通信网课后答案

合集下载

通信网络基础李建东盛敏课后习题答案

通信网络基础李建东盛敏课后习题答案

接入链路有:(1)Modem 链路,利用PSTN 电话线路,在用户和网络侧分别添加Modem 设备来实现数据传输,速率为300b/s 和56kb/s ;(2)xDSL 链路,通过数字技术,对PSTN 端局到用户终端之间的用户线路进行改造而成的数字用户线DSL ,x 表示不同的传输方案;(3)ISDN ,利用PSTN 实现数据传输,提供两个基本信道:B 信道(64kb/s ),D 信道(16kb/s 或64kb/s );(4)数字蜂窝移动通信链路,十几kb/s ~2Mb/s ;(5)以太网,双绞线峰值速率10Mb/s,100Mb/s 。

网络链路有:(1)提供48kb/s ,56kb/s 或64kb/s 的传输速率,采用分组交换,以虚电路形式向用户提供传输链路;(2)帧中继,吞吐量大,速率为64kb/s ,s ;(3)SDH (同步数字系列),具有标准化的结构等级STM-N ;(4)光波分复用WDM ,在一根光纤中能同时传输多个波长的光信号。

答:分组交换网中,将消息分成许多较短的,格式化的分组进行传输和交换,每一个分组由若干比特组成一个比特串,每个分组都包括一个附加的分组头,分组头指明该分组的目的节点及其它网络控制信息。

每个网络节点采用存储转发的方式来实现分组的交换。

答:虚电路是分组传输中两种基本的选择路由的方式之一。

在一个会话过程开始时,确定一条源节点到目的节点的逻辑通路,在实际分组传输时才占用物理链路,无分组传输时不占用物理链路,此时物理链路可用于其它用户分组的传输。

会话过程中的所有分组都沿此逻辑通道进行。

而传统电话交换网PSTN 中物理链路始终存在,无论有无数据传输。

答:差别:ATM 信元采用全网统一的固定长度的信元进行传输和交换,长度和格式固定,可用硬件电路处理,缩短了处理时间。

为支持不同类型的业务,ATM 网络提供四种类别的服务:A,B,C,D 类,采用五种适配方法:AAL1~AAL5,形成协议数据单元CS-PDU ,再将CS-PDU 分成信元,再传输。

通信网络基础 (李建东 盛敏 )课后习题答案教学文稿

通信网络基础 (李建东 盛敏 )课后习题答案教学文稿

1.1答:通信网络由子网和终端构成(物理传输链路和链路的汇聚点),常用的通信网络有A TM 网络,X.25分组数据网络,PSTN ,ISDN ,移动通信网等。

1.2答:通信链路包括接入链路和网络链路。

接入链路有:(1)Modem 链路,利用PSTN 电话线路,在用户和网络侧分别添加Modem 设备来实现数据传输,速率为300b/s和56kb/s ;(2)xDSL 链路,通过数字技术,对PSTN 端局到用户终端之间的用户线路进行改造而成的数字用户线DSL ,x 表示不同的传输方案;(3)ISDN ,利用PSTN 实现数据传输,提供两个基本信道:B 信道(64kb/s ),D 信道(16kb/s 或64kb/s );(4)数字蜂窝移动通信链路,十几kb/s ~2Mb/s ;(5)以太网,双绞线峰值速率10Mb/s,100Mb/s 。

网络链路有:(1)X.25提供48kb/s ,56kb/s 或64kb/s 的传输速率,采用分组交换,以虚电路形式向用户提供传输链路;(2)帧中继,吞吐量大,速率为64kb/s ,2.048Mb/s ;(3)SDH (同步数字系列),具有标准化的结构等级STM-N ;(4)光波分复用WDM ,在一根光纤中能同时传输多个波长的光信号。

1.3答:分组交换网中,将消息分成许多较短的,格式化的分组进行传输和交换,每一个分组由若干比特组成一个比特串,每个分组都包括一个附加的分组头,分组头指明该分组的目的节点及其它网络控制信息。

每个网络节点采用存储转发的方式来实现分组的交换。

1.4答:虚电路是分组传输中两种基本的选择路由的方式之一。

在一个会话过程开始时,确定一条源节点到目的节点的逻辑通路,在实际分组传输时才占用物理链路,无分组传输时不占用物理链路,此时物理链路可用于其它用户分组的传输。

会话过程中的所有分组都沿此逻辑通道进行。

而传统电话交换网PSTN 中物理链路始终存在,无论有无数据传输。

通信网络基础-(李建东-盛敏-)课后习题答案

通信网络基础-(李建东-盛敏-)课后习题答案

1.1答:通信网络由子网和终端构成〔物理传输链路和链路的会聚点〕,常用的通信网络有A TM 网络,X.25分组数据网络,PSTN ,ISDN ,移动通信网等。

1.2答:通信链路包括接入链路和网络链路。

接入链路有:〔1〕Modem 链路,利用PSTN 线路,在用户和网络侧分别添加Modem 设备来实现数据传输,速率为300b/s和56kb/s ;〔2〕xDSL 链路,通过数字技术,对PSTN 端局到用户终端之间的用户线路进展改造而成的数字用户线DSL ,x 表示不同的传输方案;〔3〕ISDN ,利用PSTN 实现数据传输,提供两个根本信道:B 信道〔64kb/s 〕,D 信道〔16kb/s 或64kb/s 〕;〔4〕数字蜂窝移动通信链路,十几kb/s ~2Mb/s ;〔5〕以太网,双绞线峰值速率10Mb/s,100Mb/s 。

网络链路有:〔1〕X.25提供48kb/s ,56kb/s 或64kb/s 的传输速率,采用分组交换,以虚电路形式向用户提供传输链路;〔2〕帧中继,吞吐量大,速率为64kb/s ,2.048Mb/s ;〔3〕SDH 〔同步数字系列〕,具有标准化的构造等级STM-N ;〔4〕光波分复用WDM ,在一根光纤中能同时传输多个波长的光信号。

1.3答:分组交换网中,将消息分成许多较短的,格式化的分组进展传输和交换,每一个分组由假设干比特组成一个比特串,每个分组都包括一个附加的分组头,分组头指明该分组的目的节点及其它网络控制信息。

