2012年四川省成都市中考数学试题及答案
历年四川省成都市中考数学试卷(A卷)(含答案)
![历年四川省成都市中考数学试卷(A卷)(含答案)](https://img.taocdn.com/s3/m/478b40a82cc58bd63086bd55.png)
2017年四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,故S=π,圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,。
2008年—2012年年成都市中考数学试题及答案
![2008年—2012年年成都市中考数学试题及答案](https://img.taocdn.com/s3/m/d6a63833a2161479171128bc.png)
—20XX年年成都市中考数学试题及答案导读:就爱阅读网友为您分享以下“ —20XX年年成都市中考数学试题及答案”的资讯,希望对您有所帮助,感谢您对的支持!四川省成都市中考数学试卷(含成都市初三毕业会考)全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ为其它类型的题。
A卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1. 第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2. 第Ⅰ卷全是选择题。
各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分)1. 2cos45°的值等于(A(B(C(D)2. 化简(- 3x2)〃2x3的结果是(A)- 6x5 (B)- 3x5 (C)2x5 (D)6x53. 北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为(A)13.7×104千米(B)13.7×105千米(C)1.37×105千米(D)1.37×106千米4. 用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4 (B)5 (C)65. 下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一张电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上6. 在函数中,自变量x的取值范围是(A)x≥ - 3 (B)x≤ - 3 (C)x≥ 3 (D )x≤ 37. 如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF (D)78. 一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A)15,15 (B)10,15 (C)15,20 (D)10,209. 如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A)12πcm2 (B)15πcm2 (C)18πcm2 (D)24πcm2 1 (x < 0);④y = x2 + 2x + 1.x其中当x在各自的自变量取值范围内取值时,y随着x的增大而增大的函数有(A)①②(B)①④(C)②③(D)③④第Ⅱ卷(非选择题,共70分)注意事项:1. A卷的第Ⅱ卷和B卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
四川省成都市2012年中考数学试题(解析版)
![四川省成都市2012年中考数学试题(解析版)](https://img.taocdn.com/s3/m/4cdca29384868762caaed5c4.png)
成都市二0一二年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学A 卷(共100分)第1卷(选择题.共30分)一、选择题(本大题共l 0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求) 1.(2012成都)3-的绝对值是( ) A .3 B .3- C .13 D .13- 考点:绝对值。
解答:解:|﹣3|=﹣(﹣3)=3. 故选A .2.(2012成都)函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠-考点:函数自变量的取值范围。
解答:解:根据题意得,x ﹣2≠0, 解得x ≠2. 故选C . 3.(2012成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .考点:简单组合体的三视图。
解答:解:从正面看得到2列正方形的个数依次为2,1, 故选:D . 4.(2012成都)下列计算正确的是( )A .223a a a += B .235a a a ⋅= C .33a a ÷= D .33()a a -=考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
解答:解:A 、a +2a =3a ,故本选项错误; B 、a 2a 3=a 2+3=a 5,故本选项正确;C 、a 3÷a =a 3﹣1=a 2,故本选项错误;D 、(﹣a )3=﹣a 3,故本选项错误. 故选B5.(2012成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( ) A . 59.310⨯ 万元 B . 69.310⨯万元 C .49310⨯万元 D . 60.9310⨯万元 考点:科学记数法—表示较大的数。
解答:解:930 000=9.3×105. 故选A . 6.(2012成都)如图,在平面直角坐标系xOy 中,点P (3-,5)关于y 轴的对称点的坐标为( ) A .( 3-,5-) B .(3,5) C .(3.5-) D .(5,3-)考点:关于x 轴、y 轴对称的点的坐标。
【初中数学】四川省各市2012年中考数学试题分类解析汇编(四边形等12份) 通用
![【初中数学】四川省各市2012年中考数学试题分类解析汇编(四边形等12份) 通用](https://img.taocdn.com/s3/m/5766f077ad02de80d4d84056.png)
四川各市2012年中考数学试题分类解析汇编专题10:四边形一、选择题1. (2012四川成都3分)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误..的是【】A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OCB【答案】B。
【考点】菱形的性质。
【分析】根据菱形的性质作答:A、菱形的对边平行且相等,所以AB∥DC,故本选项正确;B、菱形的对角线不一定相等,故本选项错误;C、菱形的对角线一定垂直,AC⊥BD,故本选项正确;D、菱形的对角线互相平分,OA=OC,故本选项正确。
故选B。
2. (2012四川乐山3分)下列命题是假命题的是【】A.平行四边形的对边相等B.四条边都相等的四边形是菱形C.矩形的两条对角线互相垂直D.等腰梯形的两条对角线相等【答案】C。
【考点】命题与定理,平行四边形的性质,菱形的判定,矩形的性质,等腰梯形的性质。
【分析】根据平行四边形的性质,菱形的判定,矩形的性质,等腰梯形的性质做出判断即可:A、平行四边形的两组对边相等,正确,是真命题;B、四条边都相等的四边形是菱形,正确,是真命题;C、矩形的对角线相等但不一定垂直,错误,是假命题;D、等腰梯形的两条对角线相等,正确,是真命题。
故选C。
3. (2012四川宜宾3分)如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD=12AB ,点E 、F分别为AB .AD 的中点,则△AEF 与多边形BCDFE 的面积之比为【 】A . 17B . 16C . 15D . 14【答案】C 。
【考点】直角梯形的性质,三角形的面积,三角形中位线定理。
【分析】如图,连接BD ,过点F 作FG ∥AB 交BD 于点G ,连接EG ,CG 。
∵DC ∥AB ,CB ⊥AB ,AB=AD ,CD=12AB ,点E 、F 分别为AB .AD 的中点,∴根据三角形中位线定理,得AE=BE=AF=DF=DC=FG 。
2008年—2012年年成都市中考数学试题及答案
![2008年—2012年年成都市中考数学试题及答案](https://img.taocdn.com/s3/m/72b2397e3968011ca30091d5.png)
2008年四川省成都市中考数学试卷(含成都市初三毕业会考)全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ为其它类型的题。
A卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题。
