子 pre-exponential factor (77)质量作用定律mass action law (77)制冷系数coefficient of refrigeration (77)中和热heat of neutralization (77)轴功 shaft work (77)转动配分函数 partition function of rotation (77)转动特征温度 characteristic temperature of vibration (78)转化率 convert ratio (78)转化温度conversion temperature (78)状态 state (78)状态方程 state equation (78)状态分布 state distribution (78)状态函数 state function (78)准静态过程quasi-static process (78)准一级反应 pseudo first order reaction (78)自动催化作用 auto-catalysis (78)自由度 degree of freedom (78)自由度数 number of degree of freedom (79)自由焓free enthalpy (79)自由能free energy (79)自由膨胀free expansion (79)组分数 component number (79)最低恒沸点 lower azeotropic point (79)最高恒沸点 upper azeotropic point (79)最佳反应温度 optimal reaction temperature (79)最可几分布 most probable distribution (80)最可几速率 most propable speed (80)概念及术语BET公式BET formula1938年布鲁瑙尔(Brunauer)、埃米特(Emmett)和特勒(Teller)三人在兰格缪尔单分子层吸附理论的基础上提出多分子层吸附理论。

LaBO_3钙钛矿催化剂的VOCs催化燃烧特性

LaBO_3钙钛矿催化剂的VOCs催化燃烧特性

( c s ezn )I o t tL C O n a O3 rsne i e r c x gnbcueo ss utrs f no s h a ne e.nc n a , a o 3adL Ni eetdr h r uf eo y e ea s fi t c e o in u b r s p c s a t r u a dfcsadwee o dctls r aa t o ut no y eae eet n r o ayt f tl i cmb s o f x g ntd , g a so c y c i o VOC ( c s ty ct e n ctn ) s s ha h l e t a d eo e. u e a a a
C a al i pr pe te o BO 3 t ytc o r i s f La pe ov kie a al t i VO C s o busi n. ZH OU Yi g,LU Ha fng,ZHA N G r s t c t yss n c m to n n-e
Ho gh a C E Y nfi ( stt f aa t ec o n ier g C l g f hmia E gn eigadMa r l n -u , H N i— 。I tueo tl i R at nE g ei , ol e e cl n ier n t i s e ni C yc i n n e oC n e a S i c , hj n nv r t f eh oo y H n z o 04 C ia. hn n i n e tl cec, 0 23 (O: c n e Z ei gU iesyo c nlg , ag h u3 1, hn ) C iaE v o m na ine 2 1, 1) e a i T 1 0 r S 2

氯化钠溶液随温度变化的太赫兹光谱研究

氯化钠溶液随温度变化的太赫兹光谱研究

第38卷,第10期 光谱学与光谱分析Vol.38,No.10,pp341-3422 0 1 8年1 0月 Spectroscopy and Spectral Analysis October,2018 氯化钠溶液随温度变化的太赫兹光谱研究王梦颖,周子涵,黄美娇,左 剑*,张存林太赫兹光电子学教育部重点实验室,首都师范大学物理系,北京 100048摘 要 太赫兹时域光谱技术是一种宽带宽,高灵敏度的相干探测技术,并且太赫兹光谱可以反应分子的振动和转动信息和分子间相互作用信息,能够用于药品分析、医学诊断、溶液动力学等多个领域。

氯化钠是人类生理活动必需的物质,对维持人体内体液以及渗透压的平衡起着非常重要的作用。

由于温度的变化和浓度的变化都会对氯化钠水溶液的介电性质以及分子间的相互作用产生影响,应用太赫兹时域光谱技术测量了不同浓度、不同温度环境下,0.2~1.5THz频率范围内氯化钠溶液的时域光谱。

研究发现,氯化钠溶液的太赫兹时域光谱中所有的时域最大峰都随着浓度和温度作规律性变化,表现在其折射率对水溶液的浓度更敏感,温度变化对不同浓度的水溶液的吸收系数影响更大。

通过这些规律性变化,可以为更好地来分析水溶液的分子动力学信息提供依据。

关键词 太赫兹时域光谱;氯化钠溶液;浓度;温度文献标识码:A 文章编号:1000-0593(2018)10-0341-02 收稿日期:2018-04-30,修订日期:2018-07-01 基金项目:国家科技部“国家重大科学仪器设备开发专项”基金项目(DH-2012YQ14005-09-01),国家自然科学基金项目(11204190),北京市教育委员会科技计划面上项目(KM201610028005)资助 作者简介:王梦颖,1995年生,首都师范大学太赫兹光电子学教育部重点实验室硕士生*通讯联系人 e-mail:zuoj@cnu.edu.cn 氯化钠作为一种生物组织不可缺少的重要物质,其水溶液的光谱研究具有很高的医用和药用价值。