每个网络节点采用存储转发的方式来实现分组的交换。

1.4答:虚电路是分组传输中两种根本的选择路由的方式之一。

在一个会话过程开场时,确定一条源节点到目的节点的逻辑通路,在实际分组传输时才占用物理链路,无分组传输时不占用物理链路,此时物理链路可用于其它用户分组的传输。

会话过程中的所有分组都沿此逻辑通道进展。

而传统 交换网PSTN 中物理链路始终存在,无论有无数据传输。

数据通信与网络课后习题答案上

数据通信与网络课后习题答案上

CHAPTER 115. With 16 bits, we can represent up to 216 different colors.17.a. Mesh topology: If one connection fails, the other connections will still be working.b. Star topology: The other devices will still be able to send data through the hub;there will be no access to the device which has the failed connection to the hub.c. Bus Topology: All transmission stops if the failure is in the bus. If the drop-line fails, only the corresponding device cannot operate.2d. Ring Topology: The failed connection may disable the whole network unless itis a dual ring or there is a by-pass mechanism.19. Theoretically, in a ring topology, unplugging one station, interrupts the ring. However, most ring networks use a mechanism that bypasses the station; the ring cancontinue its operation.21. See Figure 1.123.a. E-mail is not an interactive application. Even if it is delivered immediately, itmay stay in the mail-box of the receiver for a while. It is not sensitive to delay.b. We normally do not expect a file to be copied immediately. It is not very sensitiveto delay.c. Surfing the Internet is the an application very sensitive to delay. We except toget access to the site we are searching.25. The telephone network was originally designed for voice communication; the Internet was originally designed for data communication. The two networks aresimilar in the fact that both are made of interconnections of small networks. The telephone network, as we will see in future chapters, is mostly a circuit-switched network; the Internet is mostly a packet-switched network.Figure 1.1 Solution to Exercise 21StationStation StationRepeat erStationStation StationRepeat erStationStation StationRepeaterHub1CHAPTER 2Exercises15. The International Standards Organization, or the International Organization ofStandards, (ISO) is a multinational body dedicated to worldwide agreement on international standards. An ISO standard that covers all aspects of network communications is the Open Systems Interconnection (OSI) model.217.a. Reliable process-to-process delivery: transport layerb. Route selection: network layerc. Defining frames: data link layerd. Providing user services: application layere. Transmission of bits across the medium: physical layer19.a. Format and code conversion services: presentation layerb. Establishing, managing, and terminating sessions: session layerc. Ensuring reliable transmission of data: data link and transport layersd. Log-in and log-out procedures: session layere. Providing independence from different data representation: presentation layer21. See Figure 2.1.23. Before using the destination address in an intermediate or the destination node, the packet goes through error checking that may help the node find the corruption(with a high probability) and discard the packet. Normally the upper layer protocolwill inform the source to resend the packet.25. The errors between the nodes can be detected by the data link layer control, but the error at the node (between input port and output port) of the node cannot bedetected by the data link layer.Figure 2.1 Solution to Exercise 21B/42 C/82A/40SenderSenderLAN1 LAN2R1D/8042 40 A D i j Data T2 80 82 A D i j Data T2CHAPTER 317.a. f = 1 / T = 1 / (5 s) = 0.2 Hzb. f = 1 / T = 1 / (12 μs) =83333 Hz = 83.333 ×103 Hz = 83.333 KHzc. f = 1 / T = 1 / (220 ns) = 4550000 Hz = 4.55×106 Hz = 4.55 MHz19. See Figure 3.121. Each signal is a simple signal in this case. The bandwidth of a simple signal iszero. So the bandwidth of both signals are the same.a. (10 / 1000) s = 0.01 sb. (8 / 1000) s = 0. 008 s = 8 ms2c. ((100,000 ×8) / 1000) s = 800 s25. The signal makes 8 cycles in 4 ms. The frequency is 8 /(4 ms) = 2 KHz27. The signal is periodic, so the frequency domain is made of discrete frequencies. as shown in Figure 3.2.29.Using the first harmonic, data rate = 2 ×6 MHz = 12 MbpsUsing three harmonics, data rate = (2 ×6 MHz) /3 = 4 MbpsUsing five harmonics, data rate = (2 ×6 MHz) /5 = 2.4 Mbps31. –10 = 10 log10 (P2 / 5) →log10 (P2 / 5) = −1 →(P2 / 5) = 10−1 →P2 = 0.5 W33. 100,000 bits / 5 Kbps = 20 s35. 1 μm ×1000 = 1000 μm = 1 mm37. We have4,000 log2 (1 + 10 / 0.005) = 43,866 bps39. To represent 1024 colors, we need log21024 = 10 (see Appendix C) bits. The total number of bits are, therefore,1200 ×1000 ×10 = 12,000,000 bits41. We haveSNR= (signal power)/(noise power).However, power is proportional to the square of voltage. This means we have Figure 3.1 Solution to Exercise 19Figure 3.2 Solution to Exercise 270 20 50 100 200Frequency domainBandwidth = 200 −0 = 200Amplitude10 voltsFrequency30KHz10KHz...SNR = [(signal voltage)2] / [(noise voltage)2] =[(signal voltage) / (noise voltage)]2 = 202 = 400We then haveSNR dB = 10 log10 SNR ≈26.0243.a. The data rate is doubled (C2 = 2 ×C1).b. When the SNR is doubled, the data rate increases slightly. We can say that, approximately, (C2 = C1 + 1).45. We havetransmission time = (packet length)/(bandwidth) =(8,000,000 bits) / (200,000 bps) = 40 s47.a. Number of bits = bandwidth ×delay = 1 Mbps ×2 ms = 2000 bitsb. Number of bits = bandwidth ×delay = 10 Mbps ×2 ms = 20,000 bitsc. Number of bits = bandwidth ×delay = 100 Mbps ×2 ms = 200,000 bits1CHAPTER 413. We use the formula s = c ×N ×(1/r) for each case. We let c = 1/2.a. r = 1 →s = (1/2) ×(1 Mbps) ×1/1 = 500 kbaudb. r = 1/2 →s = (1/2) ×(1 Mbps) ×1/(1/2) = 1 Mbaudc. r = 2 →s = (1/2) ×(1 Mbps) ×1/2 = 250 Kbaudd. r = 4/3 →s = (1/2) ×(1 Mbps) ×1/(4/3) = 375 Kbaud15. See Figure 4.1 Bandwidth is proportional to (3/8)N which is within the range in Table 4.1 (B = 0 to N) for the NRZ-L scheme.17. See Figure 4.2. Bandwidth is proportional to (12.5 / 8) N which is within the range in Table 4.1 (B = N to B = 2N) for the Manchester scheme.219. See Figure 4.3. B is proportional to (5.25 / 16) N which is inside range in Table 4.1(B = 0 to N/2) for 2B/1Q.21. The data stream can be found asa. NRZ-I: 10011001.b. Differential Manchester: 11000100.c. AMI: 01110001.23. The data rate is 100 Kbps. For each case, we first need to calculate the value f/N. We then use Figure 4.8 in the text to find P (energy per Hz). All calculations are approximations.a. f /N = 0/100 = 0 →P = 0.0b. f /N = 50/100 = 1/2 →P = 0.3c. f /N = 100/100 = 1 →P = 0.4d. f /N = 150/100 = 1.5 →P = 0.0Figure 4.1 Solution to Exercise 15Figure 4.2 Solution to Exercise 170 0 0 0 0 0 0 01 1 1 1 1 1 1 1 0 0 1 1 0 0 1 10 1 0 1 0 1 0 1Case aCase bCase cCase dAverage Number of Changes = (0 + 0 + 8 + 4) / 4 = 3 for N = 8B (3 / 8) N0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 0 0 1 1 0 0 1 10 1 0 1 0 1 0 1Case aCase bCase cCase dAverage Number of Changes = (15 + 15+ 8 + 12) / 4 = 12.5 for N = 8B (12.5 / 8) N325. In 5B/6B, we have 25 = 32 data sequences and 26 = 64 code sequences. The numberof unused code sequences is 64 −32 = 32. In 3B/4B, we have 23 = 8 datasequences and 24 = 16 code sequences. The number of unused code sequences is16 −8 = 8.27a. In a low-pass signal, the minimum frequency 0. Therefore, we havef max = 0 + 200 = 200 KHz. →f s = 2 ×200,000 = 400,000 samples/sb. In a bandpass signal, the maximum frequency is equal to the minimum frequencyplus the bandwidth. Therefore, we havef max = 100 + 200 = 300 KHz. →f s = 2 ×300,000 = 600,000 samples /s29. The maximum data rate can be calculated asN max = 2 × B ×n b = 2 ×200 KHz ×log24 = 800 kbps31. We can calculate the data rate for each scheme:Figure 4.3 Solution to Exercise 19a. NRZ →N = 2 ×B = 2 ×1 MHz = 2 Mbpsb. Manchester →N = 1 ×B = 1 ×1 MHz = 1 Mbpsc. MLT-3 →N = 3 ×B = 3 ×1 MHz = 3 Mbpsd. 2B1Q →N = 4 ×B = 4 ×1 MHz = 4 Mbps11 11 11 11 11 11 11 1100 00 00 00 00 00 00 00 01 10 01 10 01 10 01 10+3+1−3−1+3+1−3−1+3+1−3−100 11 00 11 00 11 00 11+3+1−3−1Case aCase bCase cCase dAverage Number of Changes = (0 + 7 + 7 + 7) / 4 = 5.25 for N = 16B (5.25 / 8) N1CHAPTER 511. We use the formula S = (1/r) ×_______________N, but first we need to calculate thevalue of r foreach case.a. r = log22 = 1 →S = (1/1) ×(2000 bps) = 2000 baudb. r = log22 = 1 →S = (1/1) ×(4000 bps) = 4000 baudc. r = log24 = 2 →S = (1/2) ×(6000 bps) = 3000 baudd. r = log264 = 6 →S = (1/6) ×(36,000 bps) = 6000 baud213. We use the formula r = log2L to calculate the value of r for each case.15. See Figure 5.1a. This is ASK. There are two peak amplitudes both with the same phase (0 degrees). The values of the peak amplitudes are A1 = 2 (the distance betweenthe first dot and the origin) and A2= 3 (the distance between the second dot andthe origin).b. This is BPSK, There is only one peak amplitude (3). The distance between eachdot and the origin is 3. However, we have two phases, 0 and 180 degrees.c. This can be either QPSK (one amplitude, four phases) or 4-QAM (one amplitudeand four phases). The amplitude is the distance between a point and theorigin, which is (22 + 22)1/2 = 2.83.d. This is also BPSK. The peak amplitude is 2, but this time the phases are 90 and270 degrees.17. We use the formula B = (1 + d) ×(1/r) ×N, but first we need to calculate thevalue of r for each case.a. log24 = 2b. log28 = 3c. log24 = 2d. log2128 = 7Figure 5.1 Solution to Exercise 15a. r = 1 →B= (1 + 1) ×(1/1) ×(4000 bps) = 8000 Hzb. r = 1 →B = (1 + 1) ×(1/1) ×(4000 bps) + 4 KHz = 8000 Hzc. r = 2 →B = (1 + 1) ×(1/2) ×(4000 bps) = 2000 Hzd. r = 4 →B = (1 + 1) ×(1/4) ×(4000 bps) = 1000 Hz2 3 –3 3–222–22a. b.II IQQQc. d.IQ319.First, we calculate the bandwidth for each channel = (1 MHz) / 10 = 100 KHz. We then find the value of r for each channel:B = (1 + d) ×(1/r) ×(N) →r = N / B →r = (1 Mbps/100 KHz) = 10We can then calculate the number of levels: L = 2r = 210 = 1024. This means thatthat we need a 1024-QAM technique to achieve this data rate.21.a. B AM = 2 ×B = 2 ×5 = 10 KHzb. B FM = 2 ×(1 + β) ×B = 2 ×(1 + 5) ×5 = 60 KHzc.B PM = 2 ×(1 + β) ×B = 2 ×(1 + 1) ×5 = 20 KHz1CHAPTER 613. To multiplex 10 voice channels, we need nine guard bands. The required bandwidthis then B = (4 KHz) ×10 + (500 Hz) ×9 = 44.5 KHz15.a. Group level: overhead = 48 KHz −(12 ×4 KHz) = 0 Hz.b. Supergroup level: overhead = 240 KHz −(5 ×48 KHz) = 0 Hz.2c. Master group: overhead = 2520 KHz −(10 ×240 KHz) = 120 KHz.d. Jumbo Group: overhead = 16.984 MHz −(6 ×2.52 MHz) = 1.864 MHz.a. Each output frame carries 2 bits from each source plus one extra bit for synchronization. Frame size = 20 ×2 + 1 = 41 bits.b. Each frame carries 2 bit from each source. Frame rate = 100,000/2 = 50,000frames/s.c. Frame duration = 1 /(frame rate) = 1 /50,000 = 20 μs.d. Data rate = (50,000 frames/s) ×(41 bits/frame) = 2.05 Mbps. The output datarate here is slightly less than the one in Exercise 16.e. In each frame 40 bits out of 41 are useful. Efficiency = 40/41= 97.5%. Efficiencyis better than the one in Exercise 16.19. We combine six 200-kbps sources into three 400-kbps. Now we have seven 400- kbps channel.a. Each output frame carries 1 bit from each of the seven 400-kbps line. Framesize = 7 ×1 = 7 bits.b. Each frame carries 1 bit from each 400-kbps source. Frame rate = 400,000frames/s.c. Frame duration = 1 /(frame rate) = 1 /400,000 = 2.5 μs.d. Output data rate = (400,000 frames/s) ×(7 bits/frame) = 2.8 Mbps. We can also calculate the output data rate as the sum of input data rate because there is no synchronizing bits. Output data rate = 6 ×200 + 4 ×400 = 2.8 Mbps.21. We need to add extra bits to the second source to make both rates = 190 kbps. Now we have two sources, each of 190 Kbps.a. The frame carries 1 bit from each source. Frame size = 1 + 1 = 2 bits.b. Each frame carries 1 bit from each 190-kbps source. Frame rate = 190,000frames/s.c. Frame duration = 1 /(frame rate) = 1 /190,000 = 5.3 μs.d. Output data rate = (190,000 frames/s) ×(2 bits/frame) = 380 kbps. Here theoutput bit rate is greater than the sum of the input rates (370 kbps) because ofextra bits added to the second source.23. See Figure 6.1.25. See Figure 6.2.Figure 6.1 Solution to Exercise 23O L E L Y I E B H HTDM327. The number of hops = 100 KHz/4 KHz = 25. So we need log225 = 4.64 ≈5 bits29. Random numbers are 11, 13, 10, 6, 12, 3, 8, 9 as calculated below:Figure 6.2 Solution to Exercise 25N1 = 11N2 =(5 +7 ×11) mod 17 −1 = 13N3 =(5 +7 ×13) mod 17 −1 = 10N4 =(5 +7 ×10) mod 17 −1 = 6N5 =(5 +7 ×6) mod 17 −1 = 12N6 =(5 +7 ×12) mod 17 −1 = 3N7 =(5 +7 ×3) mod 17 −1 = 8N8 =(5 +7 ×8) mod 17 −1 = 90000000110001010101001111010000010100111TDM41CHAPTER 711. See Table 7.1 (the values are approximate).13. We can use Table 7.1 to find the power for different frequencies:Table 7.1 Solution to Exercise 11Distance dB at 1 KHz dB at 10 KHz dB at 100 KHz1 Km −3 −5 −710 Km −30 −50 −7015 Km −45 −75 −10520 Km −60 −100 −1401 KHz dB = −3 P2 = P1 ×10−3/10 = 100.23 mw10 KHz dB = −5 P2 = P1 ×10−5/10 = 63.25 mw2The table shows that the power for 100 KHz is reduced almost 5 times, which maynot be acceptable for some applications.15. We first make Table 7.2 from Figure 7.9 (in the textbook).If we consider the bandwidth to start from zero, we can say that the bandwidth decreases with distance. For example, if we can tolerate a maximum attenuation of−50 dB (loss), then we can give the following listing of distance versus bandwidth. 