各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分)1. 2cos45°的值等于(A(B(C(D)2.化简(- 3x2)·2x3的结果是(A)- 6x5(B)- 3x5 (C)2x5 (D)6x53.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为(A)13.7×104千米(B)13.7×105千米(C)1.37×105千米(D)1.37×106千米4.用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4 (B)5 (C)6 (D)75.下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一张电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上x 中,自变量x的取值范围是6.在函数y=3(A)x≥- 3 (B)x≤- 3 (C)x≥3 (D )x≤37.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF8.一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A)15,15 (B)10,15 (C)15,20 (D)10,209.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A)12πcm2(B)15πcm2(C)18πcm2(D)24πcm21(x < 0);④y = x2 + 2x + 1.其中10.有下列函数:①y = - 3x;②y = x –1:③y = -x当x在各自的自变量取值范围内取值时,y随着x的增大而增大的函数有(A)①②(B)①④(C)②③(D)③④第Ⅱ卷(非选择题,共70分)注意事项:1.A卷的第Ⅱ卷和B卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
三角形2012年四川中考数学题(含答案和解释)
![三角形2012年四川中考数学题(含答案和解释)](https://img.taocdn.com/s3/m/cb739e8269dc5022aaea00be.png)
三角形2012年四川中考数学题(含答案和解释)四川各市2012年中考数学试题分类解析汇编专题9:三角形选择题1. (2012四川乐山3分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为【】A.B.C.D.1【答案】C。
【考点】锐角三角函数定义,特殊角的三角函数值。
【分析】∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA= 。
∴∠A=30°。
∴∠B=60°。
∴sinB= 。
故选C。
2. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个【答案】B。
【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。
【分析】①连接CD(如图1)。
∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。
∵AE=CF,∴△ADE≌△CDF(SAS)。
∴ED=DF,∠CDF=∠EDA。
∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。
∴△DFE是等腰直角三角形。
故此结论正确。
②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于BC。
∴四边形CEDF是平行四边形。
又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF 是菱形。
又∵∠C=90°,∴四边形CEDF是正方形。
故此结论错误。
③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,由②,知四边形CMDN是正方形,∴DM=DN。
(整理)中考数学卷精析版成都卷
![(整理)中考数学卷精析版成都卷](https://img.taocdn.com/s3/m/9770e6655f0e7cd1842536d6.png)
2012年中考数学卷精析版——成都卷一、A卷选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.(2012•成都市)﹣3的绝对值是()A.3 B.﹣3 C.D.考点:绝对值。
分析:根据一个负数的绝对值等于它的相反数得出.解答:解:|﹣3|=﹣(﹣3)=3.2.(2012•成都)函数中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2D.x≠﹣2考点:函数自变量的取值范围。
分析:根据分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣2≠0,解得x≠2.故选C.点评:本题考查了函数自变量的取值范围,用到的知识点为:分式有意义,分母不为0.3.(2012•成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为()考点:简单组合体的三视图。
分析:根据主视图定义,得到从几何体正面看得到的平面图形即可.4.(2012•成都)下列计算正确的是()A.a+2a=3a2B.a2•a3=a5C.a3÷a=3D.(﹣a)3=a3B、a2•a3=a2+3=a5,故本选项正确;C、a3÷a=a3﹣1=a2,故本选项错误;D、(﹣a)3=﹣a3,故本选项错误.故选B点评:本题考查了合并同类项法则,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质和法则是解题的关键.5.(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为()A.9.3×105万元B.9.3×106万元C.93×104万元D.0.93×106万元考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于930 000有6位,所以可以确定n=6﹣1=5.解答:解:930 000=9.3×105.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.6.(2012•成都)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3.﹣5)D.(5,﹣3)故选B.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(2012•成都)已知两圆外切,圆心距为5cm,若其中一个圆的半径是3cm,则另一个圆的半径是()A.8cm B.5cm C.3cm D.2cm考点:圆与圆的位置关系。
2012年四川省成都市中考数学试卷及解析
![2012年四川省成都市中考数学试卷及解析](https://img.taocdn.com/s3/m/b6479789de80d4d8d15a4fa7.png)
2012年四川省成都市中考数学试卷一、A卷选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.(3分)(2012•成都)﹣3的绝对值是()A.3B.﹣3 C.D.2.(3分)(2012•成都)函数中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≠﹣23.(3分)(2012•成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.4.(3分)(2012•成都)下列计算正确的是()A.a+2a=3a2B.a2•a3=a5C.a3÷a=3 D.(﹣a)3=a35.(3分)(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为()A.9.3×105万元B.9.3×106万元C.93×104万元D.0.93×106万元6.(3分)(2012•成都)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3.﹣5)D.(5,﹣3)7.(3分)(2012•成都)已知两圆外切,圆心距为5cm,若其中一个圆的半径是3cm,则另一个圆的半径是()A.8cm B.5cm C.3cm D.2cm8.(3分)(2012•成都)分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=49.(3分)(2012•成都)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.A B∥DC B.A C=BD C.A C⊥BD D.O A=OC10.(3分)(2012•成都)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1﹣x)=121 C.100(1+x)2=121 D.100(1﹣x)2=121二、A卷填空题(本大题共4个小题,每小题4分,共16分)11.