烧结钕铁硼永磁材料国家标准

合集下载

国家标准《快淬钕铁硼永磁粉》修订说明

国家标准《快淬钕铁硼永磁粉》修订说明

国家标准《快淬钕铁硼永磁粉》修订说明(讨论稿)1、工作简况1.1 任务背景稀土永磁材料是信息时代重要的基础功能材料之一,由于丰富的稀土资源和科技工作者的辛勤努力,我国已经成为全球稀土永磁材料最大的生产基地,并逐步成为最大的应用基地。

粘结钕铁硼永磁材料具有磁性能一致性好、尺寸精度高、形状复杂、适合多极充磁(特别是多极充磁磁环)和与金属/塑料零件一体成形等优点,在精密电机和传感器中扮演着重要的角色,而粘结钕铁硼磁粉则是粘结钕铁硼永磁材料最重要的基础原材料。

国家质量监督检验检疫局和国家标准化管理委员会分别于2002年11月19日和2006年4月13日发布了GB/T 18880-2002《粘结钕铁硼永磁材料》和GB/T 20168-2006《快淬钕铁硼永磁粉》国家标准。

针对数年来粘结钕铁硼磁体的持续发展,尤其是新世纪以来我国的飞速发展和技术进步,2010至2012年由核工业第八研究所负责、联合北京中科三环高技术有限公司和有研稀土新材料股份有限公司,对GB/T 18880-2002《粘结钕铁硼永磁材料》进行了修订,从市场实用性考虑,新标准参照IEC 60404-8-1 Ed. 2.0:2001 (b)《磁性材料—8-1部分:不同材料的规格-硬磁材料》标准引进了字符型牌号,增加了一些高性能牌号,并引入了盐雾试验及相关标准,修订后的新标准GB/T 18880-2012于2012年11月5日发布、2013年5月1日实施。

2014年是一个特殊的年份,被美国麦格昆磁(MQI)长年垄断的快淬钕铁硼磁粉成分和工艺专利已于7月份失效,粘结钕铁硼市场格局将发生重大变化,尽管MQI声称他们还有含La、Ce和添加Zr的成分专利,也有两份关于退磁曲线方形度的特性专利,但这些专利的实质性控制力度要弱得多,而磁体用户一直企盼的打破粘结钕铁硼磁粉专利垄断、提升磁体性价比、大幅度拓展磁体应用的时代就要来临。

与此同时,国内只能稳定生产中低性能钕铁硼磁粉的状态也已经取得重大突破,最大磁能积达到16MGOe的磁粉已经面市,以感应加热重熔快淬为标志的高性能、高一致性磁粉制备技术趋于成熟,从本质上将超越传统电弧重熔快淬的技术瓶颈。

烧结钕铁硼主要性能参数

烧结钕铁硼主要性能参数

烧结钕铁硼主要性能参数1. 最大磁能积(BHmax):烧结钕铁硼的最大磁能积是其最重要的性能指标之一,表示了材料的磁性能。

BHmax的值越高,表示材料具有更高的磁化强度和能量存储密度。

目前烧结钕铁硼的最大磁能积已经达到了约400 kJ/m³。

3.矫顽力温度系数(dHc/dT):矫顽力温度系数表示了烧结钕铁硼材料的矫顽力随温度变化的程度。

通常,矫顽力随着温度的升高而减小,矫顽力温度系数表征了这种变化。

一般情况下,矫顽力温度系数在-0.50--0.60%/℃之间。

4.饱和磁化强度(Bs):饱和磁化强度是指材料在外加磁场作用下达到最大磁化强度的能力。

烧结钕铁硼具有较高的饱和磁化强度,通常在1.2-1.5T之间。

5.剩磁(Br):剩磁是指材料在去除外加磁场后仍保持的磁化程度。

剩磁越高,表示材料的磁化程度越稳定。

烧结钕铁硼通常具有较高的剩磁,通常在0.9-1.2T之间。

6.温度系数:温度系数是指材料磁性能随温度变化的程度。

烧结钕铁硼具有较低的温度系数,通常在-0.10%--0.13%/℃之间。

这意味着烧结钕铁硼的磁性能在一定温度范围内变化较小。

7.导磁率:导磁率是指材料对磁场的响应能力。

烧结钕铁硼具有较高的导磁率,通常在1.05-1.15Tm/A之间。

8.易加工性:烧结钕铁硼材料的易加工性取决于其晶粒度和材料成分的均匀性。

通常情况下,烧结钕铁硼为磁性陶瓷材料,加工性较差,需要采用磨削、抛光等工艺进行精细加工。

总的来说,烧结钕铁硼是一种具有优异磁性能的材料,适用于电机、传感器、磁控制器等领域。

随着技术的进步和工艺的改进,烧结钕铁硼材料的性能将继续提高,推动其在更广泛的应用领域中发挥作用。

钕铁硼标准

钕铁硼标准

钕铁硼标准本标准是以GB/T 1.3 一1997《标准化工作导则第l 单元:标准的起草与表述规则第3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。

在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC404-8-1(1986)及其补充2(1992)《磁性材料第8部分:特殊材料规范第一节硬磁材料标准规范》和国内外有关企业标准。

