开关电源功率变压器的设计方法

合集下载

开关电源中变压器及电感设计1

开关电源中变压器及电感设计1

开关电源中变压器及电感设计1开关电源中变压器及电感设计1一、变压器设计1.根据电源输出需求确定变压器的额定功率和工作频率。

2.计算变压器的变比。

变压器的变比决定了输入电压和输出电压之间的关系。

通常变压器的变比为输入和输出电压之比的倒数,即输出电压/输入电压。

3.根据变比计算次级匝数。

变压器的次级匝数等于输入匝数乘以变比。

4.根据次级匝数计算主绕组匝数。

主绕组匝数等于次级匝数除以变比。

5.计算主绕组和次级绕组的截面积。

主绕组的截面积一般比次级绕组大,以满足输送更大电流。

6.计算铁芯截面积。

铁芯截面积的大小关系到变压器的能量传输效率,一般选择铁芯截面积略大于主绕组的截面积。

7.选择合适的铁芯材料和线材材料。

铁芯材料的导磁性能和线材材料的电阻等参数会影响变压器的损耗和效率。

8.进行变压器的相关参数计算和模拟。

可以使用相关软件进行变压器参数的计算和仿真,以评估变压器的性能。

9.制作变压器的绕组和组装。

根据计算结果进行绕线并组装变压器。

10.进行变压器的测试和调整。

使用仪器测试变压器的性能,并根据测试结果调整变压器的参数,以满足设计要求。

二、电感设计1.根据电源输出需求确定电感的额定电流和工作频率。

2.根据电感的额定电流和工作频率计算电感的感值。

电感的感值和额定电流和工作频率之间有一定的关系,可以根据公式进行计算。

3.根据感值计算电感的绕组数。

电感的绕组数决定了电感的电流走向和电感的大小。

4.选择合适的磁芯和线材材料。

合适的磁芯材料和线材材料会影响电感的损耗和效率。

5.进行电感的相关参数计算和模拟。

可以使用相关软件进行电感参数的计算和仿真,以评估电感的性能。

6.制作电感的绕组和组装。

根据计算结果进行绕线并组装电感。

7.进行电感的测试和调整。

使用仪器测试电感的性能,并根据测试结果调整电感的参数,以满足设计要求。

总结:变压器和电感的设计是开关电源设计中关键的一环,直接影响到电源的性能和稳定性。

在设计过程中,需根据电源输出需求确定额定功率和工作频率,并计算变压器和电感的相关参数。

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计引言:设计目标:设计一个单管正激式开关电源变压器,输入电压为220V,输出电压为12V,输出电流为1A。

主要的设计目标如下:1.高能效:确保转换效率达到90%以上。

2.稳定性:在负载变化范围内,输出电压波动小于5%。

3.安全性:确保设计的变压器具有过载和短路保护功能。

4.成本:在满足以上要求的情况下,尽量降低设计成本。

设计过程:1.计算变压器的变比:由于输入电压为220V,输出电压为12V,所以变压器的变比为220/12=18.332.计算次级电流:输出电流为1A,因此次级电流为1A。

3.计算主磁环的Ae(过剩面积):根据磁环材料的选择,可以得到主磁环的Ae值。

4.计算主磁环的直径D:根据所选择的磁环材料的饱和磁感应强度,可以得到主磁环的直径D。

5.计算次级绕组的匝数:次级绕组的匝数可以根据变比计算得出。

6.计算次级绕组的截面积:由于次级电流和次级绕组匝数已知,可以计算出次级绕组的截面积。

7.选择铁芯截面积:根据所需的变压器功率,可以选择合适的铁芯截面积。

8.计算输出电压波动:根据设计目标的要求,计算负载变化时输出电压的波动范围。

9.设计过载和短路保护:根据设计目标的要求,设计过载和短路保护电路,以确保变压器的安全性。

设计要点:1.磁环材料的选择:磁环材料应具有高饱和磁感应强度和低磁滞损耗,以提高变压器的效率。

2.绕组材料的选择:绕组材料应具有良好的导电性和低电阻,以减小损耗和提高效率。

3.绝缘材料的选择:绝缘材料应具有良好的绝缘性能和耐高温性能,以确保变压器的安全性和可靠性。

4.冷却系统的设计:变压器在工作中会产生一定的热量,需要设计合适的冷却系统,以保持变压器的温度在安全范围内。

总结:单管正激式开关电源变压器是一种常见的电源转换器,设计时需要考虑效率、稳定性、安全性和成本等因素。

在设计过程中,需要计算变压器的变比、次级电流、主磁环的Ae和直径、次级绕组的匝数和截面积,选择合适的铁芯截面积,设计合适的过载和短路保护电路,并选用合适的磁环材料、绕组材料和绝缘材料。

单端反激开关电源中功率变压器的主要设计参数

单端反激开关电源中功率变压器的主要设计参数

单端反激开关电源中功率变压器的主要设计参数
单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。

下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。

 ①传输功率:将一个电源的能量瞬时地传输到负载。

 ②电压变换:通过改变初级与次级匝比,获得所需要的输出电压;可获得不同的多路输出电压;
 ③绝缘隔离:为了安全,要求离线供电或高压和低压不能共地,变压器方便地提供安全隔离。

 CCM模式:(连续模式)在连续模式下,初级开关电流是从一定幅度开始的,然后上升到峰值,再迅速回零;在连续模式下储存高频变压器的能量在每一个开关周期内并未全部释放掉,所以下一个开关周期具有一定的能量。

在采用连续模式可减少初级峰值电流IP和有效值电流IRMS,从而降低MOS 的功耗;但连续模式要求增大初级电感受量LP,导致高频变压器的体积增大。

MOS管的峰值电流相对较小,但存在副边二极管的反向恢复问题,需要给二极管加吸收电路。

 DCM模式:(不连续模式)在不连续模式下,初级开关电流是零开始上升到峰值,再回零。

在不连续模式下储存高频变压器的能量在每一个开关周期内全部释放掉,在不连续模式下的IP和IRMS值较大,但所需要的LP较小,高频变压器的体积可以相应减小。

适用于较小功率,副边二极管没有反向恢复的问题,但MOS管的峰值电流相对较大;
 连续模式和不连续模式的设定
 设在最大占空比时:初级电流Ip1。

分享 一种小功率开关电源变压器设计和制作

分享 一种小功率开关电源变压器设计和制作

分享一种小功率开关电源变压器设计和制作
电源变压器在最近几年的发展和应用中,逐渐呈现出了专业性的特点,小功率的开关电源变压器设计和制作也更加符合民用要求。

在今天的方案分享中,我们将会为大家分享一种小功率的电源变压器设计和制作过程,方便工程师们进行参考借鉴。

 在今天的开关电源变压器方案分享中,我们将会通过一个企业民用的输入85~265V、输出5V,2A,开关频率是100kHz的小功率开关电源为例加以说明。

这种电源变压器的系统电路图如下图所示。

 小功率开关电源变压器系统电路图
 在了解了这种小功率的开关电源变压器系统电路设置后,首先要做的就是选定原边感应电压VOR,原边感应电压值直接决定了电源的占空比。

当变压器的开关管开通的时候,有公式I=Vs*Ton/L,其中参数Vs为原边输入电压,参数ton为开关开通时间,L为原边电感量。

而在开关管关断的时候,有公
式I=VOR*Toff/L,其中参数VOR为原边感应电压,即放电电压,Toff为开关管关断时间,L为电感量。

经过一个周期后,原边电感电流的值会回到原来的数值,因此该公式变为:VS*TON/L=VOR×TOFF/L,D来代替TON,用1-D来代替Toff,移项可得D=VOR/(VOR+VS),此即是最大占空比了。