工作温度过高会造成固体氧化物燃料电池(SOFC)密封困难

工作温度过高会造成固体氧化物燃料电池(SOFC)密封困难

摘要工作温度过高会造成固体氧化物燃料电池(SOFC)密封困难、构件不匹配、工作寿命短、运行成本高等诸多问题。

降低SOFC工作温度的一个重要途径就是开发高性能的电池材料。

钙钛矿型La1-x Sr x Ga1-y Mg y O3(LSGM)材料在中温(800℃左右)范围内,很宽的氧分压下,具有较高的离子电导率,是最有希望实现SOFC中温化操作的电解质备选材料之一。

采用传统固相法制备LSGM材料时,长时间的高温烧结,易造成原料组分挥发,产生SrLa(GaO4)等杂相。

本论文的研究内容之一就是通过改进实验条件,制备具有单一钙钛矿结构的LSGM材料,并对其性能进行研究。

LSGM电解质材料研究的另一个重要任务是开发与之相匹配的电极材料。

钙钛矿型LaCrO3基掺杂材料具有较高的电子—离子混合电导率、优良的催化性能及较好的对硫容忍性。

萤石型CeO2基掺杂材料在还原气氛下具有较高的电子—离子电导率和催化性能。

因此,LaCrO3基和CeO2基掺杂材料是潜在的适用于以碳氢化合物为燃料的SOFC阳极材料,设计合成这两类新型阳极材料并探索把其用于LSGM电解质的可行性,具有十分重要的意义。

作者用TG-DTA、XRD、XPS、SEM、EDS、TPR、粒度分析、交流阻抗、直流四探针等技术对材料的性能进行了系统的研究。

提出了“低温热处理—机械活化—高温烧结”的改进固相法制备LSGM电解质材料的工艺流程,并对LSGM材料的生成机理进行了探讨。

在1450℃烧结24h 后,得到了具有单一钙钛矿结构的LSGM材料,没有发现SrLaGa3O7等杂相,且烧结温度较低。

在1480℃下烧结24h所得LSGM样品的相对密度高达99%,且其在850℃的离子电导率为0.08S/cm,可以用作中温SOFC的电解质材料。

用甘氨酸-硝酸盐法(GNP法)合成LSGM材料时,在1400℃下烧结20h后,材料即有单一钙钛矿结构,且其晶界电阻较小,但用此法所得LSGM样品的相对密度仅为87%。

分析化学考研面试问题。

分析化学考研面试问题。

药物分析实验典型问题1、鉴别检查在药品质量控制中的意义及一般杂质检查的主要项目是什么? What are thepurposes of drug identification and test? What are the usual items of drug tests?.2、比色比浊操作应遵循的原则是什么? What are the standard operation procedures forthe clarity test?3、试计算葡萄糖重金属检查中标准铅溶液的取用量。

How much of the lead standardsolution should be taken for the limit test for heavy metals in this experiment?4、古蔡氏试砷法中所加各试剂的作用与操作注意点是什么? What precautions shouldbe taken for the limit test for arsenic(Appendix VIII J,method 1)? And what is the function for each of the test solutions added?5、根据样品取用量、杂质限量及标准砷溶液的浓度,计算标准砷溶液的取用量。