(4分)(2012•成都)分解因式:x2﹣5x=_________.12.(4分)(2012•成都)如图,将平行四边形ABCD的一边BC延长至E,若∠A=110°,则∠1=_________.13.(4分)(2012•成都)商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是_________cm,中位数是_________cm.14.(4分)(2012•成都)如图,AB是⊙O的弦,OC⊥AB于C.若AB=,0C=1,则半径OB的长为_________.三、A卷解答题(本大题共6个小题,共54分)15.(12分)(2012•成都)(1)计算:(2)解不等式组:.16.(6分)(2012•成都)化简:.17.(8分)(2012•成都)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,(结果精确到0.1米,)测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.18.(8分)(2012•成都)如图,一次函数y=﹣2x+b(b为常数)的图象与反比例函数(k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(﹣1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(10分)(2012•成都)某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_________,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_________;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(10分)(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).四、B卷填空题(本大题共5个小题,每小题4分,共20分)21.(4分)(2012•成都)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为_________.22.(4分)(2012•成都)一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为_________(结果保留π)23.(4分)(2012•成都)有七张正面分别标有数字﹣3,﹣2,﹣1,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是_________.24.(4分)(2012•成都)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=_________.(用含m的代数式表示)25.(4分)(2012•成都)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H 点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为_________cm,最大值为_________cm.五、B卷解答题(本大题共3个小题,共30分)26.(8分)(2012•成都)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.(10分)(2012•成都)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.28.(12分)(2012•成都)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C 两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.2012年四川省成都市中考数学试卷参考答案与试题解析一、A卷选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.(3分)考点:绝对值。
四川省各市2012年中考数学分类解析专题6:函数的图像与性质
![四川省各市2012年中考数学分类解析专题6:函数的图像与性质](https://img.taocdn.com/s3/m/b0385a6b1eb91a37f1115c84.png)
四川各市2012年中考数学试题分类解析汇编专题6:函数的图像与性质一、选择题1. (2012四川乐山3分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是【】A.B.C.D.【答案】A。
【考点】一次函数图象与系数的关系。
【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定)。
a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合。
故选A。
2. (2012四川乐山3分)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是【】A.0<t<1B.0<t<2C.1<t<2D.﹣1<t<1【答案】B。
【考点】二次函数图象与系数的关系。
【分析】∵二次函数y=ax2+bx+1的顶点在第一象限,且经过点(﹣1,0),∴a﹣b+1=0,a<0,b>0,∵由a=b﹣1<0得b<1,∴0<b<1①,∵由b=a+1>0得a>﹣1,∴﹣1<a<0②。
∴由①②得:﹣1<a+b<1。
∴0<a+b+1<2,即0<t<2。
故选B。
3. (2012四川宜宾3分)给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y=14x2的切线②直线x=﹣2与抛物线y=14x 2相切于点(﹣2,1) ③直线y=x+b 与抛物线y=14x 2相切,则相切于点(2,1)④若直线y=kx ﹣2与抛物线y=14x 2 相切,则实数其中正确的命题是【 】 A . ①②④B . ①③C . ②③D . ①③④4. (2012四川内江3分)已知反比例函数xk y =的图像经过点(1,-2),则k 的值为【 】A.2B.21- C.1 D.-2【答案】D 。
2012年四川省成都市高中阶段学校招生统一考试
![2012年四川省成都市高中阶段学校招生统一考试](https://img.taocdn.com/s3/m/e92d8ff8f705cc1754270906.png)
2012年四川省成都市高中阶段学校招生统一考试数学试题(含成都市初三毕业会考)A 卷(共100分) 第1卷(选择题.共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求) 1.3-的绝对值是( ) A .3 B .3-C .13D .13-2.函数12y x =- 中,自变量x 的取值范围是( ) A .2x >B .2x <C .2x ≠D .2x ≠-3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )4.下列计算正确的是( )A .223a a a += B .235a a a ⋅=C .33a a ÷=D .33()a a -=5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( ) A .59.310⨯万元B .69.310⨯万元 C .49310⨯万元D .60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点P (3-,5)关于y 轴的对称点的坐标为( ) A .( 3-,5-) B .(3,5)C .(3.5-)D .(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( ) A .8cmB .5cmC .3cmD .2cm8.分式方程3121x x =- 的解为( ) A .1x =B .2x =C .3x =D .4x =9.如图在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是( )A .AB ∥DCB .AC=BDC .AC ⊥BDD .OA=OC10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( ) A .100(1)121x += B .100(1)121x -= C .2100(1)121x +=D .2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 11.分解因式:25x x - =________.12.如图,将 ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.13.