17. We can use the formula f = c / λto find the corresponding frequency for each wave length as shown below (c is the speed of propagation):a. B = [(2 ×108)/1000×10−9] −[(2 ×108)/ 1200 ×10−9] = 33 THzb. B = [(2 ×108)/1000×10−9] −[(2 ×108)/ 1400 ×10−9] = 57 THz19. See Table 7.3 (The values are approximate).21. See Figure 7.1.a. The incident angle (40 degrees) is smaller than the critical angle (60 degrees).We have refraction.The light ray enters into the less dense medium.b. The incident angle (60 degrees) is the same as the critical angle (60 degrees).We have refraction. The light ray travels along the interface.100 KHz dB = −7 P2 = P1 ×10−7/10 = 39.90 mwTable 7.2 Solution to Exercise 15Distance dB at 1 KHz dB at 10 KHz dB at 100 KHz1 Km −3 −7 −2010 Km −30 −70 −20015 Km −45 −105 −30020 Km −60 −140 −400Distance Bandwidth1 Km 100 KHz10 Km 1 KHz15 Km 1 KHz20 Km 0 KHzTable 7.3 Solution to Exercise 19Distance dB at 800 nm dB at 1000 nm dB at 1200 nm1 Km −3 −1.1 −0.510 Km −30 −11 −515 Km −45 −16.5 −7.520 Km −60 −22 −103c. The incident angle (80 degrees) is greater than the critical angle (60 degrees). We have reflection. The light ray returns back to the more dense medium.Figure 7.1 Solution to Exercise 21Critical angle = 60Critical angle = 60Critical angle = 60Refractionb. 60 degreesReflectionc. 80 degreesCritical angleCritical anglea. 40 degreesRefractionCritical angle1CHAPTER 811. We assume that the setup phase is a two-way communication and the teardown phase is a one-way communication. These two phases are common for all three cases. The delay for these two phases can be calculated as three propagation delays and three transmission delays or3 [(5000 km)/ (2 ×108 m/s)]+ 3 [(1000 bits/1 Mbps)] = 75 ms + 3 ms = 78 msWe assume that the data transfer is in one direction; the total delay is thendelay for setup and teardown + propagation delay + transmission delaya. 78 + 25 + 1 = 104 msb. 78 + 25 + 100 = 203 ms2c. 78 + 25 + 1000 = 1103 msd. In case a, we have 104 ms. In case b we have 203/100 = 2.03 ms. In case c, we have 1103/1000 = 1.101 ms. The ratio for case c is the smallest because we use one setup and teardown phase to send more data.13.a. In a circuit-switched network, end-to-end addressing is needed during the setup and teardown phase to create a connection for the whole data transfer phase.After the connection is made, the data flow travels through the already-reserved resources. The switches remain connected for the entire duration of the data transfer; there is no need for further addressing.b. In a datagram network, each packet is independent. The routing of a packet isdone for each individual packet. Each packet, therefore, needs to carry an endto-end address. There is no setup and teardown phases in a datagram network (connectionless transmission). The entries in the routing table are somehow permanent and made by other processes such as routing protocols.c. In a virtual-circuit network, there is a need for end-to-end addressing duringthe setup and teardown phases to make the corresponding entry in the switching table. The entry is made for each request for connection. During the data transfer phase, each packet needs to carry a virtual-circuit identifier to show whichvirtual-circuit that particular packet follows.15. In circuit-switched and virtual-circuit networks, we are dealing with connections.A connection needs to be made before the data transfer can take place. In the caseof a circuit-switched network, a physical connection is established during the setup phase and the is broken during the teardown phase. In the case of a virtual-circuit network, a virtual connection is made during setup and is broken during the teardown phase; the connection is virtual, because it is an entry in the table. These twotypes of networks are considered connection-oriented. In the case of a datagram network no connection is made. Any time a switch in this type of network receivesa packet, it consults its table for routing information. This type of network is considereda connectionless network.17.Packet 1: 2Packet 2: 3Packet 3: 3Packet 4: 219.a. In a datagram network, the destination addresses are unique. They cannot be duplicated in the routing table.b. In a virtual-circuit network, the VCIs are local. A VCI is unique only in relationship to a port. In other words, the (port, VCI) combination is unique. Thismeans that we can have two entries with the same input or output ports. We canhave two entries with the same VCIs. However, we cannot have two entrieswith the same (port, VCI) pair.321.a. If n > k, an n ×k crossbar is like a multiplexer that combines n inputs into k outputs. However, we need to know that a regular multiplexer discussed in Chapter6 is n ×1.b. If n < k, an n ×k crossbar is like a demultiplexer that divides n inputs into k outputs. However, we need to know that a regular demultiplexer discussed inChapter 6 is 1 ×n.a. See Figure 8.1.b. The total number of crosspoints areNumber of crosspoints = 10 (10 ×6) + 6 (10 ×10) + 10 (6 ×10) = 1800c. Only six simultaneous connections are possible for each crossbar at the first stage. This means that the total number of simultaneous connections is 60.d. If we use one crossbar (100 ×100), all input lines can have a connection at thesame time, which means 100 simultaneous connections.e. The blocking factor is 60/100 or 60 percent.25.a. Total crosspoints = N2 = 10002 = 1,000,000b. Total crosspoints ≥4Ν[(2Ν)1/2 −1] ≥174,886. With less than 200,000 crosspointswe can design a three-stage switch. We can use n = (N/2)1/2 =23 andchoose k = 45. The total number of crosspoints is 178,200.Figure 8.1 Solution to Exercise 23 Part aStage 1 Stage 210 ×610 ×1010 ×1010Crossbars10Crossbars6Crossbars… …… ……… … …Stage 3…n = 10n = 10n = 10N = 100… … …n = 10n = 10n = 1010 ×6 N = 10010 ×66 ×106 ×10…CHAPTER 911. Packet-switched networks are well suited for carrying data in packets. The end-toend addressing or local addressing (VCI) occupies a field in each packet. Telephone networks were designed to carry voice, which was not packetized. A circuit-switched network, which dedicates resources for the whole duration of the conversation, is more suitable for this type of communication.213. In a telephone network, the telephone numbers of the caller and callee are serving as source and destination addresses. These are used only during the setup (dialing)and teardown (hanging up) phases.15. See Figure 9.1.17.19. We can calculate time based on the assumption of 10 Mbps data rate:Time = (1,000,000 ×8) / 10,000,000 ≈0.8 seconds21. The cable modem technology is based on the bus (or rather tree) topology. The cable is distributed in the area and customers have to share the available bandwidth. This means if all neighbors try to transfer data, the effective data rate will be decreased.Figure 9.1 Solution to Exercise 15a. V.32 →Time = (1,000,000 ×8) /9600 ≈834 sb. V.32bis →Time = (1,000,000 ×8) / 14400 ≈556 sc. V.90 →Time = (1,000,000 ×8) / 56000 ≈143 sV.32 V.32bis V.9010 kbps 9600 bps14.4 kbps56 kbps20 kbps30 kbps40 kbps50 kbps60 kbps1CHAPTER 1011. We can say that (vulnerable bits) = (data rate) ×(burst duration)Comment: The last example shows how a noise of small duration can affect so many bits if the data rate is high.13. The codeword for dataword 10 is 101. This codeword will be changed to 010 if a 3-bit burst error occurs. This pattern is not one of the valid codewords, so the receiver detects the error and discards the received pattern.15.a. d (10000, 00000) = 1b. d (10101, 10000) = 2c. d (1111, 1111) = 0d. d (000, 000) = 0Comment: Part c and d show that the distance between a codeword and itself is 0.17.a. 01b. errorc. 00d. error19. We check five random cases. All are in the code.21. We show the dataword, codeword, the corrupted codeword, the syndrome, and the interpretation of each case:a. Dataword: 0100 →Codeword: 0100011 →Corrupted: 1100011 →s2s1s0 = 110 Change b3 (Table 10.5) →Corrected codeword: 0100011 →dataword: 0100The dataword is correctly found.b. Dataword: 0111 →Codeword: 0111001 →Corrupted: 0011001 →s2s1s0 = 011 Change b2 (Table 10.5) →Corrected codeword: 0111001→dataword: 0111The dataword is correctly found.c. Dataword: 1111 →Codeword: 1111111 →Corrupted: 0111110 →s2s1s0 = 111 Change b1 (Table 10.5) →Corrected codeword: 0101110→dataword: 0101The dataword is found, but it is incorrect. C(7,4) cannot correct two errors.a. vulnerable bits = (1,500) ×(2 ×10−3) = 3 bitsb. vulnerable bits = (12 ×103) ×(2 ×10−3) = 24 bitsc. vulnerable bits = (100 ×103) ×(2 ×10−3) = 200 bitsd. vulnerable bits = (100 ×106) ×(2 ×10−3) = 200,000 bitsI. (1st) ⊕(2nd) = (2nd)II. (2nd) ⊕(3th) = (4th)III. (3rd) ⊕(4th) = (2nd)IV. (4th) ⊕(5th) = (8th)V. (5th) ⊕(6th) = (2nd)3d. Dataword: 0000 →Codeword: 0000000 →Corrupted: 1100001 →s2s1s0 = 100 Change q2 (Table 10.5) →Corrected codeword: 1100101→dataword: 1100The dataword is found, but it is incorrect. C(7,4) cannot correct three errors.23. We need to find k = 2m −1 −m ≥11. We use trial and error to find the right answer:a. Let m = 1 k = 2m −1 −m = 21 −1 −1 = 0 (not acceptable)b. Let m = 2 k = 2m −1 −m = 22 −1 −2 = 1 (not acceptable)c. Let m = 3 k = 2m −1 −m = 23 −1 −3 = 4 (not acceptable)d. Let m = 4 k = 2m −1 −m = 24 −1 −4 = 11 (acceptable)Comment: The code is C(15, 11) with d min = 3.25.a. 101110 →x5 + x3 + x2 + xb. 101110 →101110000 (Three 0s are added to the right)c. x3 ×(x5 + x3 + x2 + x) = x8 + x6 + x5 + x4d. 101110 →10 (The four rightmost bits are deleted)e. x−4 ×(x5 + x3 + x2 + x) = x (Note that negative powers are deleted)27. CRC-8 generator is x8 + x2 + x + 1.a. It has more than one term and the coefficient of x0 is 1. It can detect a single-bit error.b. The polynomial is of degree 8, which means that the number of checkbits (remainder) r = 8. It will detect all burst errors of size 8 or less.c. Burst errors of size 9 are detected most of the time, but they slip by with probability (1/2)r−1 or (1/2)8−1≈0.008. This means 8 out of 1000 burst errors of size 9are left undetected.d. Burst errors of size 15 are detected most of the time, but they slip by with probability (1/2)r or (1/2)8 ≈0.004. This means 4 out of 1000 burst errors of size 15are left undetected.29. We need to add all bits modulo-2 (XORing). However, it is simpler to count the number of 1s and make them even by adding a 0 or a 1. We have shown the paritybit in the codeword in color and separate for emphasis.31. Figure 10.1 shows the generation of the codeword at the sender and the checkingof the received codeword at the receiver using polynomial division.Dataword Number of 1s Parity Codeworda. 1001011 →4 (even) →0 0 1001011b. 0001100 →2 (even) →0 0 0001100c. 1000000 →1 (odd) →1 1 1000000d. 1110111 →6 (even) →0 0 1110111433. Figure 10.2 shows the checksum to send (0x0000). This example shows that the checksum can be all 0s. It can be all 1s only if all data items are all 0, whichmeans no data at all.Figure 10.1 Solution to Exercise 31Figure 10.2 Solution to Exercise 33Codewordx7 + x5 + x2 + x + 1x7+x4+x3+ x + 1x4+x2+ x + 1 x11+x9 + x6+x5+x4x11+x9+x6+x5+x4 +x11+x9+x8+x7x8+x7+x6+x5+x4x8 +x6+x5+x4x7x7 +x5+x4+x3x5+x4+x3x5 +x3+x2+ xx4 + x2+ xx4 +x2+ x + 111DatawordSenderQuotientDivisorRemainderCodewordx7 + x5 + x2 + x + 1x4 x3 x 11x7+ + + +x4+x2+ x + 1 x11+x9 + x6+x5+ x4 +x11+x9+x6+x5+x4 +x11+x9+x8+x7x8+x7+x6+x5+x4x8 +x6+x5+x4x7x7 +x5+x4+x3x5+x4+x3x5 +x3+x2+ xx4 + x2+ xx4 x2 x 11+ + ++1DatawordQuotientDivisorRemainderReceiverChecksum (initial)Sum4 5 6 7B A 9 8F F F F0 0 0 0 Checksum (to send)0 0 0 01CHAPTER 1113. We give a very simple solution. Every time we encounter an ESC or flag character, we insert an extra ESC character in the data part of the frame (see Figure 11.1).15. We write two very simple algorithms. We assume that a frame is made of a onebyte beginning flag, variable-length data (possibly byte-stuffed), and a one-byteending flag; we ignore the header and trailer. We also assume that there is no error during the transmission.。