Figure outthe amount of the arsenic standard solution that should be taken for the limit test for arsenic(Appendix VIII J,method 1) (0.0001%) in this experiment with the specified quantity of 2.0 g of sample.6、炽灼残渣测定的成败关键是什么?什么是恒重?What is the key step during thedetermination of residue on ignition? What does ‘ignite or dry to constant weight’mean?7、盐酸普鲁卡因的鉴别原理是什么?What are the principles of the identification ofProcaine Hydrochloride.8、盐酸普鲁卡因注射液中为什么要检查对氨基苯甲酸?Why is the limit of4-aminobenzoic acid tested for Procaine Hydrochloride?9、薄层色谱法检查药物中有关物质的方法通常有哪几种类型?本实验属于哪种?与其它方法有何异同点? How many kinds of the limit tests for related compounds are there?What are the differences between them? Which one is used for the limit test of 4-amino-benzoic acid in Procaine Hydrochloride Injection?10、醋酸氢化可的松的鉴别原理是什么?What are the principles of the identification ofhydrocortisone acetate?11、甾体激素中“其它甾体”检查的意义和常用方法是什么?What are the commonly usedmethod for and the significance of the limit test for other steroids for the steroidal drugs?12、哪类甾体激素可与四氮唑蓝产生反应,是结构中的何种基团参与了反应,反应式是什么?What kind of steroidal drugs can react with the alkaline tetrazolium blue TS?What is the chemical reaction equation?13、氯贝丁酯的鉴别原理是什么?What are the principles of the identification ofclofibrate?14、氯贝丁酯中为什么要检查对氯酚?其方法及原理是什么?Why is the limit ofp-Chlorophenol tested for clofibrate? What kind of method is employed for the test and what is the principle?15、气相色谱法检查杂质有哪些方法,试比较各种方法的特点?How many types ofmethods are there for the test of related compounds by the gas chromatography?What are the differences between them?16、抗生素类药物的鉴别和检查有何特点?What are the characteristics for theidentification and tests of antibiotics?17、钠盐的焰色反应应注意什么?What precautions should be taken during the flamereaction of sodium salts?18、本品吸收度检查的意义是什么?What is the purpose of the light absorption tests forbenzylpenicillin sodium?19、药物晶型测定的常用方法有哪些,各有什么特点?What are the commonly usedmethods for the test of polymorphism? And what are the characteristics of each of them?20、吸收系数测定方法与要求?What are the standard operation procedures for theestablishment of specific absorbance?21、写出异烟肼与溴酸钾的滴定反应式和滴定度的计算过程。

最新锂亚硫酰氯电池热控制研究现状复习过程

最新锂亚硫酰氯电池热控制研究现状复习过程

锂亚硫酰氯电池热控制研究现状收藏此信息推荐给好友2009-6-23 来源:机电商情网1 引言锂是金属中最轻和电势最负的一种元素,锂亚硫酰氯(Li/SOCl2)电池是一种以锂为负极,碳作正极,无水四氯铝酸锂的亚硫酰氯(SOCl2)溶液作电解液的锂电池。

Li/SOCl2电池具有比能量高、比功率大、放电电压平稳、储存寿命长等特性,在航天器、水中兵器、导航设备等军事和民用工业中都有广泛的应用。

不同电池的比能量与比功率关系如图1所示[1] [2]。

从图中可以看出,Li/SOCl2电池是比能量和比功率最高的电池。

大型Li/SOCl2电池主要用于不依靠工业电源的军事用途,作为一种无须充电的备用电源,如导弹深井发射时的地面备用电源等,一次锂电池在军事装备中的特殊功能,是其他电池无法替代的[3][4]。

Li/SOCl2电池存在的主要问题是电压滞后与安全问题,其中安全问题是最主要的问题。

锂电池在使用过程中发生化学反应,产生热量不能及时有效地散发,就会在电池内部积累热量,引起电池的升温,进一步促使反应的加剧,形成产热与温升的正反馈,当热量积累到一定程度的时候,就有鼓胀、泄漏、着火、爆炸等危险,这种现象被称之为热失控。

因此,分析电池的热特性,并有针对性地使用热控措施,迅速导出电池放出的热量,减少电池内部热量积累,防止热失控,保证电池的安全,具有十分重要的意义。

2 Li/SOCl2电池发热机理研究有关Li/SOCl2电池的发热机理的研究主要侧重于深入了解电池内部化学机理,建立电池热模型,目的是减少电池放电发热量和热流密度。

分别从传热学、电学和化学角度分析,电池热模型有三种不同的形式。

从传热学角度分析,假设单体电池温度内部均匀,应用傅立叶导热定律,可以得出电池热平衡控制方程为[5](1)上式中:为电池密度(kg/m3),cp为定压比热容(J/(kg﹒K)-1),T为电池温度(K),t为时间(s),为导热系数(W/(m﹒K)-1),为单位体积热生成率(W/m3)。