则在该系统电路的实例中,该公式为D=80/(*80+90)=0.47。

 接下来的工作,是确定这种开关电源变压器的原边电流波形的参数。

原边电流波形的计算也同样是需要利用公式完成的,此时代入公式,即峰值电流*KRP*D+峰值电流*(1-KRP)×D,所以有电流平均值等于上式,解出来峰。

开关电源功率变压器设计方法

开关电源功率变压器设计方法

开关电源功率变压器设计方法开关电源是目前广泛应用于电子设备中的一种电源,其特点是体积小、效率高、稳定性好。

功率变压器是开关电源的核心部件之一,负责将输入电压变换成适应开关电源工作的输出电压。

本文将介绍开关电源功率变压器的设计方法。

首先,确定功率变压器的规格。

要确定功率变压器的规格,需要考虑到电源电压、输出电压、输出电流、工作频率和电源负载的要求等因素。

根据这些因素,计算出功率变压器的额定功率和相应的比例关系。

其次,进行磁路设计。

磁路设计是指确定功率变压器铁芯的形状、尺寸和材料,以及线圈的匝数和截面积。

在磁路设计中,考虑到功率变压器的效率和功率损耗,需要注意铁芯的磁导率和饱和磁密的选择。

在磁路设计的基础上,进行线圈设计。

线圈设计是指确定功率变压器的线圈匝数、截面积和绕制方式。

线圈设计需要根据功率变压器的额定工作电流和电压降来计算电流密度和线圈的尺寸。

然后,进行绕制和制造。

根据功率变压器的线圈设计,将铜线按照规定的匝数绕制成线圈,然后将线圈和铁芯组装起来。

在绕制和制造的过程中,需要保证线圈的绝缘性能和绕制质量。

最后,进行测试和调试。

在完成功率变压器的制造后,需要进行测试和调试,以确保其满足设计要求。

测试和调试的内容包括额定功率、效率、温升和波形等指标的测试。

根据测试结果,进行必要的调整和优化。

综上所述,开关电源功率变压器的设计方法包括确定规格、磁路设计、线圈设计、绕制和制造、以及测试和调试。

在设计过程中,需要综合考虑功率变压器的电路特性、热特性、机械特性等因素,以实现功率变压器的高效、稳定和可靠运行。

开关电源变压器设计资料完整版

开关电源变压器设计资料完整版

开关电源变压器设计开关变压器是将DC 电压﹐通过自激励震荡或者IC 它激励间歇震荡形成高频方波﹐通过变压器耦合到次级,整流后达到各种所需DC 电压﹒变压器在电路中电磁感应的耦合作用﹐达到初﹒次级绝缘隔离﹐输出实现各种高频电压﹒ 目的﹕减小变压器体积﹐降低成本﹐使设备小形化﹐节约能源﹐提高稳压精度﹒ N工频变压器与高频变压器的比较﹕工频 高频E =4.4f N Ae Bm f=50HZE =4.0f N Ae Bm f=50KHZ N Ae Bm 效率﹕ η=60-80 % (P2/P2+Pm+ P C ) η>90% ((P2/P2+Pm )功率因素﹕ Cosψ=0.6-0.7 (系统100W 供电142W) Cosψ>0.90 (系统100W 供电111W) 稳压精度﹕ ΔU%=1% (U20-U2/U20*100) ΔU<0.2% 适配.控制性能﹕ 差 好 体积.重量 大 小开关变压器主要工作方式一.隔离方式: 有隔离; 非隔离 (TV&TVM11) 二.激励方式: 自激励; 它激励 (F + & IC) 三.反馈方式: 自反馈; 它反馈 (F- & IC) 四.控制方式: PWM: PFM (T & T ON ) 五.常用电路形式: FLYBACK & FORWARD一.隔离方式:二.开关变压器主要设计参数:R DC. L. L K. L DC. TR. IR. HI-POT. IV O-P. Cp. Z. Q.………动态测试参数:Vi. Io. V o. Ta . U. F D max ………….材料选择参数 P. Pc. u i. A L. Ae. Bs …….WIRE: Φ ℃ . ΦI max . HI-POT ……..BOBBIN: UL94 V--O.( PBT. PHENOLIC. NYLON)………. TAPE: ℃ . δh . HI-POT …….. 制程设置要求P N …(SOL.SPC).PN//PN.PN -PN. S N (SOL.SPC).Φn. M tape:δ&w TAPE:δ&w. V ℃……..三.反馈方式:四.控制方式: PWM: PFM脉冲宽度调制 脉冲频率调制五.常用电路形式:单端正激励FORWARD开关变压器主要设计参数静态测试参数:R DC. L. L K. L DC. TR. IR. HI-POT. IV O-P.Cp. Z. Q.………动态测试参数:Vi. Io. V o. Ta. U. F D max………….材料选择参数CORE: P. Pc. u i. A L. Ae. Bs…….WIRE: Φ℃. ΦI max. HI-POT……..BOBBIN: UL94 V--O.( PBT. PHENOLIC. NYLON)……….TAPE: ℃. δh. HI-POT……..制程设置要求..单端反激励FLYBACK 调节TON 使能量守恒定1/2*L P *I PK 2=1/2*L S *I SK 2Ton Br BmI2Bac IdcHBBdcBmBr Toff Bm Br開關變壓器應用磁滯回線描述Bs:飽和磁通(束)密度Br:殘留磁通(束)密度 Hs: 飽和磁場強度Hc:保磁力(矯頑力) Ui:初始導磁率加GAP 曲線Br 下降﹐ΔB 增加傳遞能力增大﹒傳遞磁能區間增加變壓器導通Ton 和截止Toff 的變化单端反激励(Flyback)波形分为:临界状态,非连续状态, 连续状态(常用状态).Po=1/2LI pk2*f (η)Vi min=I pk*Lp/TonPo/Vi min I pk=2Po/D max Vi min ( Po=VoIo)Vi min*Ton=I pk*Lp Lp=Vi min*D max/I pk*fNp=Lp*I pk/Ae*ΔB Np= ΔB*Ig/0.4π*I pkIg=0.4πL p I pk2/Ae*ΔB2Vo+VD=Vimin*(Dmax/1-Dmax)*Ns/NpNs=(V O+V D)*(1-Dmax)*Np/Vi min*D maxDmin=Dmax/(1-Dmax)K+Dmax K=Vi max/Vimin单端反激励(Flyback)设计例题一条件﹕V i =170V-270V ﹐f= 30K HZ V o= 5V, Io=20A, D max=0.45(设计取值)设计﹕1) Vi min=170*1.4--20=218V, Vi max=270*1.4-20=358VVi min=170*√2-(V D.ΔU) Vi max=270*√2-(V D.