数据通信网课后题答案 第一章-第五章

数据通信网课后题答案 第一章-第五章

第一章引论1. 计算机网络的发展可划分为几个阶段?每个阶段各有何特点?答:计算机网络的发展主要分为一下四个阶段:1)以单计算机为中心的联机系统-缺点,主机负荷重,通信线路利用率低,结构属集中控制方式,可靠性低2)计算机-计算机网络-是网络概念最全,设备最多的一种形式3)体系结构标准化网络4)Internet时代-是人类有工业社会向信息社会发展的重要标志,简单实用,高效传输,有满足不同服务的网络传输要求3. 计算机网络由哪些部分组成,什么是通信子网和资源子网?试述这种层次结构观的特点以及各层的作用是什么?答:通信控制处理机构成的通信子网是网络的内层,或骨架层,是网络的重要组成部分。

网上主机负责数据处理,是计算机网络资源的拥有者,它们组成了网络的资源子网,是网络的外层,通信子网为资源子网提供信息传输服务,资源子网上用户间的通信是建立在通信子网的基础上。

没有通信子网,网络不能工作,而没有资源子网,通信子网的传输也失去了意义,两者合起来组成了统一的资源共享的两层网络。

将通信子络的规模进一步扩大,使之变成社会公有的数据通信网,5. 一个完整的计算机网络的定义应包含哪些内容?答:1.物理结构:通过通信线路、通信设备将地理上分散的计算机连成一个整体2.逻辑结构:在网络协议控制下进行信息传输3.主要目的:资源共享9. 局域网、城域网与广域网的主要特征是什么?答:这三种网络主要是按照网络覆盖的地理范围来划分的:1)广域网(远程网)WAN (Wide Area Network):广域网的作用范围一般为几十到几千公里。