添加二氧化钛氧化铝的烧结 英文翻译

添加二氧化钛氧化铝的烧结 英文翻译

添加二氧化钛氧化铝的烧结CH婷,UNIVERSITI 国家能源阵,马来西亚C。

华谭,UNIVERSITI 国家能源阵,马来西亚S.拉梅什*,UNIVERSITI 国家能源阵,马来西亚WD腾,SIRIM Berhad公司,马来西亚摘要二氧化钛(TiO2)添加剂对氧化铝(Al2O3)烧结的影响进行了研究。

在本研究中,在空气中从1250℃至1600℃温度范围内进行无压烧结制备了样品。

对烧结体进行了测试,以确定体积密度、硬度和杨氏模量。

结果表明,所有掺杂TiO2的样品比未掺杂的样品具有较高的堆积密度。

结果发现,随着温度的升高,堆积密度逐渐增大。

在1450℃下,最大值为掺杂有1.0 wt%的TiO2 烧结的样品,堆积密度达到3.9米Mgm-3。

该研究显示,所需添加剂的最佳用量为1 wt%,烧结体呈现最高的杨氏模量为381 GPa和维氏硬度比为16.5 GPa,未掺杂的氧化铝的杨氏模量为256.7 GPa和维氏硬度比为11.2 GPA。

掺杂氧化钛是改善的Al2O3的致密化,而不会影响机械性能的一个经济的方法。

关键词:氧化铝,氧化钛,烧结,力学性能1引言氧化铝是最成熟的工程陶瓷,具有高硬度、良好的耐磨性和优良的电绝缘性能,但具有相对较低的强度以及断裂韧性。

例如,高纯度的氧化铝已被设计作为一种替代外科金属合金为全髋关节假体和牙植入非常坚韧,是生物惰性组分[1]。

在整形外科应用的关节方面,由于氧化铝高硬度,低摩擦系数和优异的耐腐蚀性。

其提供了一个非常低的磨损率。

研究提高机械性能,如断裂韧性和强度的已取得进展。

该方法一直是试图控制微结构,如晶粒尺寸和晶界相[2,3],或添加第二相(例如,球形颗粒,血小板,纤维或晶须)[4,5]。

例如,已经报道了纳米尺寸的碳化硅颗粒-增强的氧化铝复合材料改进了机械,如抗弯强度(350-1050兆帕)和断裂韧性(3.5-4.7 MPa.m 1/2)特性相比单片氧化铝[6-8]。

但是这种方法有一个缺点,因为它需要使用压力辅助烧结方法,例如热压或热等静压可以是资本密集型的。

欧洲药典7.5版

欧洲药典7.5版
EUROPEAN PHARMACOPOEIA 7.5
INDEX
To aid users the index includes a reference to the supplement in which the latest version of a text can be found. For example : Amikacin sulfate...............................................7.5-4579 means the monograph Amikacin sulfate can be found on page 4579 of Supplement 7.5. Note that where no reference to a supplement is made, the text can be found in the principal volume.
English index ........................................................................ 4707
Latin index ................................................................................. 4739
EUROPEAN PHARMACOPபைடு நூலகம்EIA 7.5
Index
Numerics 1. General notices ................................................................... 7.5-4453 2.1.1. Droppers...................

Negative concentrations(comsol中负浓度的处理方法)

Negative concentrations(comsol中负浓度的处理方法)