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是________cm ,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=,OC=1,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算:024cos45((1)π+-(2)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩16.(本小题满分6分) 化简:22(1)b aa b a b-÷+- 17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.1 1.732≈ )18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数ky x=(k 为常数,且k ≠0),4).的图象交于A,B两点,且点A的坐标为(1(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a 时,P 、Q 两点间的距离 (用含a 的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________. 22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π )23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过点(1,0)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数ky x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若B E 1BF m=(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则12S S =_______.(用含m 的代数式表示)25.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC (余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE 重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P (单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.(本小题满分I0分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K . (1)求证:KE=GE ;(2)若2KG =KD·GE ,试判断AC 与EF 的位置关系,并说明理由;(3)在(2)的条件下,若si n ∠E=35,AK=FG 的长.28.(本小题满分l2分)如图,在平面直角坐标系xOy 中,一次函数54y x m =+(m 为常数)的图象与x 轴交于点A (3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M 是否为定值,并写出探究过程.。
2012年四川省成都市中考真题及答案
![2012年四川省成都市中考真题及答案](https://img.taocdn.com/s3/m/895b6cabb0717fd5360cdcb5.png)
成都市二○一二年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2.在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色的签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.3-的绝对值是( )(A )3 (B )3-(C )13 (D )13- 2.函数12y x =- 中,自变量x 的取值范围是( ) (A )2x > (B ) 2x <(C )2x ≠ (D )2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )4.下列计算正确的是( )(A )223a a a += (B )235a a a ⋅=(C )33a a ÷= (D )33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )(A )59.310⨯ 万元 (B )69.310⨯万元(C )49310⨯万元 (D )60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点(35)P -,关于y 轴的对称点的坐标为( )(A )(3-,5-)(B )(3,5)(C )(3,5-)(D )(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )(A )8cm (B )5cm (C )3cm (D )2cm 8.分式方程3121x x =- 的解为( ) (A )1x = (B )2x =(C )3x = (D )4x =9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) (A )AB DC ∥(B )AC BD =(C )AC BD ⊥(D )OA OC =10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )(A )100(1)121x += (B )100(1)121x -=(C )2100(1)121x += (D )2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)1l .分解因式:25x x -=________.12.如图,将ABCD Y 的一边BC 延长至E ,若110A ∠=°,则1∠=________.13则这________cm .14.如图,AB 是O ⊙的弦,OC AB ⊥于C .若AB =,1OC =,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:024cos 458(π(1)-+- .(2)解不等式组:2021 1.3x x -<⎧⎪+⎨⎪⎩,≥16.(本小题满分6分)化简: 22(1)b a a b a b-÷+-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.11.732 )18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数ky x=(k 为常数,且k ≠0)的图象交于A ,B 两点,且点A 的坐标为(14)-,.(1)分别求出反比例函数及一次函数的表达式;(2)求点B 的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,ABC △和DEF △是两个全等的等腰直角三角形,90BAC EDF ∠=∠=°,DEF △的顶点E 与ABC △的斜边BC 的中点重合.将DEF △绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图①,当点Q 在线段AC 上,且AP AQ =时,求证:BPE CQE △≌△;(2)如图②,当点Q 在线段CA 的延长线上时,求证:BPE CEQ △≌△;并求当BP a = ,92CQ a =时,P 、Q 两点间的距离 (用含a 的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ .(结果保留π )23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过...点(1,0)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM y ⊥轴于M ,过点F 作FN x ⊥轴于N ,直线EM 与FN 交于点C .若1BE BF m=(m 为大于l 的常数).记C E F △的面积为1S ,OEF △的面积为2S ,则12S S =________. (用含m 的代数式表示) 25.如图,长方形纸片ABCD 中,AB =8cm ,AD =6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC (余下部分不再使用);第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBGH 剪成两部分;第三步:如图③,将MN 左侧纸片绕G 点按顺时针方向旋转180°,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180°,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm ,最大值为________cm .