2)局域网LAN(Local Area Network):局域网的作用范围通常为几米到几十公里。

3)城域网MAN(Metropolitan Area Network):城域网的作用范围在WAN与LAN之间,其运行方式为LAN相似。

13. 计算机网络与分布式计算机系统之间的区别与联系是什么?答:两者在物理结构上是非常类似的,但是软件上有很大的差异。

计算机通信与网络课后答案

计算机通信与网络课后答案

1.3 什么是计算机网络?计算机网络定义为:把分布在不同地点且具有独立功能的多个计算机,通过通信设备和线路连接起来,在功能完善的网络软件运行下,以实现网络中资源共享为目标的系统。

1.8 现代电信网的基本组成:终端子系统,交换子系统,传输子系统。

其主要功能是面向公众提供全程全网的数据传送,交换和处理。

1.9 电信网上传输数据的主要限制是:1.15 物联网通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。

2.1 计算机网络的拓扑结构种类有哪些?各自的特点是什么?网络的拓扑(Topology)结构是指网络中各节点的互连构形,也就是连接布线的方式。

星形结构的特点是存在一个中心节点,其他计算机与中心节点互连,系统的连通性与中心节点的可靠性有很大的关系。

树形结构的特点是从根节点到叶子节点呈现层次性。

总线形结构的特点是存在一条主干线,所有的计算机连接到主干线上。

环形结构是将所有计算机连接到一个环形的线路,每两个计算机之间有两条线路相连。

网络型是一种不规则的连接,事实上,目前的因特网就是这种拓扑结构。

2.4 什么是网络协议?由哪几个基本要素组成?网络协议:计算机网络中为正确传输数据信息而建立的通信规则、标准或约定的集合。

语义:定义了用于协调通信双方和差错处理的控制信息,是对构成协议的协议元素含义的解释。

语法:规定了通信所用的数据格式,编码与电平等,是对所表达的内容的数据结构形式的一种规定。

定式规则:明确实现通信的顺序,速率适配及排序。

2.72.9 在OSI参考模型中各层的协议数据单元(PDU)是什么?(N十1}层实体通过访问SAP向(N)层实体发送协议数据单元PDU。

PDU由两部分造成,如(N}层PDU的构成如图所示;:。

一部分为本层用户的数据,记为(N)用户数据;另一部分为本层的协议控制信息,记为(N) PCI 。

通信网基础课后答案

通信网基础课后答案

第一章通信网概述1.1简述通信系统模型中各个组成部分的含义,并举例说明。

答:通信系统的基本组成包括:信源,变换器,信道,噪声源,反变换器和信宿六部分。

信源:产生各种信息的信息源。

变换器:将信源发出的信息变换成适合在信道中传输的信号。

信道:按传输媒质分有线信道和无线信道,有线信道中,电磁信号或光电信号约束在某种传输线上传输;无线信道中,电磁信号沿空间传输。

反变换器:将信道上接收的信号变换成信息接收者可以接收的信息。

信宿:信息的接收者。

噪声源:系统内各种干扰。

1.2现代通信网是如何定义的?答:由一定数量的节点和连接这些节点的传输系统有机地组织在一起的,按约定信令或协议完成任意用户间信息交换的通信体系。

适应用户呼叫的需要,以用户满意的效果传输网内任意两个或多个用户的信息。

1.3试述通信网的构成要素及其功能。

答:通信网是由软件和硬件按特定方式构成的一个通信系统。

硬件由:终端设备,交换设备和传输系统构成,完成通信网的基本功能:接入、交换和传输;软件由:信令、协议、控制、管理、计费等,它们完成通信网的控制、管理、运营和维护,实现通信网的智能化。

1.4分析通信网络各种拓扑结构的特点。

(各种网络的拓扑结构图要掌握)答:基本组网结构:Ø网状网:优点:①各节点之间都有直达线路,可靠性高;②各节点间不需要汇接交换功能,交换费用低;缺点:①各节点间都有线路相连,致使线路多,建设和维护费用大;②通信业务量不大时,线路利用率低。

如网中有N个节点,则传输链路数H=1/2*N(N-1)。

Ø星形网:优点:①线路少,建设和维护费用低;②线路利用率高;缺点:①可靠性低,②中心节点负荷过重会影响传递速度。

如网中有N个节点,则传输链路数H=N-1。

Ø环形网:同样节点数情况下所需线路比网状网少,可靠性比星形网高。

如网中有N个节点,则传输链路数H=N。

Ø总线形网:优点:①节点接入方便②成本低,缺点:①传输时延不稳定②若传输总线损坏,整个网络会瘫痪。

(完整版)现代交换原理与通信网技术(卞丽)部分课后习题答案

(完整版)现代交换原理与通信网技术(卞丽)部分课后习题答案

第一章1.在通信网中为什么要引入交换功能?为实现多个终端之间的通信,引入交换节点.各个用户终端不在是两两互连 , 而是分别精油一条通信线路连接到交换节点上,在通信网中,交换就是通信的源和目的终端之间建立通信信道,实现通信信息传送的过程引入交换节点后, 用户终端只需要一对线与交换机相连,接生线路投资,组网灵活.2.构成通信网的三要素是:交换设备. 传输设备 , 用户终端.3.目前通信网中存在的交换方式有哪几种?分别属于哪种传送模式?电路交换.多速率电路交换.快速电路交换. 分组交换.帧交换. 帧中继.ATM交换.IP交换.光交换.软交换.电路交换. 多速率电路交换 .快速电路交换. 属于电路传送模式, 分组交换 .帧交换. 帧中继/属于分组传送模式 ATM交换属于异步传送模式4.电路传送模式.分组传送模式,和异步传送模式的特点是什么?(1)信息传送的最小单元是时隙(2)面向连接的工作方式(3)同步时分复用(4)信息传送无差错控制(5)信息具有透明性(6)基于呼叫损失的流量控制分组特点: (1)面向连接的工作方式的特点(2)无连接的工作方式特点(3)统计时分复用(4)信息传送有差错控制(5)信息传送不具有透明性(6)基于呼叫延迟的流量控制异步传送特点: (1)固定长度单元的信元和简化的信头(2)采用了异步时分复用方式(3)采用了面向连接的工作方式5.电路交换. 分组交换的虚电路方式以及ATM交换都采用面向连接的工作方式,它们有何异同?相同点:都具有连接建立数据传送和链路拆除三个阶段. 不同; 电路交换的面向连接的工作方式是一条物理连接通路.而虚电路方式以及ATM交换方式都属于逻辑连接.6.同步时分复用和异步时分复用的特点是什么?同步时分复用的基本原理是把时间划分为等长的基本单位,一般称为帧,没帧再划分为更小单位叫时隙.对每一条同步时分复用的告诉数字信道,采用这种时间分割的方法.依据数字信号在每一帧的时间位置来确定它是第几路子信道.这些子信道又可以称为位置化信道.通过时间位置来识别每路信道异步时分复用是采用动态分配带宽的,各路通信按需使用. 异步时分复用将时间划分为等长的时间片,用于传送固定长度的信元.异步时分是依据信头标志X.Y.Z.来区别哪路通信信元,而不是靠时间位置来识别。

通信网协议课后习题

通信网协议课后习题

第二章2.1、我国信令网采用几级结构,各如何表示?中国信令网采用三级结构。

第一级是信令网的最高级,称高级信令转接点(HSTP),第二级是低级信令转接点(LSTP),第三级为信令点,信令点由各种交换局和特种服务中心(业务控制点、网管中心等)组成。

2.2、NO.7信令的基本信令单元有哪几种?消息信号单元(MSU)链路状态信号单元(LSSU)填充信号单元(FISU)2.3、简述NO.7信令系统中信令网功能级的信令网管理功能是什么?一是信令业务管理(Signalling Traffic Management-STM),其任务是将信令业务从一条信令链路或路由转移到另一条或多条不同的链路或路由,在信令点拥塞的情况下减少信令业务。

二是信令链路管理(Signalling Link Management-SLM),其任务是对本信令点连接的信令链路进行控制,包括信令链路的接通、恢复、断开等功能,目的在于为建立和保持链路组的正常工作提供手段;此外,SLM还具有信令终端自动分配以及信令数据链路和信令终端自动分配的功能。

三是信令路由管理(Signalling Link Route Management-SRM),其任务是在信令点之间可靠地交换关于信令路由是否可用的消息,并能及时地闭塞信令路由或解除信令路由的闭塞。

2.4 简述我国信令点编号计划和分配原则。

我国国内信令网采用24位全国统一编码计划(1)每个信令点编码由三部分组成。

左8位用来区分主信令区的编码,原则上以省、自治区、直辖市大区中心为单位编排;中8位用来区别分信令区的编码,原则上以各省、自治区的地区、地级市及直辖市、大区中心的汇接区和郊县为单位编排;右8位用来区分信令点,国内信令网的每个信令点都按上图格式分配给一个信令点编码。

(2)主信令区的编码基本上按顺时针方向由小到大连续安排,目前只启用低6位。

(3)分信令区的编码由省电信主管部门负责编,码分配也应具有规律性由小至大编排。

计算机网络通信课后习题答案

计算机网络通信课后习题答案

国家级精品课程配套教材《计算机通信与网络》杨庚章韵成卫青沈金龙编著清华大学出版社第一章概述(P19)1、计算机网络的发展可划分为几个阶段?每个阶段各有何特点?答:计算机网络的发展可分为以下四个阶段。

(1)面向终端的计算机通信网:其特点是计算机是网络的中心和控制者,终端围绕中心计算机分布在各处,呈分层星型结构,各终端通过通信线路共享主机的硬件和软件资源,计算机的主要任务还是进行批处理,在20世纪60年代出现分时系统后,则具有交互式处理和成批处理能力。