ΔU)Vi min=(V iACMIN)2-2Po(1/2fL -tc)2) I pk=2*5*20/218*0.45=2.04A ηCIN Ipk=2Po/DmaxVimin ( Po=V oIo) Po=1/2LI pk2*f (η)3) Lp=218*0.45/2.04*30000=1.6mHLp=Vimin*Dmax /Ipk*f4) K=358/218=1.64K=Vimax/Vimin5) Dmin=0.45/(1-0.45)*1.64+0.45=0.332Dmin=Dmax/(1-Dmax)K+Dmax6) CORE查表100W 选择EER42/15 Ae=183mm2(1.83cm2) Bs=390mT(3900Gs)Core=g/w(f=20k Hz REF)7) WIRE查表或SΦ=√I/3=√20/3=2.58mm 选"铜箔"为佳.PΦ=√2.04/3=0.82,选0.60X2r2*π(2.58/2)2*3.14=5.225 选择19#,Φ=0.98*7 (0.98/2)2*3.14*7=5.277(4Pin并绕)8) Ig=(0.4*3.14*1.6*10-3*2.042/1.83*19502 )*108=0.12cmIg=0.4πLpIpk2/Ae* ΔB29) Np=1950*0.12/0.4*3.14*2.04=91.32T . Np=(0.0016*2.04/1.83*1950)*108=91.46TNp=ΔB*Ig/0.4π*Ipk Np=Lp*Ipk /Ae*ΔB10) Ns=(5+1)*(1-0.45)*91/218*0.45=3.06T 11)P=1/2*1.6*2.042*30=96WNs=(V O+V D)*(1-Dmax)*Np/Vimin* Dmax P=1/2LI2*f单端正激励(FORWARD)设计例题一输入电压﹒Vi= 48V (36~60V), 额定输出电压﹒电流﹒V o=5.0V﹒Io=11A 额定输出功率55W. 最大输出功率65Wf=470kHz (450~500 kHz) δmax=0.42 η=82设计步骤: 选择PC50. 3F3. N49等材质选PC50. EPC25.Ae: 46.4mm2. Le: 59.2mm. B S: 3800G S1): Ipk= Ic= 2POUT / Vinmin= 2*65 / 36= 3.6A2): Np= Vinmax*108 / (4FBmax*Ae) 取Bmax=2000G= 60*108 / (4*450K*2000G*0.464)= 4TS, 调整为6TS3): Ns= Np *(Vo+V D) / (Vi*δmax)= 4* (5.5+1)/(36*0.42)= 1.7TS 调整为2TS4): 反馈绕组. N= Np*(15+1) / (36*0.42)= 6*16/(36*0.42)= 6TS5): 选择绕组线径Np: Φ0.1*120CNs: Φ0.1*200CN: Φ0.256): 由于为安全电压.故不须包MARGIN TAPE.单端正激励(FORWARD)设计例题二输入电压﹒Vi= 100V (85V~135V),额定输出电压﹒电流﹒V o=5.0V(4.5-5.5)﹒Io=20Af=200kHz δmax=0.42设计步骤: 选择PC40..TP4等材质选TP4. EE28C.Ae: 87.4mm2. B S: 3800G S 取Bmax=2000G1): T=1/fo=1/200K=5us2): Tonmax=T*Dmax=5*0.42=2.1us3): V2min=(Vo+VL+VF)*T/Tonmax=(5.5+0.2+0.5)*5/2.1=14.8V4): n=V2min/V1min=14.8/100=0.1485): N2=(V2min*Tonmax/Bs*Ae)*104 =(14.8*2.1/2000*87.4)* 104=1.83T︽2T6): N1 =N2/ n=2/0.148=13.5T ︽14TTonmax=(Vo+VL+VF)*T/ V2min=2.09 Dmax= Tonmax/T=2.09/5=0.418︽0.42优化设计举例1)绕线空间设计: 变压器绕线空间设计得好﹐使其耦合传递最佳﹐发挥功率更佳﹐干扰更小﹐例一﹐ETD44A V 音响主功率变压器1-2Φ0﹒35 X725T1-2 Φ0﹒21 X10X2 25T 7-9 Φ0﹒35 X9 5T 7-9 Φ0﹒35 X9 5T2-3 Φ0﹒21 X10X2 25T2-3 Φ0﹒35 X7 25T减小绕线高度﹐对理线较合理﹒例二﹐EI22 DVD 辅助变压器1-X Φ0﹒30 8T1-2 Φ0﹒25 16T 6--8-------------------- 6--8-------------------- 6--9--------------------6--9--------------------X -2 Φ0﹒30 8T1-2 Φ0﹒25 16T 增强耦合性能﹐采用并联绕线﹐合理安排接线工艺﹐减小漏感﹒例三﹐EER28 DVD 主功率变压器3--4 Φ 0.40 25T 17--15 Φ0.40X2 4T 4--2 Φ 0.40 25T 14--13----------------------2--1 Φ 0.40 25T3--4 Φ 0.40 25T 17--15 Φ0.40X5 4T 4--2 Φ 0.40 25T 14--13----------------------2--1 Φ 0.40 25T加大耦合﹐减小漏感﹐提高负载能力﹒17--15 Φ0.40X2 4T随着变压器的小形化﹐可以根据爬电距离来实现安全性能要求﹐设计产品的目的﹐主要满足用户要求﹐符合安全性能规定﹒1﹒干燥空气爬电耐压距离﹕经验距离为1mm /1000V ﹒2﹒TAPE (0﹒025/0﹒065)P -S 三层规定﹕ 1层>4000V 延伸变形后>1500V ﹒ 3﹒S 线圈-S 线圈之间爬电耐压距离﹕>1500V>1.5mm ﹒4﹒边缘胶带MARGINTAPE 爬电耐压距离﹕ 边缘安胶W=3mm 可根据Vi 电压W1.5-2.mm ﹒ 5﹒采用TEX -E 线解决耐压距离﹕ 三重绝缘线 层>6000V 延伸变形后耐压下降﹒6﹒胶带绝缘层解决耐压距离﹕ 胶带村垫SOL 一层SPC 二层﹐反贴胶带等﹒ 7﹒规格耐压条件(3.0KV/60’ 2mA) 制程条件UL3.0KV *1.2倍/2’ 2mA ﹒ 8﹒层间耐压要求﹕3)开关变压器的参数分析1.关于集肤效应可选用多股线(满足b>a a=r2πb= r2π*x x= x股线)满足高频负载电流﹐降低变压器温升﹒2. 关于L k与Cp是一对矛盾﹐一般要求变压器平衡L k与Cp参数﹐L k不要追求愈小愈好﹐Cp 的增加会引起噪声的增加﹒开关变压器GAP&L K1﹒气隙GAP 设计大小与所需要的传递能量有关﹐GAP 大气隙长度增加也就是气隙体积增加﹐电感下降﹒GAP 小容易引起电感饱和﹒2﹒气隙GAP传递能量大小与使用的工作频率有关﹐高频时(>60KHZ )磁芯损耗加大﹒ 3﹒LEAKAGE 漏感﹕初级绕组P&S 次级主绕组相邻紧密﹐耦合面积大﹐(P ﹒S 夹绕)漏感量小﹒S 次级主绕组如果匝数少﹐疏绕或者增加匝数﹐也可减小漏感量﹒。

几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法
开关电源变压器设计计算方法有多种,根据输入和输出电压、电流、效率等参数的不同,可以选择不同的设计方法。

下面介绍几种常见的开关电源变压器设计计算方法。

1.均压系数法:
均压系数法是一种常见的设计方法,适用于输出电压稳定、负载变化较小的情况。

计算步骤如下:
1)确定输入和输出电压、电流;
2)选择变压器的变压比和绕组匝数;
3)根据电流传输比,计算输入和输出绕组的截面积和电流;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。

2.欧姆法:
欧姆法是一种比较精确的设计方法,适用于需求较高的应用场景。

计算步骤如下:
1)确定输入和输出电压、电流,以及允许的电压降;
2)根据欧姆定律和功率关系,计算输入和输出绕组的电阻;
3)根据电流传输比,计算输入和输出绕组的导线截面积;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。