二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展 交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V (单位:千米/时)是车流密度x (单位:028x <≤时,80V =;当辆/千米)的函数,且当28188x <≤时,V 是x的一次函数. 函数关系如图所示.(1)求当28188x <≤时,V 关于x 的函数表达式;(2)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P (单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.(本小题满分10分)如图,AB 是O ⊙的直径,弦CD AB ⊥于H ,过CD 延长线上一点E 作O ⊙的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K .(1)求证:KE GE =;(2)若2KG KD GE =∙,试判断AC 与EF 的位置关系,并说明理由;(3)在(2)的条件下,若sin E =35,AK =FG 的长.28.(本小题满分l2分)如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点(30)A -,,与y 轴交于点C .以直线1x =为对称轴的抛物线2y ax bx c =++(a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B .(1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使ACP △的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111()M x y , ,222()M x y ,两点,试探究2112P P M M M M ∙ 是否为定值,并写出探究过程.成都市二○一二年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案一、1. A2. C3. D4. B5. A6. B7. D8. C9. B 10. C二、11.(5)x x - 12.70° 13.39、40 14.2三、15.解:(1)原式4112=⨯-+ ······················································ (2分)11=+ ························································· (4分) 2=; ············································································ (6分)(2)解不等式①,得2x <, ·································································· (2分) 解不等式②,得1x ≥, ········································································· (4分) ∴综上所述,原不等式的解集为12x <≤. ··············································· (6分)16.解:原式22a b b a a b a b+-=÷+- ······························································ (2分) ()()a a b a b a b a +-=∙+ ··························································· (4分)a b =-. ············································································· (6分)17.解:由图知6BD EC ==米, 1.5DE BC ==米, ··································· (1分)在Rt AEC △中,tan AC AEC EC∠=, t a n 6t a n 606 1.732A C E C A E C ∴=∙∠=⨯⨯°≈≈米, ··················· (4分) 10.4 1.511A B A C B C A C D E ∴=+=+=+=米.······························· (7分) 答:旗杆AB 的高度约为11.9米. ························································· (8分)18.解:(1)点(14)A -,在反比例函数k y x=的图象上, 41k ∴=-,解得4k =-, ···································································· (1分) ∴反比例函数的表达式为4y x =-; ······················································· (2分) 点(14)A -,在一次函数2y x b =-+(b 为常数)的图象上,4(2)(1)b ∴=-⨯-+,解得2b =, ······················································ (3分) ∴一次函数的表达式为22y x =-+; ····················································· (4分)(2)由224y x y x =-+⎧⎪⎨=-⎪⎩,解得22x y =⎧⎨=-⎩或14x y =-⎧⎨=⎩, ······································ (6分) 点B 在第四象限,∴点B 的坐标为(22)-,.··········································· (8分)19.解:(1)50人,320人; ····································································· (4分)(2)画树状图如下:··············································· (7分) 由树状图可知:会产生12种结果,它们出现的机会相等,其中恰好抽到甲、乙两名同学有2种结果,P ∴(甲、乙)=21126=. ······································································ (10分) 20.证明:(1)点E 是等腰直角三角形斜边的中点,BE CE B C AB AC ∴=∠=∠=,,,···························································· (1分) AP AQ =,BP CQ ∴=, ························································································· (2分) BPE CQE ∴△≌△; ·············································································· (3分)(2)BEF C CQE BEF DEF BEP ∠=∠+∠∠=∠+∠,,C CQE DEF BEP ∴∠+∠=∠+∠,45C DEF ∠=∠=°,BEF CQE ∠=∠. ··············································································· (4分) B C ∠=∠,BPE CEQ ∴△∽△; ··············································································· (5分) BP BE CE CQ∴=, ························································································ (6分) 92BP a CQ a BE CE ===,,,BE ∴=3BC =······························································· (7分) 3sin 45322AB AC BC a PA a QA a ∴===∴==°,,, ··································· (8分) ∴在Rt PAQ △中52PQ a ===. ············································ (10分) 21.6.22.68π.23.37. 24.11m m -+ 25.2012+,26.