对原标准的技术内容进行了必要的补充和修改。

本标准参考了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。

本标准与GB/T 13560 一1992 的主要技术差异如下:1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。

2.对原标准中“术语、符号、单位”修改为“术语与定义”。

由于引用GB/T 9637—1988《磁学基本术语和定义》,取消了原来的磁学术语定义。

采用了IEC 404-8-l(1986)对永磁材料的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。

3.修改并增加了材料的牌号。

4.对附录A 的机械物理性能范围值修订为典型值。

5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。

本标准自实施之日起代替GB/T 13560一1992。

本标准的附录A、附录B、附录C 均为提示的附录。

本标准由国家发展计划委员会稀土办公室提出。

本标准由全国稀土标准化技术委员会归口。

本标准由包头稀土研究院负责起草。

本标准主要起草人:刘国征、马婕、王标、李泽军。

1 范围本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运输、贮存。

本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。

本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。

烧结钕铁硼永磁材料国家标准

烧结钕铁硼永磁材料国家标准

烧结钕铁硼永磁材料国家标准本标准是以GB/T 1.3 一1997《标准化工作导则第l 单元:标准的起草与表述规则第3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。

在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC404-8-1(1986)及其补充2(1992)《磁性材料第8部分:特殊材料规范第一节硬磁材料标准规范》和国内外有关企业标准。

对原标准的技术内容进行了必要的补充和修改。

本标准参考了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。

本标准与GB/T 13560 一1992 的主要技术差异如下:1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988 《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。

2.对原标准中“术语、符号、单位”修改为“术语与定义”。

由于引用GB/T 9637—1988 《磁学基本术语和定义》,取消了原来的磁学术语定义。

采用了IEC 404-8-l(1986)对永磁材料的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。

3.修改并增加了材料的牌号。

4.对附录A 的机械物理性能范围值修订为典型值。

5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。

本标准自实施之日起代替GB/T 13560一1992。

本标准的附录A、附录B、附录C 均为提示的附录。

本标准由国家发展计划委员会稀土办公室提出。

本标准由全国稀土标准化技术委员会归口。

本标准由包头稀土研究院负责起草。

本标准主要起草人:刘国征、马婕、王标、李泽军。

1 范围本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运输、贮存。

本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。

本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。

《快淬钕铁硼永磁粉》国家标准修订编制说明 - 中国有色金属标准质量 ...

《快淬钕铁硼永磁粉》国家标准修订编制说明 - 中国有色金属标准质量 ...

国家标准《快淬钕铁硼永磁粉》修订说明(讨论稿)1、工作简况1.1 任务背景稀土永磁材料是信息时代重要的基础功能材料之一,由于丰富的稀土资源和科技工作者的辛勤努力,我国已经成为全球稀土永磁材料最大的生产基地,并逐步成为最大的应用基地。

粘结钕铁硼永磁材料具有磁性能一致性好、尺寸精度高、形状复杂、适合多极充磁(特别是多极充磁磁环)和与金属/塑料零件一体成形等优点,在精密电机和传感器中扮演着重要的角色,而粘结钕铁硼磁粉则是粘结钕铁硼永磁材料最重要的基础原材料。

国家质量监督检验检疫局和国家标准化管理委员会分别于2002年11月19日和2006年4月13日发布了GB/T 18880-2002《粘结钕铁硼永磁材料》和GB/T 20168-2006《快淬钕铁硼永磁粉》国家标准。

针对数年来粘结钕铁硼磁体的持续发展,尤其是新世纪以来我国的飞速发展和技术进步,2010至2012年由核工业第八研究所负责、联合北京中科三环高技术有限公司和有研稀土新材料股份有限公司,对GB/T 18880-2002《粘结钕铁硼永磁材料》进行了修订,从市场实用性考虑,新标准参照IEC 60404-8-1 Ed. 2.0:2001 (b)《磁性材料—8-1部分:不同材料的规格-硬磁材料》标准引进了字符型牌号,增加了一些高性能牌号,并引入了盐雾试验及相关标准,修订后的新标准GB/T 18880-2012于2012年11月5日发布、2013年5月1日实施。

2014年是一个特殊的年份,被美国麦格昆磁(MQI)长年垄断的快淬钕铁硼磁粉成分和工艺专利已于7月份失效,粘结钕铁硼市场格局将发生重大变化,尽管MQI声称他们还有含La、Ce和添加Zr的成分专利,也有两份关于退磁曲线方形度的特性专利,但这些专利的实质性控制力度要弱得多,而磁体用户一直企盼的打破粘结钕铁硼磁粉专利垄断、提升磁体性价比、大幅度拓展磁体应用的时代就要来临。

与此同时,国内只能稳定生产中低性能钕铁硼磁粉的状态也已经取得重大突破,最大磁能积达到16MGOe的磁粉已经面市,以感应加热重熔快淬为标志的高性能、高一致性磁粉制备技术趋于成熟,从本质上将超越传统电弧重熔快淬的技术瓶颈。