3.饱和系数法:
饱和系数法是一种适用于高频开关电源设计的方法,可以有效降低开
关电源的损耗和杂散辐射。

计算步骤如下:
1)确定输入和输出电压、电流,以及允许的饱和电流;
2)根据输入和输出电流计算变压器的有效电流;
3)根据输入电流和变压比,计算输入和输出绕组的有效导线截面积;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。

以上是几种常见的开关电源变压器设计计算方法。

在实际设计中,还
需要考虑变压器的损耗、绝缘、温升等因素,并结合具体的应用要求进行
优化和调整。

开关电源功率变压器设计方法

开关电源功率变压器设计方法

开关电源功率变压器的设计方法1、开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。

不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。

图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:(a)输入波形(b)输出波形图1脉冲变压器输入、输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。

这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。

图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略)T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o=Uo/n。

经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。

开关电源中变压器的设计

开关电源中变压器的设计
图1.3 骨架俯视图及绕组相位图
Fig.1.3 Skeleton top view and winding phase diagram
1.3
反激式电源的磁芯需要进行中柱磨气隙,否则磁芯会很容易饱和,如图1.4所示。在开气隙时采用边磨气隙边测初级电感的方法,当初级电感量达到0.58mH时就证明气隙磨好了。由于气隙会使空气介入,相当于串入一个大磁阻介质,故气隙越大,电感量越小,变压器能储存的能量越多。为了保证变压器的稳定工作,气隙不能开太大,因为能量主要是存储在气隙里,气隙过大会使漏感增加,对EMC和效率都有影响;气隙也不能开太小,气隙过小会导致变压器能够储存的能量变少,当气隙无法容纳正常工作电感所产生的能量时,磁芯就会饱和从而损坏变压器。
开关电源中变压器的设计
开关电源为电子设备提供稳定的功率输出,它的性能好坏直接决定了电子产品的质量,而这种电源性能又与变压器设计优劣密切相关。可以说变压器在开关电源中占据着关键作用,决定着电路的关键技术参数指标及工作状态,因此对于大多数电源而言,电源的设计归根结底就是变压器的设计。开关电源属于一种高频供电系统,频率高必然使变压器体积降低,传递的能量密度升高,温升变大;同时在高频环境下,变压器绕线中的寄生电容很容易与电路中的电感发生谐振,产生噪音,恶化电源的电磁兼容性能。但是在磁性元件没有重大的技术突破之前,这些问题始终会存在,因此我们只能通过其它的方式来对变压器进行优化,从而提高开关电源的整体性能。
④方案一和方案二中变压器的同级线圈少绕一层,这样会使分布电容变小,增强变压器的电磁兼容性能。
综上所述,三明治绕法的变压器漏感小、损耗低、温升少、效率高,但绕制较麻烦;普通绕法的变压器EMC性能更好,且绕制较简单。所以为了提高电源的稳定性与效率,则应该采用方案三。如果电源对电磁兼容性有严格要求,就应该采用方案一。

开关电源变压器参数设计步骤详解(精)

开关电源变压器参数设计步骤详解(精)
u(V P O (W比例系数(μF/W C IN (μF
V Imin (V
固定输
入:100/115
已知
2~3
(2~3×P O

90通用输入:85~265已知
2~3 (2~3×P O ≥
90固定输入:230±35已知
1
P O

240
步骤5根据Vimin和V OR来确定最大占空比
Dmax
V OR
D m a x = ×100% V OR +V I m i n -V D S (O N
0.6
1
步骤7确定初级波形的参数

输入电流的平均值I A VG P O
I A VG=
ηV Imin

初级峰值电流I P I A VG
I P =
(1-0.5K RP ×Dmax

初级脉动电流I R ④
初级有效值流I RMS u(V
初级感应电压V OR (V
钳位二极管反向击穿电压V B (V
固定输入:100/115 60 90通用输入:85~265 135 200固定输入:230±35

设定MOSFET的导通电压V DS(ON ②
应在u=umin时确定Dmax值,Dmax随u升高而减小步骤6确定初级纹波电流I R与初级峰值电流I P的比值K RP ,K RP =I R /I P
u(V
K RP
最小值(连续模式最大值(不连续模式
固定输入:100/115 0.4 1通用输入:85~265 0.44 1固定输入:230±35
步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB
步骤3根据u ,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin

反激式开关电源变压器的设计

反激式开关电源变压器的设计

反激式开关电源变压器的设计反激式开关电源变压器是一种常见的变压器类型,广泛应用于电子设备和通信设备中。

它具有体积小、效率高以及输出电压稳定等优点。

本文将分别从设计原理、工作方式和设计步骤等方面对反激式开关电源变压器的设计进行详细介绍。

一、设计原理二、工作方式反激式开关电源变压器的工作方式可以分为两个阶段:储能和传输。

在储能阶段,开关管打开,电流通过变压器一侧的绕组进行储能;在传输阶段,开关管关闭,储存的能量被转移到变压器另一侧的绕组上,最后输出所需的电压。

三、设计步骤1.确定输入电压和输出电压的需求。

根据实际应用需求确定输入电压和输出电压的范围。

2.计算变压器的变比。

根据输入电压和输出电压的比例计算变压器的变比N。

3.计算变压器的功率。

根据输出电压和输出电流计算变压器的功率,确保变压器能够承受所需的功率。

4.确定变压器的工作频率。

根据实际应用需求选择合适的工作频率,通常在20kHz到200kHz之间。

5.计算变压器的参数。

根据变压器的变比、工作频率和功率计算变压器的参数,包括绕组的匝数、铁芯的尺寸等。

6.选择合适的磁性材料。

根据变压器的参数选择适合的磁性材料,常用的材料有软磁合金和磁性氧化铁等。

7.进行原型设计和测试。

根据上述设计参数制作变压器的原型,并进行测试以验证设计结果的准确性。

8.进行参数调整和优化。

根据原型测试结果进行参数调整和优化,以实现更好的性能和效果。

9.进行批量生产。

当设计满足要求时,可以进行批量生产并进行产品验证和测试。

总结:。

开关电源中变压器的设计

开关电源中变压器的设计

开关电源中变压器的设计开关电源为电子设备提供稳定的功率输出,它的性能好坏直接决定了电子产品的质量,而这种电源性能乂与变压器设计优劣密切相关。

可以说变压器在开关电源中占据着关键作用,决定着电路的关键技术参数指标及工作状态,因此对于大多数电源而言,电源的设计归根结底就是变压器的设计。

开关电源属于一种高频供电系统,频率高必然使变压器体积降低,传递的能量密度升高,温升变大; 同时在高频环境下,变压器绕线中的寄生电容很容易与电路中的电感发生谐振, 产生噪音,恶化电源的电磁兼容性能。

但是在磁性元件没有重大的技术突破之前, 这些问题始终会存在,因此我们只能通过其它的方式来对变压器进行优化,从而提高开关电源的整体性能。

1开关电源变压器的设计步骤变压器是开关电源的核心,它直接决定了一个电源的技术指标,因此变压器的设计至关重要。

本文以反激式开关电源为例对变压器进行分析。

在设计一个开关变压器之前,要通过理论分析计算出原副边匝数、反馈绕组匝数、原边电感量、磁芯的Ap值、绕组线径大小,要注意的是计算出来的数据仅仅是参考,不能脱离实际。