(2)分组交换网:分组交换网由通信子网和资源子网组成,以通信子网为中心,不仅共享通信子网的资源,还可共享资源子网的硬件和软件资源。

网络的共享采用排队方式,即由结点的分组交换机负责分组的存储转发和路由选择,给两个进行通信的用户段续(或动态)分配传输带宽,这样就可以大大提高通信线路的利用率,非常适合突发式的计算机数据。

(3)形成计算机网络体系结构:为了使不同体系结构的计算机网络都能互联,国际标准化组织ISO提出了一个能使各种计算机在世界范围内互联成网的标准框架—开放系统互连基本参考模型OSI.。

这样,只要遵循OSI标准,一个系统就可以和位于世界上任何地方的、也遵循同一标准的其他任何系统进行通信。

(4)高速计算机网络:其特点是采用高速网络技术,综合业务数字网的实现,多媒体和智能型网络的兴起。

2、试简述分组交换的特点答:分组交换实质上是在“存储——转发”基础上发展起来的。

它兼有电路交换和报文交换的优点。

分组交换在线路上采用动态复用技术传送按一定长度分割为许多小段的数据——分组。

每个分组标识后,在一条物理线路上采用动态复用的技术,同时传送多个数据分组。

把来自用户发端的数据暂存在交换机的存储器内,接着在网内转发。

到达接收端,再去掉分组头将各数据字段按顺序重新装配成完整的报文。

分组交换比电路交换的电路利用率高,比报文交换的传输时延小,交互性好。

3、试从多个方面比较电路交换、报文交换和分组交换的主要优缺点。

(完整版)通信网课后答案

(完整版)通信网课后答案

(完整版)通信⽹课后答案第⼀章1、构成现代通信⽹的要素有哪些?它们各⾃完成什么功能?它们之间相互通信通过什么机制实现?答:(1)从硬件结构来看:由终端节点、变换节点、业务节点、传输系统构成。

功能:完成接⼊交换⽹的控制、管理、运营和维护。

(2)从软件结构来看:它们有信令、协议、控制、管理、计费等。

功能:完成通信协议以及⽹络管理来实现相互间的协调通信。

(3)通过保持帧同步和位同步、遵守相同的传输体制。

2、在通信⽹中交换节点主要完成哪些功能?⽆连接⽹络中交换节点实现交换的⽅式与⾯向连接的⽹络中交换节点的实现⽅式有什么不同?分组交换型⽹络与电路交换型⽹络节点实现交换的⽅式有什么不同?答:(1)完成任意⼊线的信息到指定出线的交换功能(2)⽆连接型⽹络不⽤呼叫处理和记录连接状态,但是⾯向连接的⽹络需要。

(3)电路交换的交换节点直接在预先建⽴的连接上进⾏处理、时延⼩,分组交换以“存储—转发”⽅式⼯作,时延⼤。

3、现代通信⽹为什么要采⽤分层结构?画出对等层之间的通信过程?答:(1)降低⽹络设计的复杂度、⽅便异构⽹络间的相互连通、增强⽹络的可升级性、促进了竞争和设备制造商的分⼯。

(2)图略第⼆章1.简述⼏种主要传输介质的特点及应⽤场合.双绞线:便宜易安装,抗⼲扰能⼒差,复⽤度不⾼,带宽窄。

应⽤场合:电话⽤户线,局域⽹中。

同轴电缆:抗⼲扰强于双绞线,适合⾼频宽带传输,成本⾼,不易安装埋设。

应⽤场合:CATV,光纤同轴混合接⼊⽹。

光纤:⼤容量,体积⼩,重量轻,低衰减,抗⼲扰能⼒强,安全保密性好。

应⽤场合:接⼊⽹,局域⽹,城域⽹,⼴域⽹。

⽆线介质:1.⽆线电:长距离传输,能穿越建筑物,其传输特性与频率有关。

应⽤场合:公众⽆线⼴播,电视发射,⽆线专⽤⽹。

2.微波:在空间沿直线传输。

应⽤场合:卫星通信,陆地蜂窝,⽆线接⼊⽹,专⽤⽹络等.3.红外线:不能穿越同体,短距离,⼩范围内通信。

应⽤场合:家电产品,通信接⼝等。

2.SDH的帧结构由那⼏部分组成,各起什么作⽤?由段开销SDH,管理单元指针AU-PTR,STM净负荷组成。

通信网络基础-(李建东-盛敏-)课后习题答案

通信网络基础-(李建东-盛敏-)课后习题答案

1.1答:通信网络由子网和终端构成(物理传输链路和链路的汇聚点),常用的通信网络有A TM 网络,X.25分组数据网络,PSTN ,ISDN ,移动通信网等。

1.2答:通信链路包括接入链路和网络链路。

接入链路有:(1)Modem 链路,利用PSTN 电话线路,在用户和网络侧分别添加Modem 设备来实现数据传输,速率为300b/s和56kb/s ;(2)xDSL 链路,通过数字技术,对PSTN 端局到用户终端之间的用户线路进行改造而成的数字用户线DSL ,x 表示不同的传输方案;(3)ISDN ,利用PSTN 实现数据传输,提供两个基本信道:B 信道(64kb/s ),D 信道(16kb/s 或64kb/s );(4)数字蜂窝移动通信链路,十几kb/s ~2Mb/s ;(5)以太网,双绞线峰值速率10Mb/s,100Mb/s 。

网络链路有:(1)X.25提供48kb/s ,56kb/s 或64kb/s 的传输速率,采用分组交换,以虚电路形式向用户提供传输链路;(2)帧中继,吞吐量大,速率为64kb/s ,2.048Mb/s ;(3)SDH (同步数字系列),具有标准化的结构等级STM-N ;(4)光波分复用WDM ,在一根光纤中能同时传输多个波长的光信号。

1.3答:分组交换网中,将消息分成许多较短的,格式化的分组进行传输和交换,每一个分组由若干比特组成一个比特串,每个分组都包括一个附加的分组头,分组头指明该分组的目的节点及其它网络控制信息。

每个网络节点采用存储转发的方式来实现分组的交换。

1.4答:虚电路是分组传输中两种基本的选择路由的方式之一。

在一个会话过程开始时,确定一条源节点到目的节点的逻辑通路,在实际分组传输时才占用物理链路,无分组传输时不占用物理链路,此时物理链路可用于其它用户分组的传输。

会话过程中的所有分组都沿此逻辑通道进行。

而传统电话交换网PSTN 中物理链路始终存在,无论有无数据传输。

通信网课后答案

通信网课后答案

第一章1、构成现代通信网的要素有哪些?它们各自完成什么功能?它们之间相互通信通过什么机制实现答:(1)从硬件结构来看:由终端节点、变换节点、业务节点、传输系统构成。

功能:完成接入交换网的控制、管理、运营和维护。

(2)从软件结构来看:它们有信令、协议、控制、管理、计费等。

功能:完成通信协议以及网络管理来实现相互间的协调通信。

(3)通过保持帧同步和位同步、遵守相同的传输体制。

2、在通信网中交换节点主要完成哪些功能?无连接网络中交换节点实现交换的方式与面向连接的网络中交换节点的实现方式有什么不同?分组交换型网络与电路交换型网络节点实现交换的方式有什么不同?答:(1)完成任意入线的信息到指定出线的交换功能(2)无连接型网络不用呼叫处理和记录连接状态,但是面向连接的网络需要。

(3)电路交换的交换节点直接在预先建立的连接上进行处理、时延小,分组交换以“存储—转发”方式工作,时延大。

3、现代通信网为什么要采用分层结构?画出对等层之间的通信过程?答:(1)降低网络设计的复杂度、方便异构网络间的相互连通、增强网络的可升级性、促进了竞争和设备制造商的分工。

(2)图略第二章1.简述几种主要传输介质的特点及应用场合.双绞线:便宜易安装,抗干扰能力差,复用度不高,带宽窄。

应用场合:电话用户线,局域网中。

同轴电缆:抗干扰强于双绞线,适合高频宽带传输,成本高,不易安装埋设。

应用场合:CATV,光纤同轴混合接入网。

光纤:大容量,体积小,重量轻,低衰减,抗干扰能力强,安全保密性好。

应用场合:接入网,局域网,城域网,广域网。

无线介质:1.无线电:长距离传输,能穿越建筑物,其传输特性与频率有关。

应用场合:公众无线广播,电视发射,无线专用网。

2.微波:在空间沿直线传输。

应用场合:卫星通信,陆地蜂窝,无线接入网,专用网络等.3.红外线:不能穿越同体,短距离,小范围内通信。

应用场合:家电产品,通信接口等。

2.SDH的帧结构由那几部分组成,各起什么作用?由段开销SDH,管理单元指针AU-PTR,STM净负荷组成。

(完整版)现代通信网课后答案

(完整版)现代通信网课后答案

1、什么是通信网?人们常说的“三网”指的是什么?是由一定数量的节点(包括终端设备和交换设备)和连接节点的传输链路相互有机地组合在一起,以实现两个或多个规定点间信息传输的通信体系。