Results With Small Unphysical ValuesWHERE AND WHY DO UNPHYSICAL VALUES APPEAR?In some models small unphysical values can occur due to numerical artifacts. Examples include: •Negativeconcentrations in mass transfer . •A temperature that is slightly higher than the initial condition in time dependent heat transfer studies. •Small reaction forces that appear in unloaded directions in structural mechanics models. •Small negative gaps in a contact analysis. •Small negative effective plastic strain values. •Stresses above the yield limit for an ideally plastic material in solid mechanics. Some reasons for why these unphysical values occur:•Numerical noise is a common cause. When the values of the dependent variables approach zero, the numerical noise can become relatively significant and cause some of the results to be slightly negative even if that is not physically possible. •Interpolation and extrapolation of values can cause some values to become unphysical. For example, results for an elastoplastic material are correct (within some tolerance) at the integration points (Gauss points) inside the finite elements, but values might become unphysical when extrapolating the data to the element boundaries. •Discontinuities in the model is another source of, for example, small negativeconcentrations due to a discontinuous initial value. With an initial value that is zero along a boundary for a convective transport models, for example, the physical interpretation is an initially sharp, gradually diffusing front moving away from the boundary. However , for the default shape function (second-order Lagrange elements), only continuous functions are admissible as solutions for the finite element model. The program then modifies the discontinuous initial value before the time stepping can begin. This often results in a small dip in the solution at the start time. In the example model that the following figure shows, the concentration is locally slightly negative at t = 0: • Lack of mesh resolution is another cause of unphysical values such as negativeconcentrations. The resulting convergence problems are often the underlying issue when negativeconcentrations are observed in high convection regimes (high Peclet number) and in those with large reaction terms or fast kinetics (high Damkohler number). •Incorrect physics in the model can also cause these types of problems. For mass transfer , for example, the use of a constant sink in a reaction term is an approximation that only works for large concentrations. When the concentration reaches zero, the reaction term continues to consume thespecies, finally resulting in a negative concentration. AVOIDING UNPHYSICAL VALUESThis section contains some ways to avoid computing or displaying unphysical values:•In some cases it is possible to add a baseline to the dependent variable so that the numerical noise does not affect the solution in the same way as when the values of the dependent variable approach zero. This scaling is not possible with, for example, a reaction term that depends on the concentration because then the scale and origin do matter . •Avoid discontinuities in the model by using, for example, the available smoothed step functions instead. •Formulate logarithmic variables as a way of eliminating mesh resolution problems and negative dips by using the logarithm of the original dependent variable (the concentration, for example) as the dependent variable. The reason for this is that a linearly varying mesh can sometimes not capture the exponential behavior of the changes in the dependent variable. In addition, modeling the logarithm of the dependent variable ensures that the real concentration, for example, cannot become negative during the solution process. •Avoid displaying small unphysical values due to numerical noise by clipping the values for the plot. You can do this by plotting, for example, c*(c>0) instead of c , which evaluates to 0 everywhere where c is smaller than 0. You can also adjust the range of the plot data and colors to only show values that are nonzero. In the case that the data range changes, parts of the plots where the values are outside the range become empty. •It can also be useful to check how the mesh affects the solution by refining the mesh and check if the problem with unphysical values gets better or worse. If it gets better , then continue to refine the mesh. If it gets worse, you probably need to check the physics of the model.。

石墨烯制备及其在新能源汽车锂离子电池负极材料中的应用

石墨烯制备及其在新能源汽车锂离子电池负极材料中的应用

石墨烯制备及其在新能源汽车锂离子电池负极材料中的应用田晓鸿(西安航空职业技术学院,西安710089)摘要:新能源汽车锂离子电池对于负极材料的节能环保性要求较高,而石墨烯作为新型的碳材料,因低成本、高性能而成为新型的负极材料,而针对氧化石墨法制备流程复杂、存在污染性,且制成的微米级团聚颗粒石墨烯电化学性能受限问题,文章采用机械液相剥离的规模化制备工艺,将石墨烯与石墨复合制备成石墨烯复合材料,通过实验方法测定其作为锂离子电池负极材料的电化学应用性能,结果表明与石墨复合后,可有效优化石墨烯负极材料的使用性能,更好的满足新能源汽车发展要求。

关键词:石墨烯;负极材料;电化学性质;锂离子电池中图分类号:U469.72;TM912文献标识码:A文章编号:1001-5922(2021)01-0183-04 Preparation of Graphene and Its Application as Anode Materials for Lithium Ion Batteries of New Energy VehiclesTian Xiaohong(Xi'an Aeronautical Polytechnic Institute,Xi'an710089,China)Abstract:New energy automobile lithium-ion battery has high requirements for energy-saving and environmental protection of anode materials.Graphene,as a new carbon material,has become a new type of anode material due to its low cost and high performance.However,in view of the complicated preparation process of the graphite oxide method,the presence of pollution,and the limited electrochemical performance of the micron-sized agglomerated particles,this paper adopts the large-scale preparation process of mechanical liquid phase exfoliation to prepare graphene and graphite composites into Graphene composite material,through the experimental method to determine its electrochemical application performance as a lithium-ion battery anode material.The results show that the per⁃formance of graphene anode material can be effectively optimized after compounding with graphite,which can bet⁃ter meet the development requirements of new energy vehicles.Key words:graphene;anode material;electrochemical properties;lithium ion battery0引言随着电动汽车技术及保有量的不断发展,为实现节能减排的目的,对锂离子电池制备及使用性能提出了更高的要求。