当这些关键参数都被大致确定后,就可以进行变压器的实际设计了。

本论文就第4. 3章节中的基于SE8510的LED电源进行变压器设计,通过计算得出原边匝数为54,原边绕组线径为0. 5mm,副边匝数为50, 副边线圈线径为0.4mm,原边电感量为0. 58mH0磁芯Ap值为0. 2593cm4,1.1.磁芯选择开关变压器的磁芯体积大小与功率成正比,因此功率越大变压器体积越大。

在用Ap法选择磁芯时要同时兼顾电路的工作频率、PCB的布线形状、环境温度和允许的温升等应用情况,AP法公式如下:(450x0.3 xBgx )根据公式(1. 1)计算出Ap值为0. 2593cm1,查表选择EFD25磁芯,EFD25 的Ap 值为0.3938cm,,这样可以保证一定的裕量,降低电路损耗。

1.2骨架线圈绕制磁芯选择好以后,根据相应的骨架幅宽及绕组线径大小确定合适的匝数,遵循的原则就是让每一层的绕线占满整个幅宽,如图6.1为变压器骨架侧视图。

反激式开关电源变压器设计

反激式开关电源变压器设计

反激式开关电源变压器设计一、设计原理反激式开关电源变压器基于开关电源的工作原理,利用开关元件(开关管或者MOS管)、变压器、滤波电容和反激电容等组成。

其基本原理为:输入交流电经过整流滤波得到直流电压,然后由开关元件进行开关控制,将直流电压通过变压器变换为所需的输出直流电压,最后通过滤波电容输出稳定的直流电压。

二、关键技术1.变压器设计:反激式开关电源变压器的设计是整个电源设计中最为关键的部分。

在设计变压器时,要考虑输出功率、输入电压范围、输出电压等参数。

通常采用环型铁芯、锥形铁芯或者斜式铁芯,以减小漏电感和磁性损耗,提高效率。

同时,在设计过程中还要考虑绕组的匝数、电流和绝缘等级等方面的因素。

2.开关元件选择:开关元件是实现能量转换和控制的关键部分。

常用的开关元件有开关管、MOS管等。

选择合适的开关元件需要综合考虑电源输出功率、开关频率、开关速度、导通压降以及温升等因素。

3.控制电路设计:控制电路主要负责控制开关元件的导通和关断。

常见的控制电路有单片机控制和集成电路控制两种。

单片机控制的优点是灵活性高、可编程性强,但需要额外增加单片机等硬件,造成成本增加;集成电路控制则更简单,但灵活性较差。

三、注意事项1.确保变压器设计合理:变压器设计要保证核心材料的选取合理,应该选择磁性能好、耐高温的材料。

此外,变压器的绕组要均匀绝缘,并合理设计匝数,以减小漏电感和损耗。

2.开关元件的选择要合适:开关元件选择要根据实际工作条件来确定,如输出功率、输入电压范围、输入电流等。

3.控制电路设计要稳定可靠:控制电路要设计稳定可靠,能够保证开关元件的正常工作。

如果选用单片机控制,还需考虑保护电路的设计,以避免过电流和过压等问题。

4.散热设计要合理:反激式开关电源在工作过程中会产生较多的热量,因此散热设计要合理。

可以采用散热片、散热风扇等降低温度。

总结:反激式开关电源变压器的设计涉及变压器设计、开关元件选择和控制电路设计等多个方面。

开关电源设计技巧连载十正激式变压器开关电源电路参数的计算

开关电源设计技巧连载十正激式变压器开关电源电路参数的计算

开关电源设计技巧连载十正激式变压器开关电源电路参数的计算正激式变压器开关电源是一种常见的电源设计方案,广泛应用于各种电子设备中。

在设计正激式变压器开关电源时,我们需要计算一些电路参数来保证电源的正常工作。

以下是正激式变压器开关电源电路参数的计算方法。

1.输入电压计算:首先,需要确定正激式变压器开关电源的输入电压范围。

一般情况下,输入电压范围是根据电源的应用场所和要求来确定的。

例如,对于工业设备,输入电压范围一般为220VAC;对于电子设备,输入电压范围一般为110VAC。

因此,需要根据输入电压范围来选择合适的变压器。

2.输出电压计算:根据电源的应用场景和要求,确定所需的输出电压。

一般情况下,正激式变压器开关电源的输出电压范围是根据设备的工作电压要求来确定的。

例如,对于一些低功率的电子设备,输出电压一般为5VDC;对于一些高功率的电子设备,输出电压一般为12VDC或者24VDC。

因此,需要根据输出电压范围来选择合适的变压器和输出电路参数。

3.开关频率计算:开关频率是指开关管的开关频率,它决定了电源的工作频率。

一般情况下,开关频率是根据设备的工作要求来确定的。

例如,对于一些需要高效节能的设备,开关频率一般选择在20kHz以上;对于一些功率较低的设备,开关频率一般选择在50kHz以上。

因此,需要根据设备的工作要求来确定开关频率。

4.输出电流计算:输出电流是指电源输出给负载的电流,它决定了电源的输出功率。

一般情况下,输出电流是根据设备的功率要求和负载电阻来确定的。

例如,对于一些低功率的电子设备,输出电流一般在1A以下;对于一些高功率的电子设备,输出电流一般在10A以上。

因此,需要根据设备的功率要求和负载电阻来确定输出电流。

5.开关管参数计算:正激式变压器开关电源中的开关管是承担开关功能的主要器件。

在选择开关管时,需要根据前面计算的电路参数来确定合适的开关管。

例如,需要根据输入电压、输出电压、开关频率和输出电流来确定开关管的导通压降、导通电阻、关断速度和功耗等参数。

几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法开关电源变压器是一种电力转换装置,用于将交流电转换为需要的电压或电流。