电信网,广播电视网,宽带网2、通信网在硬件设备的构成要素是什么?硬件包括终端设备、传输链路及交换设备3通信网的基本结构有哪些?网形网星形网复合形网总线形网环形网树形网(前三种应用最多)4 存储-转发交换最基本的思想是什么?分组交换5 什么是固定通信网的等级结构?等级结构的固定电话网中通常采用什么拓扑结构?等级结构就是将全网的交换局划分为若干个等级。

低等级的交换局与管辖它的交换局相连、形成多级汇接辐射网即星形网的拓扑结构;而最高等级的交换局则直接相连,形成网形网的拓扑结构。

从整体来看,整个电话网呈现复合形网的拓扑结构。

7 、国内长途电话网分为两极,DC1 和DC2 分别指什么?功能是什么?省级交换中心(DC1):汇接全省(含终端)长途来话、去话话务本地网交换中心(DC2):职能是汇接本地网长途终端话务。

8 、本地网的概念是什么?扩大本地网的特点和主要类型有哪些?概念:本地电话网简称本地网,是指在同一个长途编号区范围内,由若干个端局、汇接局、局间中继线、长市中继线,以及用户线、电话机组成的电话网。

用来疏通接续本长途编号区范围内任何两个用户间的电话呼叫和长途发话、来话业务。

特点:分区汇接①分区单汇接②分区双汇接全覆盖汇接类型:(1)特大和大城市本地网:用于直辖市、省会或经济发达人口众多的省级城市的组网。

(2)中等城市本地网:用于地级市城市组网。

9 、试画出本地网四种汇接方式的示意图。

集中汇接来话汇接去话汇接来去话汇接10 、简述长途网的路由选择规则。

1、网中任一长途交换中心呼叫另一长途交换中心的所选路邮局最多为3个;2、同一汇接区内的话务应在该汇接区内疏通;3、发话区的路由选择方向为自下而上,受话区的路由选择方向为自上而下;4、按照“自远而近”的原则设置选路顺序,即首选直达路由,次选迂回路由,最后选最终路由。

通信网理论与应用课后练习题含答案

通信网理论与应用课后练习题含答案

通信网理论与应用课后练习题含答案第一章通信基础选择题1.以下哪个是数据通信的概念(C) A. 数据传输 B. 数据处理 C. 数据交换 D. 数据存储2.OSI模型的最高层是(A) A. 应用层 B. 表示层 C. 会话层 D. 传输层3.HTTP是(A) A. 应用层协议 B. 传输层协议 C. 网络层协议 D. 数据链路层协议填空题1.数据通信的基本元素是________________。

答案:信息、信号、噪声2.在OSI模型中,位于传输层之下,提供数据链路层之上进程间通信的协议是__________________。

答案:传输控制协议(TCP)简答题1.简述计算机网络体系结构及其组成部分。

答案:计算机网络体系结构是指不同层次的协议们按照一定的顺序、组合、层次结构,相互协作,以完成网络功能。

它由五个层次组成,从下到上分别是物理层、数据链路层、网络层、传输层和应用层。

物理层:负责实现传输介质的物理连接,提供比特流的传输;数据链路层:负责构建与传送帧,提供透明的数据传送服务;网络层:提供端到端的逻辑通信服务,处理源到目的地之间的路由问题;传输层:负责端到端的可靠传输和流量控制;应用层:为应用提供服务,包含各种具体的应用协议。

2.简述HTTP协议的基本工作原理及之间的关系。

答案:HTTP协议是一种基于客户端/服务器模式工作的协议,用于传输Web数据。

它把Web数据通过TCP协议传输到Web服务器和Web浏览器之间,它通过请求和响应来进行数据传送。

客户端发送请求,服务器返回响应。

请求分为GET请求和POST请求两种方式,GET请求一般用于获取资源,POST用于提交数据。

HTTP协议与其他网络协议之间的关系是HTTP位于应用层,依赖于其他网络协议实现数据传输。

通信网课后习题答案

通信网课后习题答案

第三章1.什么是信令?为什么说它是通信网的神经系统?信令是终端和交换机之间以及交换机与交换机之间传递的一种信息。

这种信息可以指导终端、交换系统、传输系统协同运行,在指定的终端间建立和拆除临时的通信通道,并维护网络本身正常运行。

没有摘机信令,交换机就不知道该为那个用户提供服务;没有拨号音,用户就不知道交换机是否空闲并准备就绪,盲目拨号交换机可能收不到。

因此信令系统是通信网的神经系统。

2.什么是随路信令?什么是公共信道信令?与随路信令相比,公共信道信令有哪些优点?随路信令(CAS)是信令与用户信息在同一条信道上传送,或信令信道与用户信息的传送信道一一对应。

公共信道信令(CCS)是信令在一条与用户信息信道分开的信道上传送优点:1增加了信令系统的灵活性2信令在信令链路上传送速度快,呼叫建立时间大为缩短,不仅提高了服务的质量,而且提高了传输设备和交换设备的使用效率,节省了信令设备总投资。

3具有提供大量信令的潜力,便于增加新的网络管理信令和维护信令,从而适应各种新业务的要求。

4利于像综合数字应用网过度9.简述NO.7信令的功能级结构和各级功能功能级结构由消息传递部分(MTP)和用户部分(UP)组成;消息传递部分的功能是作为一个公共传送系统的,在相对应的两个用户之间可靠地传送信令消息。

用户部分是实用消息传递部分传送能力的功能实体。

MTP由三个功能级组成,他们是信令数据链路级、信令链路功能级、和信令网功能级。

MTP-1是信令数据链路级,为信令传输提供一条双向数据通路;MTP-2信令链路功能级。

它规定了在一条信令链路上传送信令消息的功能以及相应的程序;MTP-3信令网功能级,它是由信令消息处理信令网管理两部分。

13.信令网的路由:两个信令点间传送信令消息的路径。

信令路由分类:一类正常路由,另一类是迂回路由。

信令路由选择原则 1 首先选择正常路由,当正常路由故障不能用时,在选择迂回路由。

2 信令路由中具有多个迂回路由时,迂回路由选择的先后顺序是首先选择优先级最高的第一迂回路由,当第一迂回路由有故障不能用时,在选第二迂回路由,以此类推。

通信电路课后答案(沈伟慈版)

通信电路课后答案(沈伟慈版)
若要增大前者功率,应该使或 Ubm 或U BB
习题解答汇编
3.8
解:
因为
U cm U cc
,如果U cm和U CC 不变,则也不变.
uBE max不变,所以Icm不变, 所以仍然工作在临界状 态..
c
1 2
g1
(
),
c随g1
(
)的增大而增大
,

, I c1m
.
Po
1 2
I c1mU cm也减小了.
NF3 12dB 15.85, GPA3 40dB 10000
NF
NF1
NF2 1 NF3 1
GPA1
GPA1 GPA2
1.08
SNRin NF SNRout 108
习题解答汇编 1.9 解: 按照题意,我们直接可以得到
EA 4k T0 RA BW D NF 0.436μV
)
2
g ie
gie
( C1 C2
)2 gie
1

U f U f
C1
1
C2 C1
C2
习题解答汇编
反馈系数
所以
F
U f U f
C1 C2
U f
y feUi G jB
C2 C1
U
f
其中
G goe gie ge0 ,
B
C1
C2
2 LC 2
1
习题解答汇编
g 'e0
1
C2 C1 C2
2
180
:90
:60
1 0
180 180
: 1 0
90 90
: 1 0
60 60
g1 180 : g1 90 : g1 60 1:1.57 :1.8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1、构成现代通信网的要素有哪些?它们各自完成什么功能?它们之间相互通信通过什么机制实现?答:(1)从硬件结构来看:由终端节点、变换节点、业务节点、传输系统构成。

功能:完成接入交换网的控制、管理、运营和维护。

(2)从软件结构来看:它们有信令、协议、控制、管理、计费等。

功能:完成通信协议以及网络管理来实现相互间的协调通信。

(3)通过保持帧同步和位同步、遵守相同的传输体制。

2、在通信网中交换节点主要完成哪些功能?无连接网络中交换节点实现交换的方式与面向连接的网络中交换节点的实现方式有什么不同?分组交换型网络与电路交换型网络节点实现交换的方式有什么不同?答:(1)完成任意入线的信息到指定出线的交换功能(2)无连接型网络不用呼叫处理和记录连接状态,但是面向连接的网络需要。

(3)电路交换的交换节点直接在预先建立的连接上进行处理、时延小,分组交换以“存储—转发”方式工作,时延大。

3、现代通信网为什么要采用分层结构?画出对等层之间的通信过程?答:(1)降低网络设计的复杂度、方便异构网络间的相互连通、增强网络的可升级性、促进了竞争和设备制造商的分工。

(2)图略第二章1.简述几种主要传输介质的特点及应用场合.双绞线:便宜易安装,抗干扰能力差,复用度不高,带宽窄。

应用场合:电话用户线,局域网中。

同轴电缆:抗干扰强于双绞线,适合高频宽带传输,成本高,不易安装埋设。

应用场合:CATV,光纤同轴混合接入网。

光纤:大容量,体积小,重量轻,低衰减,抗干扰能力强,安全保密性好。

应用场合:接入网,局域网,城域网,广域网。

无线介质:1.无线电:长距离传输,能穿越建筑物,其传输特性与频率有关。

应用场合:公众无线广播,电视发射,无线专用网。

2.微波:在空间沿直线传输。

应用场合:卫星通信,陆地蜂窝,无线接入网,专用网络等.3.红外线:不能穿越同体,短距离,小范围内通信。

应用场合:家电产品,通信接口等。

2.SDH的帧结构由那几部分组成,各起什么作用?由段开销SDH,管理单元指针AU-PTR,STM净负荷组成。

段开销:保证STM净负荷正常灵活的传送。

AU-PTR:用于指示STM净负荷的首字节在STM-N中的起始位置。

STM净负荷:用户传递的信息。

3.目前使用的SDH信号的速率等级是如何规定的?以STM-1为基本传输速率,更高速率表示为STM-N,其速率为STM-1的N倍,ITU建议支持N属于(1,4,16,64)。