化工新型材料

化工新型材料

化工新型材料作者:暂无来源:《新材料产业》 2012年第12期美国新型热电材料性能跨越重要里程碑热电材料把热能直接转化为电能,是人类梦寐以求的明星材料。

理想的热电材料应具有较高的热电势和电导率、较低的热传导系数。

由这3个指标加上热源温度形成了衡量热电材料品质的热电优值——Z T值。

一般认为Z T达到2.0以上方有实际应用价值,但过去热电材料的最高ZT只有1.6 ~1.8。

据报道,美国西北大学无机化学家Mercouri Kanatzidis领导的研究小组开发出一种新型热电材料,使Z T达到了2.2,可将15%~20%的废(余)热转换成电能。

研究小组的新材料仍以传统的热电材料碲化铅为基础,因为碲化铅能够最有效地吸收由热引起的原子水平振动的长波能量从而驱动电子定向流动。

所不同的是,新材料在碲化铅中加入了少量碲化锶以提高它吸收中波能量的能力以及微量的钠以吸收短波能量,从而使新材料的ZT大幅提高。

这项研究成果已发表在《自然》杂志上。

有专家评论说,这种新材料是一种全新的设计,是热电材料研发领域的一个重要里程碑。

(科技部网站)英国研制出3D 打印新型导电塑料复合材料据报道,英国华威大学的研究人员研制出一种简单廉价的新型导电塑料复合材料,未来会让人们在家中按照自己的设计意愿打印出称心如意的个人电子产品,以减少产生不必要的电子废弃物。

相关研究成果已刊登在最新一期《公共科学图书馆—综合》期刊上。

据这项研究的带头人、该大学工程学系博士西蒙·利介绍,该材料绰号为“碳变形精灵”,业余爱好者可采用最新一代低成本的3D打印机将自己的电子设备设计创意生产出来。

用户可将制定电子轨道和传感器作为3D打印结构的一部分,比如允许打印机创建触摸感应区域,然后将其连接到一个简单的电子电路板上。

打印的传感器可以使用现有的开放源代码电子设备及可自由查看的编程库进行监测。

到目前为止,该研究团队采用这种材料打印出的对象有,嵌入式柔性传感器或触摸式感应按键,完美贴合自身手形的电子游戏控制器。

在此温度下电池才能正常工作而离子...

在此温度下电池才能正常工作而离子...

离子液体的制备及其对燃油中有机硫化物脱除性能研究分类号:学校代码:密级:学号:遣掌虚可筢大擎硕士学位论文②离子液体的制备及其对燃油中有机硫化物脱除性能研究作者姓名:迟艳胜学科、专业:无机化学研究方向:燃油脱硫导师姓名:焦庆祝教授李长平副教授年月 ::学位论文独创性声明本人承诺:所呈交的学位论文是本人在导师指导下所取得的研究成果。

论文中除特别加以标注和致谢的地方外,不包含他人和其他机构已经撰写或发表过的研究成果,其他同志的研究成果对本人的启示和所提供的帮助,均已在论文中做了明确的声明并表示谢意。

学位论文作者签名:.壑粒醴学位论文版权的使用授权书本学位论文作者完全了解辽宁师范大学有关保留、使用学位论文的规定,及学校有权保留并向国家有关部门或机构送交复印件或磁盘,允许论文被查阅和借阅。

本文授权辽宁师范大学,可以将学位论文的全部或部分内容编入有关数据库并进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文,并且本人电子文档的内容和纸质论文的内容相一致。

保密的学位论文在解密后使用本授权书。

学位论文作者签名: 指导教师签名:壑垒堕圣签名日期:知//年扬舶一辽宁师范大学硕士学位论文摘要离子液体是完全由离子组成的在室温或近室温状态下呈液态的物质,因此也称低温熔融盐或室温离子液体。