它是开关电源的核心部分之一、在开关电源的设计中,变压器的设计计算非常重要。

下面介绍几种开关电源变压器设计计算方法。

1.变压器的变比设计计算方法:变压器的变比决定了输出电压的大小。

在开关电源设计中,根据需要的输出电压和输入电压,可以计算出变压器的变比。

变压器的变比计算公式如下:变比=输出电压/输入电压2.变压器的功率计算方法:变压器的功率决定了能够输出的最大功率。

在开关电源设计中,需要根据负载的功率要求和开关管的功率能力来计算变压器的功率。

变压器的功率计算公式如下:功率=输出电压×输出电流3.变压器的绕组计算方法:变压器的绕组计算主要是计算变压器的线圈的匝数和截面积。

在开关电源设计中,需要根据变压器的功率、频率和工作温度来计算绕组的截面积。

变压器的绕组计算公式如下:匝数=(磁通×动铁面积)/(磁压×磁路长度)4.变压器的损耗计算方法:变压器的损耗是指在工作过程中的能量损失。

在开关电源设计中,需要计算变压器的铜损和铁损。

变压器的铜损可以通过计算绕组的电阻和负载电流来获取。

变压器的铁损可以通过计算磁铁和磁路的磁滞损耗和涡流损耗来获得。

变压器的损耗计算公式如下:铜损=绕组电阻×负载电流^2铁损=磁滞损耗+涡流损耗5.变压器的有效值计算方法:变压器的有效值是指输入和输出电压的平均值。

在开关电源设计中,需要计算变压器的有效值来确定电压的稳定性。

变压器的有效值计算公式如下:有效值=峰值/根号2综上所述,开关电源变压器的设计计算方法主要包括变比计算、功率计算、绕组计算、损耗计算和有效值计算等方面。

通过合理的设计计算,可以确保开关电源变压器的性能和稳定性,进而提高开关电源的工作效率。

开关电源变压器设计

开关电源变压器设计

开关电源变压器设计开关电源变压器设计1. 前言2. 变压器设计原则3. 系统输入规格4. 变压器设计步骤4.1选择开关管和输出整流二极管4.2计算变压器匝比4.3确定最低输入电压和最大占空比4.4反激变换器的工作过程分析4.5计算初级临界电流均值和峰值4.6计算变压器初级电感量4.7选择变压器磁芯4.8计算变压器初级匝数、次级匝数和气隙长度4.9满载时峰值电流4.10 最大工作磁芯密度Bmax4.11 计算变压器初级电流、副边电流的有效值4.12 计算原边绕组、副边绕组的线径,估算窗口占有率4.13 计算绕组的铜损4.14 变压器绕线结构及工艺5. 实例设计—12W Flyback变压器设计1. 前言◆反激变换器优点:电路结构简单成本低廉容易得到多路输出应用广泛,比较适合100W以下的小功率电源◆设计难点变压器的工作模式随着输入电压及负载的变化而变化低输入电压,满载条件下变压器工作在连续电流模式( CCM )高输入电压,轻载条件下变压器工作在非连续电流模式( DCM )2. 变压器设计原则Class B不能超过110°C。

因此,温升在规定范围内,是我们设计变压器必须遵循的准则。

◆成本开关电源设计中,成本是主要的考虑因素,而变压器又是电源系统的重要组成部分,因此如何将变压器的价格,体积和品质最优化,是开关电源设计者努力的方向。

3. 系统输入规格输入电压:Vacmin~ Vacmax输入频率:f L输出电压:V o输出电流:I o工作频率:f S输出功率:P o预估效率:η最大温升:40℃4.0变压器设计步骤4.1选择开关管和输出整流二极管开关管MOSFET:耐压值为V mos输出二极管:肖特基二极管最大反向电压V D正向导通压降为V F4.2计算变压器匝比考虑开关器件电压应力的余量(Typ.=20%)开关ON :0.8·V D > V in max / N + V o开关OFF :0.8·V MOS > N·( V o+ V F) + V in max匝比:N min < N < N max4.3 确定最低输入电压和最大占空比输入滤波电容:2µF~3µF/W 最低输入电压 ( 假设tc=3ms )V in min = √(√2V ac min )2−2 × P in ( T2− t c )C in最低输入电压,最大功率时,占空比最大D maxD max = N ∙ ( V o + V F )N ∙ ( V o + V F ) + V in min4.4 反激变换器的工作过程分析低输入电压时,负载从轻载到重载,变压器经历从DCM →BCM →CCM 的过程 高输入电压时,负载从轻载到重载,变压器一直工作在DCM4.5 计算初级临界电流均值和峰值按照最小输入电压,最大输出功率(Pomax)的条件计算 P o = 1/3P o max 时,变换器工作在BCM P o < 1/3P o max 时,变换器工作在DCM P o > 1/3P o max 时,变换器工作在CCMBCM模式下,最小输入电压时的平均输入电流I in-avg =13∙ P in V in min变压器初级临界电流峰值∆I p1 = I pk1 = 2 × I in−avgD max4.6 计算变压器初级电感量最低输入电压,BCM条件下,最大通时间T on max = 1f s×D max变压器初级电感量Lp =V in min × T on max∆I p14.7 选择变压器磁芯基于输出功率和开关频率计算面积乘积,根据面积乘积来选择磁芯AP p =P o × 1062 × η × K o × K c × f s × B m × jK o是窗口的铜填充系数:取K o=0.4K c是磁芯填充系数;对于铁氧体磁芯取K c=1Bm是变压器工作磁通密度,取B m≤12Bsatj是电流密度,取j = 4.2A/mm2考虑绕线空间,尽量选择窗口面积大的磁芯,查表选择Aw和Ae4.8 计算变压器初级、次级匝数、辅助绕组匝数和气隙长度初级绕组的匝数N p = V in min × t on maxA e ×B m×108增加或者减小匝数只会分别引起磁芯损耗减小或增加在100kHz条件下,损耗与B2.86成正比,匝数减小5%会使磁芯损耗增加15% 次级绕组匝数N s = N p / N辅助绕组匝数N cc = ( V cc + 1 ) ×N s / ( V o+ V F )气隙长度: l g = 0.4 π × A e × N2L p4.9 满载时峰值电流CCM时,T on max固定不变输入电压不变,BCM的T on max等于CCM的T on maxT on max内,电感电流线形上升增量∆I p1 = V in min × T on maxL p= ∆I p2低输入电压,满载条件下P o = 12×η× L p × (I2pk2– I2pk0 ) × f s变压器初级峰值电流I pk2 =P o / ηV in min × D max+ ∆I P224.10 最大工作磁芯密度B maxB max = L p × I pk2×108< B sat4.11 计算变压器初级电流、副边电流的有效值梯形波电流的中值 :I a = I pk - ∆I2电流直流分量 :I dc = D max × I a电流有效值 : I prms = I a √D max电流交流分量 :I ac = I a √D max (1−D max )4.12 计算原边绕组、副边绕组的线径,估算窗口占有率导线的横截面积自然冷却时,一般取电流密度 j = 4A / mm 2 初级绕组:S p = I prms ( A ) / 4 ( A / mm 2 ) 副边绕组:S s = I srms ( A ) / 4 ( A / mm 2 )线径及根数集肤深度 δ= 6.61 / √f s cm导线线径不超过集肤深度的2倍,若超过集肤深度,则需多股并绕 根据安规要求考虑加一定宽度的挡墙窗口占有率 K 0A w ≥ N p ×π×R p 2 + N s ×π×R s 2 + N cc ×π×R cc 24.13计算绕组的铜损根据导线的电阻和集肤深度,确定每个绕组的铜损耗 总损耗一定要小于预算损耗,温升经验公式loss4.14变压器绕线结构及工艺骨架的选取:累计高度、宽度绕法:初级和次级交错式(三明治)绕法:漏感小5. 设计实例—12W开关电源变压器设计5.1 系统输入规格输入电压:90Vac~265Vac输入频率:50Hz输出电压:12V输出电流:1.0A输出功率:Po=12W开关频率:50kHz预估效率:0.75输入最大功率:Pin=16W变压器最大温升:40℃5.2 开关管MOSFET和输出整流二极管开关管MOSFET耐压: V mos=600V输出二极管:反向压降V D=100V ( 正向导通压降V F=0.5V )5.3计算变压器匝比0.8 ∙V D > V in max / N + V o→0.8 ×100 > 375 / N +120.8 ∙V mos > N ∙( V o + V F ) + V in max→0.8 ×600 > N ×( 12 + 0.5 ) +375 5.5 < N < 8.45.4 最低输入电压和最大占空比选择C in=22µF最低输入电压:V in min = √(√2Vac min)2− 2 × P in (T2− t c)C in=√1272− 2 ×16 ×7 × 10−322 × 10−6≈77V最大占空比:Dmax =N ∙ (V o+ V F )N ∙ ( V o+ V F)+ V in min=6 × 12.56 ×12.5+77= 0.495.5 计算初级临界电流均值和峰值I in-avg =13∙ P inV in min=163 ×77= 0.07 A∆I p1 = I pk1 = 2 × I in−avgD max=2 ×0.070.49= 0.285 A5.6最大导通时间和初级电感量最大导通时间:T on max = 1f s×D max = 9.8 μs变压器初级电感量:L p = V in min×T on max∆I p1=77 ×9.8 × 10−60.285≈2.7mH5.7 变压器磁芯面积AP p =12 × 1062 ×0.75 ×0.42 × 50 × 10 ×1600 ×4= 0.066 cm2( 铁氧体磁芯B sat = 3900G , 取B m = 1600G )查表EF20 A e = 0.335 cm2,A w = 0.6048 cm25.8 变压器初级匝数、次级匝数、辅助绕组匝数和气隙长度N p = 77 ×9.8 × 10−60.335 ×1600×108= 140.7取N p = 140 TsN s = 140 / 6 = 23.3 Ts 取N s = 23 Ts N cc = 19 ×23 / 12.5 ≈35 Tsl g = 0.4π ×33.5 × 14022.6= 0.2 mm5.9 满载时峰值电流、最大工作磁通密度I pk2 =Po / ηVin min×Dmax+∆Ip2=1677 ×0.49+ 0.14 = 0.56 ABmax = Lp ×Ipk2Ae ×Np=2.6×10−3 × 0.560.335 ×140×108= 3100G < 3900G5.10 变压器初级电流、副边电流的有效值原边各电流:电流中值I pa = 0.42A 电流有效值I prms = 0.29A电流直流值I pdc = 0.20A 电流交流值I pac = 0.208A副边各电流:电流直流值I sdc = 1A 电流有效值I srms = 1.38A电流中值I sa = 1.92A 电流交流值I ac = 0.959A5.11 计算原边、副边绕组的线径,估算窗口占有率线径及根数集肤深度δ= 6.61 / √s= 6.61 / 3= 0.29 cm初级绕组:S p =0.068mm 2→Φ0.25mm ×1P →R DC = 4.523mΩ/cm ( 100℃ ) 副边绕组:S s = 0.328mm 2→Φ0.40mm×2P →R DC = 0.892mΩ/cm ( 100℃ ) Vcc 绕组:S cc = 0.1/4.2 = 0.024mm 2 →Φ0.1mm×2P 窗口占有率:0.4 × 60.48 ≥ 140 × π× 0.1252 + 23 × π× 0.22 + 35 ×π× 0.08224.2 ≥ 13.6 OK5.12 计算绕组的铜损平均匝长 l av = 23.5 mm各绕组绕线长度:原边 l Np = 140 × 23.5 = 329 cm副边 l Ns = 23 × 23.5 = 54.0 cm各绕组直、交流电阻:原边R pdc =1.45Ω R pac =2.38Ω副边R sdc =0.024Ω R sac =0.038ΩVcc 绕组电流过小,忽略绕组损耗各绕组损耗:P u = 0.30W {P p = I prms 2× R pdc + I pac 2 × R pac =0.22W P s = I srms 2× R sdc + I sac 2 × R sac =0.08W5.13 计算绕组的铁损计算铁损:查磁芯损耗曲线,PC40在 ΔB = 0.15T 时为80mW / cm 3 铁损 P Fe = 80 × 1.5 = 0.12 W估算温升总损耗 P loss = 0.12 + 0.30 = 0.42 W经验公式 ∆T ≈ 34 × √33.5 ×60.48= 22℃ < 40℃设计 OK5.14 变压器绕线结构及工艺绕线宽度高度累计查EF20 Bobbin 绕线宽度W=12.1mm ,高度H=2.9mm0.25mm,最大外径0.275mm 每层35T,W1=9.62mm0.40mm,最大外径0.52mm 每层23T,W2=11.9mm0.10mm,最大外径0.13mm 每层35T,W3=9.1mm(0.1mm×2P) 总高度= 0.275×4 + 0.52 × 2 + 0.13 × 3 + 0.03 × 7 = 2.74 mm绕线结构次级→初级→次级。