解:(1)设当28188x <≤时,v 关于x 的一次函数表达式为v kx b =+,点(28,80)、(188,0)在这条直线上,28801880k b k b +=⎧∴⎨+=⎩,解得1294.k b ⎧=-⎪⎨⎪=⎩··························· (2分)∴当28188x <≤时,v 关于x 的一次函数表达式为1942v x =-+; ················· (3分) (2)车流速度v 不低于50千米/时,194502x ∴-+≥,解得88x ≤; ····························································· (4分) ①028x <≤时,80P x =,800k P =>∴,随x 的增大而增大,∴当28x =时,2240P =; ······································································ (5分) ②当28188x <≤时,22111(94)94(94)4418222P x x x x x =-+=-+=--+. 抛物线开口向下,∴当94x ≤时,P 随x 的增大而增大,而28188x <≤,∴当88x =时,21(8894)441844002P =--+=. ······································ (7分) 44002240>,∴当车流密度为88辆/千米时,车流量达到最大,最大值是4400辆/时. ············· (8分)27.解:(1)证明:连接OG ,则有OG OA =,OGA OAG ∴∠=∠,EF 与O ⊙相切于点G ,90OGE ∴∠=°,即90KGE OGA ∠=-∠°, ·········· (1分) CD AB ⊥,90GKE AKH OAG ∴∠=∠=-∠°,KGE GKE ∴∠=∠,KE GE ∴=; ····················································· (2分) (2)连接DG ,2KG GE KG KD GE KG KG =∙∴=,,即KG KE KD KG=, ············································· (3分) GKE ∠是公共角,KDG KGE ∴△∽△,E KGD ∴∠=∠,···················································································· (4分) ACH KGD ∠=∠,E ACH ∴∠=∠,AC EF ∴∥; ································· (5分) (3)连接OC ,由(2)中AC EF ∥可得CAK KGE ∠=∠,KGE GKE AKH ∠=∠=∠,AKH CAK CA CK ∴∠=∠∴=,, 33sin sin 55E C =∴=,, ········································································ (6分) 在Rt ACH △中,若设3AH x =,则有5AC CK x ==,4CH x =,HK x ∴=,在Rt AKH △中,有222(3)x x +=,解得x = ····························· (7分) 设O ⊙的半径为R ,在Rt OCH △中,有222(4)(3)R x R x =+-,解得256R x =,R ∴=. ························································································ (8分) Rt Rt F CAH OGF CHA ∠=∠∴,△∽△, ··············································· (9分) FG AH OG CH ∴=,即34FG x R x=.34FG R ∴==. ··········································································· (10分) 28.解:(1)点(30)A -,在一次函数54y x m =+的图象上, 5(3)04m ∴+⨯-=,解得154m =; ····························································· (1分) 一次函数的解析式为51544y x =+, 令0x =,得154y =, ∴点C 的坐标为15(0)4,, 抛物线2y ax bx c =++的对称轴为1,可设抛物线的解析式为2(1)y a x k =-+,依题意,得160154a k a k +=⎧⎪⎨+=⎪⎩,解得144a k ⎧=-⎪⎨⎪=⎩; ······························································· (2分) ∴抛物线的函数表达式21(1)44y x =--+或 21115424y x x x =-++. ··········································································· (3分) (2)存在. ···························································································· (4分) ①AF 为四边形的一边时,如图①:CE x ∴∥轴, 由抛物线的对称性,得15(2)4E ,, ······················ (5分) 此时四边形的面积为:1515242ACEF S =⨯=四边形. ·· (6分) ②AF 为四边形的对角线时,如图②:设AF 与CE 交于M 点,即M 为CE 的中点,设()E E E x y ,,()M M M x y ,, 则有22C E M C MM x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ M 在x 轴上,0M y ∴=, 154C y =,154E y ∴=-,又21(1)44E E y x =--+, 即2151(1)444Ex -=--+,解得1E x =1x =-,E ∴点的坐标为15(1)4-, ································································ (7分)此时四边形的面积为: 151052(16)444AFC ACEF S S AF OC ==∙=⨯=+△四边形. ·············· (8分) ③如图③,作C 关于1x =对称的点C ',有15(2)4C ',,直线AC '与1x =的交点即为P 点,则P 点就是使ACP △的周长取得最小值的点,直线AC '的表达式为3944y x =+, 当1x =时,3y =,(13)P ∴,,过(13)P ,的直线设为:3(1)y k x -=-,即3y kx k =-+, ····························· (9分) 由111()M x y ,,122()M x y ,可得:1M P =,2M P =,12M M =将3ykx k =-+代入,消去y 得:111M P x ==-,221M P x ==-,1212M M x x ==-,∴1212121212()1x x x x M P M P M M x x -++∙==-, ······································································································ (10分)联立解析式,得方程21(1)443y x y kx k ⎧=--+⎪⎨⎪=-+⎩, 整理得2(42)430x k x k +---=,2224(42)4(43)16160 b ac k k k-=-++=+>,∴此方程有两个不相等的实数根,∴由根与系数的关系可得:1224x x k+=-,1243x x k=--;·······················(11分)将1224x x k+=-,1243x x k=--代入1212M P M PM M∙==1==.1212M P M PM M∙∴有定值,且定值为1. ·························································(12分)。
(历年中考)四川省成都市中考数学试题 含答案
![(历年中考)四川省成都市中考数学试题 含答案](https://img.taocdn.com/s3/m/944b2c167fd5360cbb1adb57.png)
(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;
【解答】解:∵∠OCA=50°,OA=OC,
∴∠A=50°,
∴∠BOC=100°,
∵AB=4,
∴BO=2,
∴ 的长为: = π.