由于其具有蒸汽压低、不挥发、液态范围宽、可设计等优点,在有机合成、化工分离等领域收到了广泛的关注。

近年来,作为萃取剂在石油脱硫方面的应用也进行了大量研究。

本论文首先合成了三种常规离子液体、和,两种.功能化离子液体和,两种质子型离子液体和,并采用核磁等表征方法对离子液体的纯度等常规化物化性质进行了研究。

以其中的功能化离子液体和质子型离子液体为脱硫溶剂,系统的研究了离子液体的脱硫性能。

针对.功能化离子液体,采用氧化.萃取脱硫的方法,以和为氧化剂,系统的研究了一功能化离子液体对二苯并噻吩的脱除效果。

模拟燃油的原始硫含量为,经功能化离子液体脱硫后的模拟油中硫含量降至以下,单次萃取效率达到%以上。

助溶剂法生长碳化硅晶体

助溶剂法生长碳化硅晶体

助溶剂法生长碳化硅晶体英文回答:Growing silicon carbide crystals using the solvent-assisted method is a common technique in crystal growth research. This method involves the use of a solvent to enhance the solubility of the silicon and carbon precursors, allowing for the controlled growth of high-quality crystals.In this process, a solvent is chosen that has a high solubility for both the silicon and carbon precursors. Common solvents used include toluene, xylene, and acetone. The solvent is then mixed with the precursors, such as silicon tetrachloride (SiCl4) and a carbon source like propane or acetylene.The solvent-assisted method offers several advantages over other crystal growth techniques. Firstly, it allowsfor better control over the crystal growth process,resulting in higher quality crystals with fewer defects.The solvent acts as a buffer, preventing the formation of impurities and ensuring the crystal grows in a controlled manner.Additionally, the solvent-assisted method enables the growth of larger crystals compared to other methods. The enhanced solubility provided by the solvent allows for the incorporation of more silicon and carbon atoms into the crystal lattice, leading to larger crystal sizes.To illustrate this, let's consider an analogy. Imagine you are baking a cake. The solvent in this case is like the cake batter, which helps to dissolve and evenly distribute the ingredients (silicon and carbon precursors) throughout the mixture. Without the batter, the ingredients may clump together or not mix properly, resulting in an uneven and poorly formed cake (crystal).Now, let's move on to the 中文回答:助溶剂法生长碳化硅晶体是晶体生长研究中常用的技术。

锂离子电池研究方法

锂离子电池研究方法

研究方法的应用
用DSC方法测得的 不同正极材料放热反应峰, 通过贫锂态比较各自的充电末电压,表明 LiNiO2在4.1 V(对Li电极),LiCoO2 在4.3 V(对 Li电极)时是不稳定的;而对于LiNiMzO2,即 使在4.7 v时反应的动力学仍然很平缓。
研究方法的应用
Z.Zhang 用DSC方法研究三种正极物质计量 化学中,锂含量x越小,会加速物质分 解;负 极锂含量x越大,与电解液反应会释放大量的 热。
结论
但是关于锂离子电池安全性的研究还需进一步 深入,如电池在循环过程中安全性下降及电池 性能衰退失效的机理、高温储存性能差的原因、 电池在过充电过放电时的热效应规律等,这些 研究将对锂离子动力电池体系的安全性研究有 所启迪。
谢谢!
国内镍氢电池企业
深圳市德赛电池科技股份有限公司 湖南科力远新能源股份有限公司 惠州超霸电池有限公司 佛山市南海新力电池有限公司 陕西兰芝实业有限公司 深圳市倍特力电池有限公司 广州市鹏辉电池有限公司 全能电池(上海)有限公司 深圳市格瑞普电池有限公司 汤浅(天津)实业有限公司
Байду номын сангаас
锂离子蓄电池负极的热产生依赖于粘结剂的类型与用 量、活性物质炭的颗粒尺寸、微孔及富锂程度;SEI膜 也对锂离子蓄电池的热稳定起一定的作用。
Z.Zhang用DSC方法研究表明:负极锂含量越大,与电 解液反应会释放越多的热。Ph.Bien-san等人的实验结果 表明:用PVDF粘结的人造石墨放热反应的DSC曲线出 现两个反应温度120℃和250 ℃ ,分别对应钝化层破裂 和粘结剂与富锂碳的反应。通过计算与比较,负极比 正极聚集更多的能量。
J.R.Dahn等 用TGA分析了LiCoO2、LiNiO2、 LiMn2O4在受热过程中氧释放量,认为为保证 锂离子蓄电池的安全必须使氧释放量最小,必 须优选LiMn2O4作为正极材料。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