国家标准烧结钕铁硼永磁材料

国家标准烧结钕铁硼永磁材料

稀土国家标准《烧结钕铁硼永磁材料》(送审稿)编制说明一、工作简况1.任务背景钕铁硼稀土永磁材料由于具有优异的磁性能及所用原材料来源广泛、价格低等优点,钕铁硼永磁材料产业得到了迅速地发展。

自GB/T13560-2009标准发布实施以来,随着烧结钕铁硼永磁材料的技术进步,该稀土永磁材料的产量和磁性能都有了较大的提高。

虽然经历了金融危机的影响,2011年-2013年,国内烧结钕铁硼产量仍然达到约7-8万吨,2014年,国内烧结钕铁硼产量为10.3万吨,2015年产量与2014年相当。

烧结钕铁硼永磁材料应用技术的进步,对烧结钕铁硼永磁材料的性能指标都提出了更高要求。

与GB/T13560-2009国标相比,当今烧结钕铁硼永磁产品N、H、SH、UH、EH和TH系列牌号的最高磁性能都有新的提高。

原有的技术指标已不能完全满足生产和应用的需求,因此,对GB/T13560-2009标准修订已十分必要。

这对于规范烧结钕铁硼永磁材料的生产和销售贸易,促进了企业技术改造和产品的质量提高,减少生产厂家和用户之间的贸易纠纷,使钕铁硼永磁材料行业规范发展具有重要意义。

2任务来源根据稀土标委[2014] 41号文件《关于编制2015年稀土国家、行业标准项目计划通知,包头稀土研究院提交了GB/T13560-2009 烧结钕铁硼永磁材料国家标准修订项目建议书,2015年11月,全国稀土标准化技术委员[2015] 18号文件“关于召开2015年度全国稀土标准化技术委员会年会暨《快淬钕铁硼永磁粉》等13项稀土标准工作会议的通知”确定了“烧结钕铁硼永磁材料”国家标准修订项目,项目编号20152315-T-469,完成年限为2016年12月。

本标准的负责起草单位:包头稀土研究院,本标准参加起草单位:钢铁研究总院,北京中科三环高技术股份有限公司、安徽大地熊新材料股份有限公司、中国科学院宁波材料技术与工程研究所。

3. 主要起草单位简况包头稀土研究院成立于1963年,隶属于原冶金工业部,1992年转制进入包头钢铁集团公司,是国内最大、研究领域最全的稀土专业科技研究机构。

钕铁硼标准

钕铁硼标准

钕铁硼标准本标准是以GB/T 1.3 一1997《标准化工作导则第l 单元:标准的起草与表述规则第3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。

在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC404-8-1(1986)及其补充2(1992)《磁性材料第8部分:特殊材料规范第一节硬磁材料标准规范》和国内外有关企业标准。

对原标准的技术内容进行了必要的补充和修改。

本标准参考了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。

本标准与GB/T 13560 一1992 的主要技术差异如下:1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。

2.对原标准中“术语、符号、单位”修改为“术语与定义”。

由于引用GB/T 9637—1988《磁学基本术语和定义》,取消了原来的磁学术语定义。

采用了IEC 404-8-l(1986)对永磁材料的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。

3.修改并增加了材料的牌号。

4.对附录A 的机械物理性能范围值修订为典型值。

5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。

本标准自实施之日起代替GB/T 13560一1992。

本标准的附录A、附录B、附录C 均为提示的附录。

本标准由国家发展计划委员会稀土办公室提出。

本标准由全国稀土标准化技术委员会归口。

本标准由包头稀土研究院负责起草。

本标准主要起草人:刘国征、马婕、王标、李泽军。

1 范围本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运输、贮存。

本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。

本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。

稀土永磁材料国内外标准对比研究

稀土永磁材料国内外标准对比研究

目前,稀土永磁材料的国际标准是由世界性标准化组织国际电工委员会(IEC)制定的,即:IEC 60404-8-1-2015《磁性材料第8-1部分:单项材料规范硬磁材料》。

其中划分了硬磁材料的三种分类:烧结硬质合金、烧结硬质陶瓷和粘接硬磁材料,烧结钕铁硼和烧结钐钴永磁材料被列为烧结硬质合金,而粘接钕铁硼和粘接钐钴永磁材料被列为粘接硬磁材料。

另外,美国磁性材料生产企业协会(MMPA)发布了关于永磁材料的标准:《永磁材料标准规范》(MMPA 标准 0100-00),列出了稀土永磁材料按成分的分类(稀土钴、稀土与过渡族金属元素的合金、稀土铁合金)、生产工艺、磁性能、尺寸偏差、机械特点、物理和力学性能、工艺控制、检测与验收要求等。

我国标准则是按照不同永磁材料的成分类别及生产工艺分别制定的。

针对第一代、第二代稀土永磁材料钐钴材料,制订了XB/T 502-2007《钐钴1-5型永磁合金粉》、XB/T 507-2009《2∶17型钐钴永磁材料》行业标准对钐钴永磁材料进行了规范。

第三代稀土永磁材料钕铁硼问世后,我国于1992年制定了烧结钕铁硼永磁材料国家标准,经过多次修订之后,目前实施的GB/T13560-2017《烧结钕铁硼永磁材料》。