开关电源变压器设计实例(详细公式)

开关电源变压器设计实例(详细公式)

高频率变压器的设计例: 输入电压:85~264V输入电压频率:50/60HZ输出电压::12VDC输出电流:5A一、选择CORE的大小:通常按输出功率查CORE厂商的资料,根据CORE高度,在100KHz,与之对应的功率选择功率型的CORE.查TDK PQ2620 PC4 Ui=2300Nh Ae=119mm2 Bs=380mT(100℃) Br=140mT(23℃)二、计算输入电流平均值:PoutIav=η*Vin〈min〉Vin〈min〉=90V*√2-20〈直流涟波及整流管压降〉=110〈V〉η----效率 V out≧12V η=80~85%V out<12V η=75~80%此处选η=80%60Iav= = 0.68〈A〉0.8*110三、计算输入峰值电流大小:2 IavIp2连续工作模式(CCM) 不连续工作模式(DCM) CCM----连续工作模式,L ηEMC 差适合小功率DCM----不连续工作模式, L ηEMC 好适合大功率2*0.68Ipk= = 1.92〈A〉(1+0.55)*.45四、计算初级电感:Vin(min).DmaxLp=Ip‧fDmax=0.4~0.5 此处选Dmax=0.45工作频率选f=62KHz110*0.45Lp= <H>=0.423mH =423uH1.95*60*103五、计算初级匝数:Lp*Ip Vin‧TonNp= = *104Ae‧B B‧Ae1Ton= * 0.45 = 7.5us60*103Ae---- 铁芯截面积B---- 2000~2500 高斯,此处选B=2250高斯.110*7.5Np= * 104 =30.8(TS) 选取 31TS2250*1.19六、计算次级匝数Vin(min)‧Ns‧Dam=(V o+V D)‧Np‧(1-Dam)(V o+V D)‧Np‧(1-Dam) ( 12+0.5 )*31*0.55Ns= = =4.3(Ts) Vin(min)‧Dmax 110*0.45此处选Ns= 5Ts七、修正初级圈数和电感:Vin(min).Ns.Dmax 110*5*0.45Np= = = 36匝(V o+V D)‧Np‧(1-Dam) 12.5*0.55Np.Ae.BLp= *10-4 uH36*119*2250=八、计算Nb(V o+V D)Nb=6.68Ts 选 Nb=7Ts 故 Np:Ns:Nb=36:5:7 Lp=500uH九、计算电流的大小:1.初级电流有效值IrmsIrms=Ipk.√Dmax.(Krp2/3-Krp+1) 或 (Irms=Ipk/√6)Kpp----最小值 0.6<连续模式>,最小值1.0<不连续模式>此处选Krp=0.92 Irms=1.95/√6=0.8A2.次级峰值电流IspkNp. Ipk=Ns IspkIspk=1.95*36/5=14(A)3.次级电流有效值Isrms=Ispk.√(1-Dmax).Krp2/3-Krp+1)或 9(Isrms=Ispk/√6)Isems=14/√6=5.75(A)。

开关电源变压器 实例

开关电源变压器 实例

开关电源变压器实例
开关电源变压器实例如下:
以输入电压为85~264V,频率为50/60HZ,输出电压为12VDC,输出电
流为5A的单端反激式开关电源为例。

1. 高频变压器的设计:首先选择适当的磁芯大小。

通常根据输出功率,查找磁芯厂商的资料,根据磁芯高度,在100KHz的频率下选择相应的功率型磁芯。

例如,查TDK PQ2620 PC4,其参数为Ui=2300Nh,Ae=119mm^2,Bs=380mT(100℃),Br=140mT(23℃)。

2. 计算输入电流平均值:Pout/Iav=n Vin min。

其中,Vin min=90V V2-20直流涟波及整流管压降=110V。

n为变压器匝数比。

以上是开关电源变压器设计的一种实例,实际应用中需要根据具体需求进行设计。

如有需要,建议咨询专业工程师或查阅相关文献资料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源功率变压器的设计方法时间:2009-08-06 13:29:08 来源:机电商情网作者:1开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。