4.在SDH中,虚容器的含义?它在SDH中起什么作用?虚容器:用来支持SDH通道连接的信息结构。

作用:为承载各种速率的同步或异步的业务信息而设置的,任何上层业务要经过VC,然后装入净负荷区,再通过SDH传送。

5.构成SDH/SONET传送网的主要网元设备有哪些,它们在网络中的作用是什么?设备有:中端复用器TM,分插复用器ADM,数字交叉连接设备DXC。

TM:提供传统接口用户到SDH网络的接入。

ADM:具有TM的功能,主要用于环网,负责在STM-N中插入和提取低阶支路信号,实现两STM-N之间不同VC连接。

DXC提供端口间交叉连接,也具有自测维护,网络故障恢复功能。

6.分析SDH/SONET传送网的主要优缺点。

优点:技术标准统一,有性能监测,故障,隔离,保护切换功能,以及理论上无限的标准扩容方式。

缺点:对于突发性很强的数据业务,带宽利用率不高。

7.简述光传送网的分层结构,为什么要引入一个光信道层,它在OTN中起什么作用?分为光信道层,光复用层,光传输层。

引入的目的:要将类似SDH/SONET网络中基于单波长的OMAP功能引入到基于多波长复用技术的光网络中。

作用:路由选择,分配波长,安排光信道的连接,处理开销,提供检测,管理等功能。

并在发生故障时,执行重选路由或进行保护切换。

8.OTN的帧结构,OTN中低阶信号复用成高阶信号的规则是什么?图P51,4个ODU1对应一个ODU2,4个ODU2对应一个ODU3.9.在现代电信网中,为什么要引入独立业务网的传送网?由于各种宽带业务的引入,对带宽的需求越来越高,需要一种新型的网络体系结构,能使根据需求灵活的进行网络带宽的扩充,支配,管理。

第三章1、什么是信令?为什么说它是通信网的神经系统?答:信令是终端和交换机之间以及交换机和交换机之间传递的一种信息。

这种信息可以指导终端、交换系统、传输系统协同运行,在指定的终端间建立和拆除临时的通信隧道,并维护网络本身正常运行,所以说它是通信网的神经系统。

2,按照工作区域信令可分为哪两类?各自功能特点是什么?答:可以分为用户线信令和局间信令。

用户线信令指在终端和交换机之间用户线上传输的信令,主要包括用户终端向交换机发送的监视信令和地址信令。

局间信令指在交换机和交换机之间、交换机与业务控制节点之间等传递的信令,主要用来控制链接的建立、监视、释放、网络的监控、测试等功能。

3,按照功能信令可分为哪几类?答:可以分为监视信令、地址信令和维护管理信令。

4,什么是随路信令?什么是公共信道信令?与随路信令相比,公共信道信令有哪些优点?答:随路信令是指信令与用户信息在同一条信道上传送。

公共信道信令是信令在一条与用户信息信道分开的信道上传送,并且该信令信道并非专用,而是为一群用户信息信道所共享。

由于公共信道信令传输通道与话路完全分开,因此为随路信令更灵活、信令传送速度快,更适应新业务的要求,利于向综合业务数字网过渡。

5、什么是信令方式?答:指在通信网上,不同厂商的设备要相互配合工作,要求设备之间传递的信令遵守一定的规则和约定。

6、画图说明心里在多段路由上的传送方式。

答:图p57页,(包括:端到端方式、逐段转发方式和混合方式)7、信令控制方式有哪几种?各有何特点?答:主要方式有三种:非互控方式、半互控方式和全互控方式。

各自特点:(1)非互控方式:发端连续向收端发送信令,而不必等待收端的证实信号。

该方法控制机制简单,发码速度快,适用于误码率很低费数字信道。

(2)半互控方式:发端向收端发送一个或一组信令后,必须等待收到收端回送的证实信令号后,才能接着发送下一个信号。

办互控方式中前向信令的发送受控于后向证实信令。

(3)全互控方式:该方式发端连续发送一个前向信令,且不能自动中断,直到收到收端发来的后向证实信令,才停止该前向心里的发送,收端后向证实信令的发送也是连续且不能自动中断的,直到发端停发前向信令,才能停发该证实信令。

这种不间断的连续互控方式抗干扰能力强,可靠性好,但设备复杂,发码速度慢,主要用于过去传输质量差的模拟电路。

目前在公共信道方式中已不再使用。

8、NO.7信令单元有几种?它们是怎样组成的?答:NO.7信令单元主要有三种:消息信号单元(MSU)、链路状态信号单元(LSSU)和填充信号单元(FISU).。

种信号单元的格式P59.9,简述NO.7信令功能级结构和各级功能。

答:功能级结构有消息传递部分(MTP)和用户部分(UP)组成。

而MTP又由信令数据链路级、信令链路功能级和信令网功能级三级组成。

这三级同UP一起构成NO.7信令方式的四级结构。

第一级信令数据链路级提供双向数据通路,规定了一条信令数据链路的物理、电气、功能特性和接入方法;第二级信令链路功能级,规定了信令链路上传送信令消息的功能以及相应程序,主要对信号单元进行定界、定位、检错和纠错等;第三级信令网功能级,主要完成路由功能;第四级UP,定义了实现某一类用户业务所需的相关的信令功能和过程。

10、画图说明NO.7与OSI的对应关系,见P63图。

11、信令网由哪几部分组成?各部分的功能是什么?答:信令网由信令点(SP)、信令转接点(STP)和信令链路(SL)组成。

信令点是发送和接收信令消息。

信令转接点是把信令消息从一条信令链路转到另一条信令链路的信令点。

信令链路是传送信令的通道。

12、信令网有哪几种工作方式?答:有两种,对应工作方式(也叫直联方式)和准对应工作方式(也叫准直联方式)。

13、画图说明我国信令网的等级结构。

(图)NO.7:中国七号信令网分级结构:见图。

(析:我国信令网采用三级结构):第一级,HSTP(设在各省,自治区以及直辖市,成对设置)第二级:LSTP(地级市,成对设置)第三级:SP(信令消息的源点或目的地址,各级交换局,运营维护中心、网管中心和单独设置的数据库均分配一个信令点编码)。

14、简述国际和国内信令点编号计划。

答:国际信令网信令点编码为14位,编码容量为214=16384个信令点。

采用大区识别、区域网识别、信令点识别的三级编号结构。

国内NO.7信令网信令点采用统一的24位编码方案,编码结构上分为三级:主信令区编码、分信令区编码和信令点编码。

15、什么是信令路由?信令路由分哪几类?路由选择原则是什么?答:信令路由是指两个信令点间传送信令消息的路径。

信令路由可分为正常路由和迂回路由两类。

路由选择:①首选正常路由,若故障不通,再选迂回路由;②多个迂回路由时,首选优先级最高的,若不通,再选第二迂回路由,依此类推;③在迂回路由中,若多个同一优先等级,则采用负荷分担方式。

16、我国信令网与电话网是如何对应的?答:我国电话网络等级为二级长途网(由DC1和DC2组成)加本地网。

结合实际情况,HSTP设置在DC1(省)级交换中心所在地,汇接DC1间的信令。

LSTP设置在DC2(市)级交换中心所在地,汇接DC2和端局信令。

端局、DC1、DC2均分配一个信令点编码。

第四章1.什么是同步?数字网为什么需要同步?同步:信号间在频率或相位上保持某种严格的特定关系,由数字信号的特征决定。

它的传送是按不同时隙的为了定界,必须引入帧同步,复用要求各设备要保持时钟同步,才不会产生误码。

总之是为了保持信号正确传输。

4.说明BITS的组成和各部分功能。

DXC,ADM,TM,ATM交换机,GSM设备,智能网设备,DDN网设备,NO.7信令设备,程控交换机。

5.利用基本的网同步方法,可以组成那些结构同步网?星型,环型,树型,网状。

数字同步网的技术指标有哪些?什么是抖动和漂移?它们的存在对数字通信系统有何影响?指标:抖动,漂移,滑动,时延。

滑动:由于时钟频率偏差引起的bit丢失,严重时引起帧失真。

抖动和漂移:表征数字信号的有效瞬时在偏离理想位置的变化,时延间隔误差:给定的定时信号与理想定时信号的相对时延变化差值。

7.数字通信中的滑码是如何产生的?滑码对通信有什么影响?由输入信号时钟频率和输出时钟信号频率之间的误差积累引起。

滑码对其影响较大,可能产生帧丢失或帧重复,对各通信业务有不同影响。

9.叙述我国同步网的等级和结构。

四级。

第一级:基准时钟,由铯钟或GPS配铷钟组成。

设在北京,武汉。

第二级:高稳时钟,分为A,B类,A 类设在六个大区中心及五个边远省会中心。

B类设在省市,区。

第三级:高稳晶体时钟,设在汇接局TM和端局C5。

相关文档
最新文档