另外我国还研制了系列稀土永磁材料相关标准,如GB/T 18880-2012《粘结钕铁硼永磁材料》、GB/T 29655-2013《钕铁硼速凝薄片合金》等。

近年来,随着如“富铈磁体”“晶界扩散磁体”等新型稀土永磁材料陆续投入生产使用,我国也已开始更多新型磁性材料标准的研制工作。

国内标准与国际标准差异对比1.稀土永磁材料包装要求从目前看来,IEC 60404-8-1-2015《磁性材料第8-1部分:单项材料规范硬磁材料》并没有对稀土永磁材料的包装提出具体要求,相关包装要求通常在国际交易中一般由供需双方协商决定。

包装设计应符合防潮、防震、防腐蚀等要求以保证产品在正常运输、搬运情况下不受到损伤。

2019年烧结钕铁硼永磁材料国家标准.doc

2019年烧结钕铁硼永磁材料国家标准.doc

烧结钕铁硼永磁材料国家标准本标准是以GB/T 1.3 一1997《标准化工作导则第l 单元:标准的起草与表述规则第3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。

在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC404-8-1(1986)及其补充2(1992)《磁性材料第8部分:特殊材料规范第一节硬磁材料标准规范》和国内外有关企业标准。

对原标准的技术内容进行了必要的补充和修改。

本标准参考了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。

本标准与GB/T 13560 一1992 的主要技术差异如下:1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988 《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。

2.对原标准中“术语、符号、单位”修改为“术语与定义”。

由于引用GB/T 9637—1988 《磁学基本术语和定义》,取消了原来的磁学术语定义。

采用了IEC 404-8-l(1986)对永磁材料的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。

3.修改并增加了材料的牌号。

4.对附录A 的机械物理性能范围值修订为典型值。

5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。

本标准自实施之日起代替GB/T 13560一1992。

本标准的附录A、附录B、附录C 均为提示的附录。

本标准由国家发展计划委员会稀土办公室提出。

本标准由全国稀土标准化技术委员会归口。

本标准由包头稀土研究院负责起草。

本标准主要起草人:刘国征、马婕、王标、李泽军。

1 范围本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运输、贮存。

本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。

本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。

钕铁硼标准.

钕铁硼标准.

钕铁硼标准本标准是以GB/T 1.3 一1997《标准化工作导则第l 单元:标准的起草与表述规则第3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。

在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC404-8-1(1986)及其补充2(1992)《磁性材料第8部分:特殊材料规范第一节硬磁材料标准规范》和国内外有关企业标准。

对原标准的技术内容进行了必要的补充和修改。

本标准参考了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。

本标准与GB/T 13560 一1992 的主要技术差异如下:1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。

2.对原标准中“术语、符号、单位”修改为“术语与定义”。

由于引用GB/T 9637—1988《磁学基本术语和定义》,取消了原来的磁学术语定义。

采用了IEC 404-8-l(1986)对永磁材料的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。

3.修改并增加了材料的牌号。

4.对附录A 的机械物理性能范围值修订为典型值。

5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。

本标准自实施之日起代替GB/T 13560一1992。

本标准的附录A、附录B、附录C 均为提示的附录。

本标准由国家发展计划委员会稀土办公室提出。

本标准由全国稀土标准化技术委员会归口。

本标准由包头稀土研究院负责起草。

本标准主要起草人:刘国征、马婕、王标、李泽军。

1 范围本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运输、贮存。

本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。

本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。

烧结钕铁硼永磁材料产品技术标准2022

烧结钕铁硼永磁材料产品技术标准2022

烧结钕铁硼永磁材料1 范围本标准规定了烧结钕铁硼永磁材料分类、技术要求、试验方法、检验规则和标志、包装、运输、贮存。

本标准适用于烧结钕铁硼永磁材料。

2 规范性引用文件下列文件中的条款通过标准的引用而构成本标准的条款。

凡是注日期的引用文件,其随后所有的修改单(包括勘误的内容)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 2828.1 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划GB/T 3217 永磁(硬磁)材料磁性能试验方法GB/T 9637 电工术语磁性材料与元件GB/T 13560 烧结钕铁硼永磁材料XB/T 903 烧结钕铁硼永磁材料表面电镀层3 术语和定义本标准基本术语和定义应符合GB/T 9637的规定并采用下列定义。

6.1主要磁性能包括永磁材料的剩余感应强度(剩磁)(B r)、磁极化强度矫顽力(内禀矫顽力)(H cj)、磁感应强度矫顽力(磁感矫顽力)(H cb)、最大磁能积((BH)max)、方形度Hk/Kcj。

6.2辅助磁性能包括永磁材料的相对回复磁导率(μrec)、剩余磁感应温度系数(α(B r))、磁极化强度矫顽力温度系数(α(H cJ))、居里温度(T C)。

4 材料分类4.1材料分类和牌号表示方法烧结钕铁硼产品按磁极化强度矫顽力大小分为普通矫顽力(N)、中等矫顽力(M)、高矫顽力(H)、特高矫顽力(SH)、超高矫顽力(UH)、极高矫顽力(EH)六大类产品。