不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。

图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:zng1.gif (2320 bytes)图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。

这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。

图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略)T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2zng2.gif (4672 bytes)图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP 和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o= Uo/n。

经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。

脉冲的上升沿和下降沿包含着各种高频分量,而脉冲的平顶部分包含着各种低频分量。

因此在上升、下降和平顶过程中,各元件(L、C等)表现出来的阻抗也不一样,因此我们把这一过程分成几个阶段来分析,分别找出各阶段起主要作用的元件,而忽略次要的因素。

例如,当输入信号为矩形脉冲时,可以分3个阶段来分析,即上升阶段、平顶阶段和下降阶段。

(1)上升阶段对于通常的正脉冲而言,上升阶段即脉冲前沿,信号中包含丰富的高频成分,当高频分量通过脉冲变压器时,在图3所示的等效电路中,C的容抗1/ωC很小,而Lm1的感抗ωLm1很大,相比起来,可将Lm1的作用忽略,而在串联的支路中,Li的作用即较为显著。

于是可以把图3 所示的等效电路简化成图4所示的等效电路。

zng3.gif (3175 bytes) zng4.gif (3923 bytes)图3图2的等效电路图4图3的简化电路在这个电路中,频率越高,ωLi越大,而1/ωC越小,因而高频信号大多降在Li 上,输出的高频分量就减少了,可见输入信号Usm前沿中所包含的高频分量就不能完全传输到输出端,频率越高的成分到达输出端越小,结果在输出端得到的波形前沿就和输入波形不同,即产生了失真。

要想减小这种波形失真,就要尽量减小分布电容C(应减小变压器一次绕组的匝数)。

但又要得到一定的绕组电感量,所以需要用高磁导率的磁心。

在绕制上也可以采取一些措施来减小分布电容,例如用分段绕法;为了减小漏感L1,可采用一、二次绕组交叠绕法等。

(2)平顶阶段脉冲的平顶包含着各种低频分量。

在低频情况下,并联在输出端的3个元件中,电容C的容抗1/ωC很大,因此电容C可以忽略。

同时在串联支路中,Li的感抗ωLi很小,也可以略去。

所以又可以把图3电路简化为图5所示的低频等效电路。

信号源也可以等效成电动势为Usm的直流电源。

这里可用下述公式表达U′o=(UsmRL′)e-T/τ/(Rs+RL′)τ=Lm1(Rs+RL′)RsRL′可见U′o为一下降的指数波形,其下降速度决定于时间常数τ,τ越大,下降越慢,即波形失真越小。

为此,应尽量加大Lm1,而减小Rs和RL′,但这是有限的。

如果Lm1太大,必然使绕组的匝数很多,这将导致绕组分布电容加大,致使脉冲上升沿变坏。

zng5.gif (2867 bytes)图5图3的低频等效电路zng6.gif (2585 bytes)图6脉冲下降阶段的等效电路(3)下降阶段下降阶段的信号源相当于直流电源Usm串联的开关S由闭合到断开的阶段,它与上升阶段虽然是相对的过程,但有两个不同;一是电感Lm1中有励磁电流,并开始释放,因此Lm1不能略去;二是开关S断开后,Rs便不起作用,由此得出下降阶段的等效电路,见图6。

一般来说,在脉冲变压器平顶阶段以后,Lm1中存储了比较大的磁能,因此在开关断开后,会出现剧烈的振荡,并产生很大的下冲。

为了消除下冲往往采用阻尼措施。

2功率变压器的参数及公式2.1变压器的基本参数在磁路中,磁通集中的程度,称为磁通密度或磁感应强度,用B表示,单位是特斯拉(T),通常仍用高斯(GS)单位,1T=104GS。

另一方面,产生磁通的磁力称为磁场强度,用符号H表示,单位是A/mH=0.4πNI/li式中:N——绕组匝数I——电流强度li——磁路长度磁性材料的磁滞回线表示磁性材料被完全磁化和完全去磁化这一过程的磁特性变化。

图7为一典型的磁化曲线。

由坐标0点到a点这段曲线称起始磁化曲线。

曲线中的一些关键点是十分重要的,BS:饱和磁通密度,Br:剩磁,HC:矫顽磁力。

当Br越接近于BS值时,磁滞曲线的形状越接近于矩形,见图8(a),同时矫顽磁力HC越大时,磁滞曲线越宽,这表明这种磁性材料的磁化特性越硬,表明这种材料为硬磁性材料。

当Br和BS相差越大,矫顽磁力HC越小时,即磁滞曲线越瘦,表明这种材料为软磁性材料,脉冲变压器的磁心材料应选用软磁性材料,见图8(b)。

图7不带气隙的磁滞回线zng8.gif (3726 bytes)图8硬/软磁性材料和磁滞回线(a)硬磁材料(b)软磁材料如果在磁心中开一个气隙,将建立起一个有气隙的磁路,它会改变磁路的有效长度。

因为空气隙的磁导率为1,所以有效磁路长度le为le=li+μilg式中:li——磁性材料中的磁路长度lg——空气隙的磁路长度μi——磁性材料的磁导率对一个给定安匝数,有空气隙磁心的磁通密度要比没有空气隙的磁通密度小。

2.2设计变压器的基本公式为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T)Bm=(Up×104)/KfNpSc式中:Up——变压器一次绕组上所加电压(V)f——脉冲变压器工作频率(Hz)Np——变压器一次绕组匝数(匝)Sc——磁心有效截面积(cm2)K——系数,对正弦波为4.44,对矩形波为4.0一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。

变压器输出功率可由下式计算(单位:W)Po=1.16BmfjScSo×10-5式中:j——导线电流密度(A/mm2)Sc——磁心的有效截面积(cm2)So——磁心的窗口面积(cm2)3对功率变压器的要求(1)漏感要小图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。

zng9.gif (4783 bytes)图9双极性功率变换器波形功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。

(2)避免瞬态饱和一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。

它衰减得很快,持续时间一般只有几个周期。

对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。

由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。

所以一般在控制电路中都有软启动电路来解决这个问题。

(3)要考虑温度影响开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。

在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。

一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。

(4)合理进行结构设计从结构上看,有下列几个因素应当给予考虑:漏磁要小,减小绕组的漏感;便于绕制,引出线及变压器安装要方便,以利于生产和维护;便于散热。

4磁心材料的选择软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。

软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。

而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。

在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。

用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。

开关电源用铁氧体磁性材应满足以下要求:(1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br磁通密度Bs的高低,对于变压器和绕制结果有一定影响。

从理论上讲,Bs高,变压器的绕组匝数可以减小,铜损也随之减小。

在实际应用中,开关电源高频变换器的电路形式很多,对于变压器而言,其工作形式可分为两大类:1)双极性。

电路为半桥、全桥、推挽等。

变压器一次绕组里正负半周励磁电流大小相等,方向相反,因此对于变压器磁心里的磁通变化,也是对称的上下移动,B的最大变化范围为△B=2Bm,磁心中的直流分量基本抵消。

2)单极性。

电路为单端正激、单端反激等,变压器一次绕组在1个周期内加上1个单向的方波脉冲电压(单端反激式如此)。

变压器磁心单向励磁,磁通密度在最大值Bm到剩余磁通密度Br之间变化,见图7,这时的△B=Bm-Br,若减小Br,增大饱和磁通密度Bs,可以提高△B,降低匝数,减小铜耗。

相关文档
最新文档