故选:B.
二、填空题:本大题共4个小题,每小题4分,共16分
【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【解答】解:从上面看易得横着的“ ”字,
故选C.
3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为( )
【解答】解:181万=181 0000=1.81×106,
故选:B.
4.计算(﹣x3y)2的结果是( )
A.﹣x5yB.x6yC.﹣x3y2D.x6y2
【考点】幂的乘方与积的乘方.
【分析】首先利用积的乘方运算法则化简求出答案.
【解答】解:(﹣x3y)2=x6y2.
故选:D.
5.如图,l1∥l2,∠1=56°,则∠2的度数为( )
A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)
【考点】关于x轴、y轴对称的点的坐标.
【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.
【VIP专享】2008年—2012年年成都市中考数学试题及答案
![【VIP专享】2008年—2012年年成都市中考数学试题及答案](https://img.taocdn.com/s3/m/020a5dfd02768e9951e73890.png)
y 随着 x 的增大而增大的函数有
(A)①②
二、填空题:(每小题 4 分,共 16 分)
(B)①④
(C)②③
(D)③④
11. 现有甲、乙两支排球队,每支球队队员身高的平均数均为 1.85 米,方差分别为 S甲2 =0.32, S乙2 =0.26,则身高较整齐的球
①B①到电影院任意买一张电影票,座位号是奇数
①C①在地球上,抛出去的篮球会下落
①D①掷一枚均匀的骰子,骰子停止转动后偶数点朝上
6. 在函数 y= x 3 中,自变量 x 的取值范围是
①A①x≥ - 3 (B)x≤ - 3
(C)x≥ 3
(D)7
7. 如图,在△ABC 与△DEF 中,已有条件 AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是
①A①∠B=∠E,BC=EF
(C)∠A=∠D,∠B=∠E
(B)BC=EF,AC=DF
(D)∠A=∠D,BC=EF
8. 一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午 7∶00 ~ 12∶00 中各时间段(以 1 小时
为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为
(A)15,15
(B)10,15
(C)15,20
(D)10,20
1
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
四川成都市2012年中考数学模拟测试卷
![四川成都市2012年中考数学模拟测试卷](https://img.taocdn.com/s3/m/03a42325cfc789eb172dc8b1.png)
四川成都市2012年中考数学模拟测试卷(全卷分A 、B 卷,共28小题,卷面分数:150分,考试时间:120分钟)A 卷(共100分)一、选择题(每小题3分,共30分) 1.方程3(1)33x x x +=+的解为( C ) A .1x =B .1x =-C .121-1x x ==,D .120-1x x ==,2.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是( B )A .0a b +>B .0a b ->C .0ab >;D .||||0a b ->.3.下列说法不正确的是( A )A .某种彩票中奖概率是1%,因此买100张该种彩票一定会中奖B .方差反映了一组数据的波动大小,方差越大,波动越大C .数据6,3,5,4,1,-2的中位数是3.5D .在选举中,人们通常最关心的数据是众数 4.正方形网格中,AOB ∠如右图放置,则sin ∠AOB =( B )A.2B. C.12D. 5.⊿ABC 内接于⊙O ,∠A =40°,则∠BCO 的度数为( B ) A. 40° B. 50° C. 60° D. 80° 6.在△ABC 中,∠C=900,D 是AC 上一点,DE ⊥AB 于点E ,若AC=8,BC=6,AD=5,则DE 长为( A ) A .3B .4C .5D .67.菱形的两条对角线是一元二次方程0121522=+-x x 的两根,则该菱形的面积是( D )A .6B . 5C .4D .3 8.已知一次函数1-=kx y 的图象与反比例函数xy 2=的图象的一个交点坐标为(2,1),那么另一个交点的坐标是( B ) A .(-2,1)B .(-1,-2)C .(2,-1)D .(-1,2)(第2题图)ABO9.如图,AB 是⊙O 直径,CD 为弦,CD AB ⊥于E ,则下列结论中 ①∠A=∠D ,②∠ACB=90°,③CE =DE ,④CB =DB ,⑤DE 2 =A E ·BE 正确的个数是......( D ) A.2 B.3 C.4 D.5 10.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论,错误的是( B ) A . a 、b 异号 B.当y =5时,x 的取值只能为0C.4a +b =0 D.当x = —1和x=5时,函数值相等 二、填空题:(每小题3分,共15分)11.在平面直角坐标系中,抛物线y=1x x 2-+与x 轴的交点的个数是 2 . 12.要使代数式2x 14-+-x 有意义,则x 应满足_____2<x ≤4______.13.直角坐标系中点(-2,3)关于直线x =1对称的点的坐标是 (4,3) .14.方程23233x x x +=-+的解是x= -1 . 15.如图,已知Rt ΔABC 中,斜边BC 上的高AD=8,cosB=54,则AC= 10 . 三、(每小题6分,共18分) 16.解答下列各题:(1)计算:—()20112121-⨯⎪⎭⎫ ⎝⎛--1cos30--62⨯解:原式= 4+23—1—32(4分) =3—233(6分) (2)先化简,再求值:x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x解:原式=3(x+1)—(x —1) (2分) =2x+4=2(x+2) (4分)当22-=x 时,x+2=2 (5分)所以原式的值=22 (6分) (3)阅读题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学教师好帮手《中考二次函数压轴100题多媒体教学软件》(音频超800分钟),各校代理合作QQ 群:2593157662012年四川省成都市中考数学试卷一、A 卷选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)2.(3分)(2012•成都)函数中,自变量x 的取值范围是( )3.(3分)(2012•成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为( )5.(3分)(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )6.(3分)(2012•成都)如图,在平面直角坐标系xOy 中,点P (﹣3,5)关于y 轴的对称点的坐标为( )8.(3分)(2012•成都)分式方程的解为( )9.(3分)(2012•成都)如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是( )10.(3分)(2012•成都)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是二、A卷填空题(本大题共4个小题,每小题4分,共16分)11.(4分)(2012•成都)分解因式:x2﹣5x=_________.12.(4分)(2012•成都)如图,将平行四边形ABCD的一边BC延长至E,若∠A=110°,则∠1=_________.14.(4分)(2012•成都)如图,AB是⊙O的弦,OC⊥AB于C.若AB=,0C=1,则半径OB的长为_________.三、A卷解答题(本大题共6个小题,共54分)15.(12分)(2012•成都)(1)计算:(2)解不等式组:.16.