每大类产品按最大磁能积大小划分具体牌号,其中基本牌号由英文字母和阿拉伯数字两部分组成,字母代表产品矫顽力分类,阿拉伯数字代表标称最大磁能积。

在基本牌号的基础上,加上T或者L-…T代表衍生牌号。

4.2基本牌号基本牌号有N25、N28、N30、N33、N35、N38、N40、N42、N45、N48、N50、N52、N54、N56、30M、33M、35M、38M、40M、42M、45M、48M、50M、52M、54M、56M、30H、33H、35H、38H、40H、42H、45H、48H、50H、52H、30SH、33SH、35SH、38SH、40SH、42SH、45SH、48SH、50SH、30UH、33UH、35UH、38UH、40UH、45UH、48UH、30EH、33EH、35EH、38EH、40EH、42EH。

产品生命周期评价技术规范 烧结钕铁硼永磁材料-2023最新

产品生命周期评价技术规范 烧结钕铁硼永磁材料-2023最新

产品生命周期评价技术规范烧结钕铁硼永磁材料1 范围本文件规定了烧结钕铁硼永磁材料生命周期评价的基本规则和要求。

本文件适用于烧结钕铁硼永磁材料,是对烧结钕铁硼永磁材料生命周期评价的原则、方法与技术的规定。

2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。

其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 13560 烧结钕铁硼永磁材料GB/T 15676 稀土术语GB/T 24020 环境管理环境标志和声明通用原则GB/T 24025 环境标志和声明Ⅲ型环境声明原则和程序GB/T 24040 环境管理生命周期评价原则与框架GB/T 24044 环境管理生命周期评价要求与指南GB/T 32161 生态设计产品评价通则3 术语和定义GB/T 15676、GB/T 24040、GB/T 24044界定的以及下列术语和定义适用于本文件。

3.1 烧结钕铁硼永磁材料Sintered Nd-Fe-B Magnetic Material烧结钕铁硼永磁材料是以金属间化合物Nd2Fe14B为基础的永磁材料,主要成分为钕(Nd)、铁(Fe)、硼(B)。

[来源:GB/T 13560–2017,C.1]3.2 生命周期life cycle产品系统中前后衔接的一系列阶段,从自然界或从自然资源中获取原材料,直至最终处置。

[来源:GB/T 24040–2008,3.1]3.3 生命周期清单分析life cycle inventory analysis (LCI)生命周期评价中对所研究产品整个生命周期中输入和输出进行汇编和量化的阶段。

[来源:GB/T 24040–2008,3.3]3.4 生命周期影响评价life cycle impact assessment(LCIA)生命周期评价中理解和评价产品系统在产品整个生命周期中的潜在影响的大小和重要性的阶段[来源:GB/T 24040–2008,3.4]3.5 共生产品co-product同一单元过程或产品系统中产出的两种或两种以上的产品。

烧结钕铁硼永磁材料国家标准

烧结钕铁硼永磁材料国家标准

烧结钕铁硼永磁材料国家标准本标准是以GB/T 1.3 一1997《标准化工作导则第l 单元:标准的起草与表述规则第3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。

在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC404-8-1(1986)及其补充2(1992)《磁性材料第8部分:特殊材料规范第一节硬磁材料标准规范》和国内外有关企业标准。

对原标准的技术内容进行了必要的补充和修改。

本标准参考了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。

本标准与GB/T 13560 一1992 的主要技术差异如下:1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988 《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。

2.对原标准中“术语、符号、单位”修改为“术语与定义”。

由于引用GB/T 9637—1988 《磁学基本术语和定义》,取消了原来的磁学术语定义。

采用了IEC 404-8-l(1986)对永磁材料的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。

3.修改并增加了材料的牌号。

4.对附录A 的机械物理性能范围值修订为典型值。

5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。

本标准自实施之日起代替GB/T 13560一1992。

本标准的附录A、附录B、附录C 均为提示的附录。

本标准由国家发展计划委员会稀土办公室提出。

本标准由全国稀土标准化技术委员会归口。

本标准由包头稀土研究院负责起草。

本标准主要起草人:刘国征、马婕、王标、李泽军。

1 范围本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运输、贮存。

本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。

本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。

钕铁硼标准

钕铁硼标准

钕铁硼标准本标准是以GB/T 1.3 一1997《标准化工作导则第l 单元:标准的起草与表述规则第3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。

在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC404-8-1(1986)及其补充2(1992)《磁性材料第8部分:特殊材料规范第一节硬磁材料标准规范》和国内外有关企业标准。

对原标准的技术内容进行了必要的补充和修改。

本标准参考了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。

本标准与GB/T 13560 一1992 的主要技术差异如下:1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。