energy molecular dynamics (MD) with many-body potentials9,10,11 and an orbital-free version of the firstprinciples MD method12,13 . In these studies, heat capacities of fcc transition and noble metal clusters with up to 23 atoms were calculated to characterize their meltinglike transition9 . In another study, on the melting of sodium clusters10 , the microcanonical caloric curve of the Na55 cluster was obtained. However, in not one of these studies was a signature of a negative heat capacity found. Similar results, indicating the non-existence of a negative heat capacity in constant-energy orbital-free first-principles MD simulations of larger sodium clusters (Na55 , Na92 , and Na142 ), were obtained13 . Nevertheless, in such calculations the simulation time employed was too short to obtain converged results13 . On the other hand, in microcanonical MD simulations of AlN , N = 7, 13, 55, and 147, clusters, a negative heat capacity was obtained for the larger Al147 cluster11 . In the present work, motivated by the availability of experimental techniques that allow the measurement of the microcanonical heat capacity and other thermal properties of mass selected metal clusters14,15,16 , we theoretically investigate the behavior of the heat capacity of sodium clusters in the size range of 13-147 atoms. In our approach, constant-energy MD simulations are performed using a phenomenological many-body potential that mimics the metallic bonding of sodium clusters. This approximation allows us to use simulation times of the order of ∼ 50 ns, in order to obtain converged averages of the microcanonical heat capacity and other cluster thermal properties. Our main objective is to gain additional insights into the conditions that determine if a cluster has a negative heat capacity. The main finding of this work shows that the width of the distribution function of the kinetic energy and the spread of the distribution of the potential energy minima (isomers), characterizing the PEL, are useful features to determine the signature of the cluster heat capacity. In section II, we
arXiv:physics/0302078v1 [physics.atm-clus] 21 Feb 2003
Heat capacities of NaN , N = 13, 20, 55, 135, 142, and 147, clusters have been investigated using a many-body Gupta potential and microcanonical molecular dynamics simulations. Negative heat capacities around the cluster melting-like transition have been obtained for N = 135, 142, and 147, but the smaller clusters (N = 13, 20, and 55) do not show this peculiarity. By performing a survey of the cluster potential energy landscape (PEL), it is found that the width of the distribution function of the kinetic energy and the spread of the distribution of potential energy minima (isomers), are useful features to determine the different behavior of the heat capacity as a function of the cluster size. The effect of the range of the interatomic forces is studied by comparing the heat capacities of the Na55 and Cd55 clusters. It is shown that by decreasing the range of the many-body interaction, the distribution of isomers characterizing the PEL is modified appropriately to generate a negative heat capacity in the Cd55 clusty of sodium clusters
Juan A. Reyes-Nava, Ignacio L. Garz´ on, and Karo Michaelian
Instituto de F´ ısica, Universidad Nacional Aut´ onoma de M´ exico, Apartado Postal 20-364, 01000 M´ exico D.F., M´ exico (Dated: February 2, 2008)
PACS numbers: PACS numbers: 36.40.-c, 36.40.Ei, 64.70.Dv
I.
INTRODUCTION
Negative microcanonical heat capacity in atomic and molecular clusters was theoretically predicted by considering simple models of the distribution of local minima that characterize the potential energy landscape (PEL) of clusters1 . In that study, it was found that for high values of the parameter involving the ratios of the vibrational frequencies corresponding to the global and local isomers, the caloric curve displays an S-shaped loop, with a negative heat capacity in the vicinity of the melting point1 . In another study on the solid-liquid transition of clusters2 , it was shown that in microcanonical simulations of Lennard-Jones clusters, an increase in total energy causes a temperature reduction. This effect was related to the broadening of the cluster kinetic-energy distribution toward lower energy values2 . Although the existence of negative heat capacity in physical systems like stars or star clusters3,4 , and in fragmenting nuclei5,6 is well-known, this peculiar effect gained a lot of interest in the field of atomic and molecular clusters due to recent experimental results where a negative heat capacity was measured for a 147-atom sodium cluster7 . In this study, the photofragmentation mass spectra was used to measure the internal energy of free, mass selected clusters with known temperature. These measurements were used to determine the microcanonical caloric curve of the Na+ 147 that shows the characteristic S-shaped (backbending) feature, indicating a negative heat capacity7 . The negative value of the microcanonical heat capacity was interpreted by considering that a finite system upon melting tries to avoid partly molten states and prefers to convert some of its kinetic energy into potential energy7,8 . This peculiarity has been attributed to the non-additivity of the total energy of a cluster with finite size7,8 . Microcanonical heat capacities of metal clusters have been theoretically investigated using constant-
相关文档
最新文档