(6分)(2012•成都)化简:.17.(8分)(2012•成都)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,(结果精确到0.1米,)测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.18.(8分)(2012•成都)如图,一次函数y=﹣2x+b(b为常数)的图象与反比例函数(k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(﹣1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(10分)(2012•成都)某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_________,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_________;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(10分)(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).四、B卷填空题(本大题共5个小题,每小题4分,共20分)21.(4分)(2012•成都)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为_________.22.(4分)(2012•成都)一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为_________(结果保留π)23.(4分)(2012•成都)有七张正面分别标有数字﹣3,﹣2,﹣1,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是_________.24.(4分)(2012•成都)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=_________.(用含m的代数式表示)25.(4分)(2012•成都)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H 点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为_________cm,最大值为_________cm.五、B卷解答题(本大题共3个小题,共30分)26.(8分)(2012•成都)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.(10分)(2012•成都)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.28.(12分)(2012•成都)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C 两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.2012年四川省成都市中考数学试卷参考答案与试题解析一、A 卷选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)2.(3分)(2012•成都)函数中,自变量x 的取值范围是( )3.(3分)(2012•成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为( )5.(3分)(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )6.(3分)(2012•成都)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()8.(3分)(2012•成都)分式方程的解为(),9.(3分)(2012•成都)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()10.(3分)(2012•成都)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()二、A卷填空题(本大题共4个小题,每小题4分,共16分)11.(4分)(2012•成都)分解因式:x2﹣5x=x(x﹣5).12.(4分)(2012•成都)如图,将平行四边形ABCD的一边BC延长至E,若∠A=110°,则∠1=70°.14.(4分)(2012•成都)如图,AB是⊙O的弦,OC⊥AB于C.若AB=,0C=1,则半径OB的长为2.AB=AB==三、A卷解答题(本大题共6个小题,共54分)15.(12分)(2012•成都)(1)计算:(2)解不等式组:.+)×﹣+1+1﹣+2)16.(6分)(2012•成都)化简:.••17.(8分)(2012•成都)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,(结果精确到0.1米,)测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.×=6≈18.(8分)(2012•成都)如图,一次函数y=﹣2x+b(b为常数)的图象与反比例函数(k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(﹣1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.=4,)联立,19.(10分)(2012•成都)某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为50,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为320;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.×=20.(10分)(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).,CQ=BE=CE=aaPQ==四、B卷填空题(本大题共5个小题,每小题4分,共20分)21.(4分)(2012•成都)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为6.22.(4分)(2012•成都)一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为68π(结果保留π)=5圆锥的侧面积是:×23.(4分)(2012•成都)有七张正面分别标有数字﹣3,﹣2,﹣1,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是..故答案为.24.(4分)(2012•成都)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)=,=,=,(((FN(x y(((==故答案为:.25.(4分)(2012•成都)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H 点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为20cm,最大值为12+cm.的最大值等于矩形对角线的长度,即==×五、B卷解答题(本大题共3个小题,共30分)26.(8分)(2012•成都)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度),解得:﹣﹣(﹣x+94x﹣27.(10分)(2012•成都)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.=,=,又∠ACH=).t=CAH== =28.(12分)(2012•成都)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C 两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.0=∴直线解析式为),=a,x x+;又∵EG=CO=,=x+,解得);+1)=)x+,x+x+==P==;==4=1。