2.对原标准中“术语、符号、单位”修改为“术语与定义”。

由于引用GB/T 9637—1988《磁学基本术语和定义》,取消了原来的磁学术语定义。

采用了IEC 404-8-l(1986)对永磁材料的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。

3.修改并增加了材料的牌号。

4.对附录A 的机械物理性能范围值修订为典型值。

5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。

本标准自实施之日起代替GB/T 13560一1992。

本标准的附录A、附录B、附录C 均为提示的附录。

本标准由国家发展计划委员会稀土办公室提出。

本标准由全国稀土标准化技术委员会归口。

本标准由包头稀土研究院负责起草。

本标准主要起草人:刘国征、马婕、王标、李泽军。

1 范围本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运输、贮存。

本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。

本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。

WI-QC-001钕铁硼产品过程检验标准

WI-QC-001钕铁硼产品过程检验标准
D.对规格比较大的圆环的外观的判定可依据以下标准:
<1>缺角(外边部)如图:
a.缺口尺寸:L≤3.5mmW≤3.0mmH≤1.0mm
b.缺口个数:≤4
c.缺口缺口<1.0mm方,可忽略
万磁
标准书
文件编号
WI-QC-001
版本
1.0
制定部门
钕铁硼产品过程检验标准
页次
13/16
品管部
发行日期
2007.4.1
文件编号
WI-QC-001
版本
1.0
制定部门
钕铁硼产品过程检验标准
页次
8/16
品管部
发行日期
2007.41.
磨加工
1.过程检验
1.1按生产部所下达的生产任务指令领料,并检查规格、性能、数量等是否正确。
1.2领料时重点检查外观、缺陷数是否与领料单记载相符合。
5.产品通过托板时应保证2/3位于托板与导轮之间,托板高度应保证产品中心位于磨轮与导轮中心线上方并接近连线位置。
页次
4/16
品管部
发行日期
2007.4.1
一、3.3.2熔炼检验
1.过程检验:
a.真空是否达到工艺要求。
b.配料是否准确(误差≤1%),称总重。
2.产品检验:
a.收率≥98%。
b.结晶状态:柱状晶对穿为最好;无柱状晶为最差。
c.如果发现有未熔清现象时,视为不合格,改做底料处理。
万磁
标准书
文件编号
WI-QC-001
4.7.4对于HCJ达不到以上要求的N档,SH档,UH档,EH档产品必须进行返烧处理,返烧仍不合格,暂存半成品库或中间库,根据用户特殊要求加工利用。

(企业的实用标准)钕铁硼性能表

(企业的实用标准)钕铁硼性能表

实用标准文案企业标准本标准等效于:GB/T 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 3217 永磁(硬磁)材料磁性试验方法GB/T 9637 磁学基本术语和定义GB/T 13560 烧结钕铁硼磁体XB/T 903 烧结钕铁硼磁体表面镀覆层烧结钕铁硼磁体2009-2-10 发布2009-3-1实施目次前言 (Ⅱ)1 范围 (1)2 规范性引用文件 (1)3 定义和术语 (1)4材料分类与牌号 (1)5技术要求 (1)6 试验方法 (1)7 检验规则 (2)8.标志、包装、运输 (2)前言本标准起草单位:本标准主要起草人:烧结钕铁硼磁体1.范围本标准规定了烧结钕铁硼磁体的分类、技术要求、试验方法、检验规则、标志、包装、运输、贮存。

本标准适用于粉末冶金工艺生产的烧结钕铁硼磁体。

2.规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查)GB/T 3217 永磁(硬磁)材料磁性试验方法GB/T 9637 磁学基本术语和定义GB/T 13560 烧结钕铁硼磁体XB/T 903 烧结钕铁硼磁体表面镀覆层3.术语与定义本标准采用下列定义:3.1 主要磁性能:包括永磁材料的剩磁(Br )、磁极化强度矫顽力(内禀矫顽力)(HcJ )、磁感应强度矫顽力(矫顽力)(HcB )、最大磁能积((BH )max )3.2 辅助磁性能:包括永磁材料的相对回复磁导率(μrec )、剩磁温度系数(α(Br)),磁极化强度矫顽力温度系数(β(HcJ ))。

4.材料分类与牌号4.1 材料分类:烧结钕铁硼磁体按磁极化强度矫顽力大小分为低矫顽力N 、中等矫顽力M 、高矫顽力H 、特高矫顽力SH 、超高矫顽力UH 、极高矫顽力EH 、甚高矫顽力TH 七大类产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烧结钕铁硼永磁材料国家标准磁学名词关于钕铁硼永磁体常用的衡量指标有以下四种:剩磁(Br)单位为特斯拉(T)和高斯(Gs) 1T=10000Gs将一个磁体在外磁场的作用下充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。

它表示磁体所能提供的最大的磁通值。

从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中没有多少实际的用处。

钕铁硼的剩磁一般是11500高斯以上。

磁感矫顽力(Hcb)单位是奥斯特(Oe)或安/米(A/m) 1A/m=磁体在反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。

但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。

(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。

钕铁硼的矫顽力一般是10000Oe以上。

内禀矫顽力(Hcj)单位为奥斯特(Oe)或安/米(A/m)使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。

内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。

在磁体使用中,磁体矫顽力越高,温度稳定性越好。

磁能积((BH)max ) 单位为兆高·奥(MGOe)或焦/米3(J/m3)退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的最大值称之为最大磁能积,为退磁曲线上的D点。

磁能积是恒量磁体所储存能量大小的重要参数之一。

在磁体使用时对应于一定能量的磁体,要求磁体的体积尽可能小。

·各向同性磁体:任何方向磁性能都相同的磁体。

·各向异性磁体:不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能最高的磁体。

烧结钕铁硼永磁体是各向异性磁体。

·取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。

也称作"取向轴","易磁化轴"。

·磁滞回线:铁磁材料在经过充磁、退磁、反向充磁、再退磁周期性变化时,所获得的关于磁感应强度(横坐标)相对于磁场强度(纵坐标)变化的闭合曲线。

退磁曲线(即B-H曲线):磁滞回线中,位于第二象限中的部分我们称之为退磁曲线。

也即我们所说的B-H的曲线。

如图所示:·退磁曲线的膝点:磁体退磁曲线上发生突变、明显发生弯曲的点。

室温时退磁曲线呈直线的磁体,在温度升高到一定程度时都会出现膝点。

如果磁体的工作点在膝点以下,磁体在动态磁路中工作时会产生不可逆损失。

·负载线:连接工作点和退磁曲线坐标原点的一条直线(见上图)。

·磁化强度:指材料内部单位体积的磁矩矢量和,用M表示,单位是安/米(A/m)。

·磁感应强度:磁感应强度B的定义是:B=μ0(H+M),其中H和M分别是磁化强度和磁场强度,而μ0是真空导磁率。

磁感应强度又称为磁通密度,即单位面积内的磁通量。

单位是特斯拉(T)。

CGS 单位制中的单位为高斯(Gauss)。

·磁通:给定面积内的总磁感应强度。

当磁感应强度B均匀分布于磁体表面A时,磁通的一般算式为=B×A。

磁通的SI单位是麦克斯韦。

·漏磁通:磁体回路中未能通过工作气隙而被泄漏的那部分磁通。

·磁场强度:指空间某处磁场的大小,用H表示,它的单位是安/米(A/m)。

·相对磁导率:媒介磁导率相对于真空磁导率的比值,即μr = μ/μo。

在CGS单位制中,μo=1。

另外,空气的磁导率在实际使用中往往值取为1。

·磁导:磁通Φ与磁动势F的比值,类似于电路中的电导。

是反映材料导磁能力的一个物理量。

·磁导系数,Pc:即为导磁率,磁感应强度Bd与其磁化强度的比率,即Pc = Bd/Hd。

也即我们所说的"负载线"或磁体的工作点。

导磁率可用来衡量磁性材料被磁化的容易程度,或者说是材料对外部磁场的灵敏程度。

磁导系数可用来估计各种条件下的磁通值。

在磁路中,近似有:Bd/Hd = lm/Lg,其中lm是磁体的长度;Lg是相对应磁体气隙的长度。

因此Pc是磁路设计中的一个重要的物理量。

·居里温度:对于所有的磁性材料来说,并不是在任何温度下都具有磁性。

一般地,磁性材料具有一个临界温度Tc,在这个温度以上,由于高温下原子的剧烈热运动,原子磁矩的排列由有序变成无序。

在此温度以下,原子磁矩一致排列,产生自发磁化,材料呈铁磁性。

·磁路:磁通流经的回路称为磁路。

永磁体和磁轭、气隙、极靴等构成闭合磁路。

·气隙:磁回路中磁导率为1的间隙部分,一般为空气间隙,但是也可为其它介质。

·气隙长度-Lg:磁路中气隙的长度。

·磁动势-F:它是磁路中任意两点间磁势的差值,类似于电路中的电压。

·磁阻-R:磁动势与磁通的比值称为磁阻,即R= F/ (类似于欧姆定律),其中F是磁动势,是磁通(CGS单位制)。

类同于电路中的电阻。

·磁轭:放置在磁体回路或两磁极中心、引导磁力线通过以减少磁通损失的高磁导率材料,一般为软磁铁、纯铁或低碳钢。

·极靴:放置在磁极处的用来约束磁束的分布及改变其流向的铁磁性材料。

·涡流:当磁场发生变化时,传导电流之中所产生的环形电流称之为涡流。

涡流能产生反向磁场。

涡流对于转动速度或者其它大多数磁路设计都是有害的,故涡流应尽量降低到最小。

·磁饱和度:任何可导磁材料在一定条件下都可达到饱和的状态。

铁磁材料在将其磁化时会达到饱和。

钢铁的磁饱和度为16000到20000高斯。

·稳定性:是衡量磁体抗退磁能力的物理量;影响磁体稳定性的因素有温度或外磁场等。

·可逆温度系数:一个衡量由温度变化引起的磁性能可逆变化的物理量。

日本磁性材料的现状及发展唐敏磁性材料是电磁力学的主要支柱材料。

在社会生活中,它的作用相当于能量仓库的钥匙,可用以取出“能量”并使其发挥作用,成为国民经济发展的一种必不可少的“维生素”。

磁性材料及其应用产品是典型的节能、节材、资源综合利用及出口创汇产品,因此,磁性材料的产量是表示一个国家或地区工业发达程度的指标,其需求量则能粗略体现一个国家或地区的国民生活水平。

由于日本在磁性材料的开发生产、推广应用等方面居世界之首,也是磁性材料最大的市场,该国的情况是一只“晴雨表”。

因此,了解日本磁性材料的现状及发展动向,对我国该行业的进一步发展有着非常重要的意义。

日本磁性材料的生产及应用现状从总的情况看,在各类磁性材料中,自90年代初期以来,日本除了在新兴的第三代稀土永磁—NdFeB上仍有较大发展外,其它磁性材料的产量、产值均为负增长或持平。

其中,日本铁氧体软磁的产量、产值由1991年的约万吨、亿美元降至1998年的万吨、亿美元,年递减分别为%和%,其产量约占世界总量的17%,产品主要用于消费类家用电器(包括小家电)、开关电源及抗电磁干扰等领域。

在烧结永磁中,烧结铁氧体永磁的产量、产值由万砘、亿美元降至到万吨、亿美元,年均分别减少%和%,目前占世界产量的%,产品主要用在汽车、摩托车电机及电声器件上;烧结稀土永磁由1698吨、亿美元增至4600吨、亿美元,年增长率分别达%和%,但这种高速增长主要发生在NdFeB永磁上,1999年日本烧结NdFeB已达6404吨,占世界产量的%,处于绝对的领先地位,产品大部分用在计算机硬盘驱动器(HDD)用音圈电机(VCM)、核磁共振成像仪(MRI)及其它电机上;烧结Sm-Co稀土永磁近年来呈下滑趋势,目前日本年产量约350吨,占世界产量的50%,产品主要作在军用电子对抗、电机及导航系统上。

铸造AlNiCo永磁由于处在廉价铁氧体和高性能NdFeB永磁的夹攻中,加之贵金属Co的价格居高不下,在日本的发展也不乐观,其产量、产值呈下降趋势,年均分别减少%和%,目前产量约为1000吨,占世界的%,产品主要用于工作条件恶劣、温度稳定性要求很高的仪表领域(如汽车传感器等)。

适应电子信息整机轻、薄、短、小要求而发展起来的粘结永磁,可分为粘结铁氧体和粘结稀土两类。

其中粘结铁氧体永磁应用最早、用量最大,但发展趋势于平缓,目前日本年产约2万吨(产值近亿美元),占世界产量的33%,传统用途是电冰箱门封条、复印机和打印机磁辊及各种磁片;粘结Sm-Co永磁60年代末进入市场,在粘结NdFeB出现后其产量明显下降,但因其热稳定性好,在精密电机和大功率电机中仍有一席之地,目前日本的产量约70吨,占世界产量的44%,预计今后几年日本的粘结氧体和粘结Sm-Co的产量将保持相对稳定;在粘结永磁中发展最快的是1987年才开始商品化的各向同性粘结稀土NdFeB,日本的产量由1987年的约15吨增至1999年的930吨左右,年均增长高达%,目前约占世界的60%,产品主要用在HDD、FDD(软驱)CD-ROM、DVD-ROM及家电中的微型直流主轴电机和步进电机上。

对于性能更优异、潜在应用市场更广阔的各向异性粘结NdFeB永磁,目前日本三菱和旭化成等公司已开始进行小批量生产。

这类磁体将给汽车挡风玻璃雨刮驱动电机、玻璃清结电机、观后镜驱动电机、电动门锁和电动调节座椅电机等带来使用性变化。

预计2004年日本各向异性粘结NdFeB永磁产量将达到3000吨以上。

值得一提的是,从上述数据中虽反映出日本近年来多种磁性材料的产量和产值均为负增长,但这并不意味着日本磁性材料需求量的相应用下降,比如铁氧体永磁,该国正继续将其生产转移到海外,以低成本来对付日元升值、劳动力成本增加以及满足日本在海外生产的整机的需求。

目前日本在海外工厂生产的铁氧体永磁已高达8万吨,加上本土生产的约5万吨,这就是说其实际产量在13万吨左右,仍比中国的产量略高,中国要成为真正的世界第一尚需持续努力。

表1是不完全统计的日本在海外发展的铁氧体永磁工厂情况。

而在NdFeB永磁上,日本之所以能不断增长,主要有三方面的原因:一是新用途不断被开发出来;二是计算机领域的需求量不断增大;三是国外特别是我国价格低廉的NdFeB永磁(仅为日本产品价格的1/3左右)无法进入受专利保护的日本市场,使其受冲击较少。

日本现约有60家厂商在从事磁性材料的开发与生产,其中TDK公司生产各类磁性材料元器件及磁应用制品,是全球磁性材料品种最全的生产厂家,该公司在铁氧体软磁、铁氧体永磁生产上长期稳居世界第一位,其稀土永磁生产也颇具有规模(在日本排第三位),是举世公认的磁性材料王国中的“王中王”。

住友特殊金属公司是世界烧结NdFeB永磁的专利拥有者和最大生产厂家,其AlNiCo永磁在日本也排第一位(其次是三菱制钢公司)。

但日本磁性材料行业一些人士评论,日本信越化学工业公司的NdFeB生产有可能赶超住友公司。

相关文档
最新文档