锐角三角函数的应用举例

合集下载

锐角三角函数有哪些实际应用场景

锐角三角函数有哪些实际应用场景

锐角三角函数有哪些实际应用场景锐角三角函数在咱们的日常生活中那可是有着超级多的实际应用场景呢,简直无处不在!先来说说建筑领域吧。

你知道吗,建筑工人在盖房子的时候,可离不开锐角三角函数的知识。

比如说,要建造一个有特定倾斜角度的屋顶,这就需要计算出屋顶的角度以及所需材料的长度和数量。

想象一下,工人们站在高高的脚手架上,拿着测量工具,认真地计算着角度和长度。

他们的眼神专注,手中的工具就像是神奇的魔法棒,通过锐角三角函数,把一堆堆的建筑材料变成了坚固又美观的房子。

再讲讲导航和地图。

当我们使用手机导航去一个陌生的地方时,导航软件会根据我们的位置和目的地,计算出最佳的路线。

这背后可就有锐角三角函数的功劳啦!它帮助确定我们与目的地之间的直线距离和实际行走的路程。

就像有一次我自己出门旅行,在一个完全陌生的城市里,靠着导航找到了一家特别棒的小吃店。

那个时候我就在想,要是没有这些数学知识的支撑,我可能还在街头瞎转悠,找不到美食的方向呢。

还有测量山峰的高度。

测量人员没办法直接爬到山顶去测量,那怎么办呢?这时候就轮到锐角三角函数登场啦!他们在山脚下选好测量点,测量出观测点与山顶的角度,再结合测量点与山底的距离,就能算出山峰的高度。

这就像是解开了一个神秘的谜题,让人充满了成就感。

在航海中,锐角三角函数也发挥着重要作用。

船员们需要根据星星的位置和角度来确定船只的方向和位置。

想象一下,在浩瀚的大海上,满天繁星闪烁,船员们依靠着锐角三角函数的知识,勇敢地驶向目的地,是不是特别酷?在日常生活中,我们装修房子的时候,如果想要在墙上挂一幅画,而且要保证画是水平的,那就得用到锐角三角函数来测量和计算。

又比如,我们要搭建一个秋千,要确定秋千的绳子长度和角度,让秋千荡起来既安全又有趣,这也需要锐角三角函数的帮忙。

甚至在体育比赛中也有它的身影。

比如滑雪运动员在从山坡上滑下来的时候,他们需要根据山坡的角度和自己的速度来调整姿势和控制方向,以确保安全和取得好成绩。

锐角三角函数知识点总结

锐角三角函数知识点总结

锐角三角函数知识点总结与复习1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c2、如以下图,在Rt △ABC 中,∠C 为直角, 那么∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

A90B 90∠-︒=∠︒=∠+∠得B A 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 对边邻边Cαsin0 21 22 23 1 αcos1 23 2221 0 αtan 0 33 1 3 不存在 αcot不存在3133 06、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

1、解直角三角形的定义:边和角〔两个,其中必有一边〕→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量防止使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; (2)俯角:视线在水平线下方的角。

(3)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即h i l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan h i lα==。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

:i h l=hl α如图3,OA、OB、OC、OD的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。

锐角三角形函数及应用

锐角三角形函数及应用

锐角三角形函数及应用锐角三角形是指三个内角都小于90的三角形。

在锐角三角形中,我们可以应用一些函数来求解各种问题。

以下是一些锐角三角形函数及其应用的例子:1. 正弦函数:在锐角三角形ABC中,以角A为锐角,边BC为斜边,则正弦函数可以定义为sin A = BC / AC。

我们可以利用正弦函数来求解各种问题,如求解角度、边长等。

例如,已知角度A和边长BC,可以通过sin A = BC / AC来求解边长AC。

2. 余弦函数:在锐角三角形ABC中,以角A为锐角,边BC为斜边,则余弦函数可以定义为cos A = AC / BC。

我们可以利用余弦函数来求解各种问题,如求解角度、边长等。

例如,已知角度A和边长AC,可以通过cos A = AC / BC来求解边长BC。

3. 正切函数:在锐角三角形ABC中,以角A为锐角,边BC为斜边,则正切函数可以定义为tan A = BC / AC。

我们可以利用正切函数来求解各种问题,如求解角度、边长等。

例如,已知角度A和边长BC,可以通过tan A = BC / AC来求解边长AC。

4. 余切函数:在锐角三角形ABC中,以角A为锐角,边BC为斜边,则余切函数可以定义为cot A = AC / BC。

我们可以利用余切函数来求解各种问题,如求解角度、边长等。

例如,已知角度A和边长AC,可以通过cot A = AC / BC来求解边长BC。

通过这些函数,我们可以在求解锐角三角形问题时进行角度和边长之间的转换。

例如,已知一个锐角三角形的两边和一个角度,我们可以利用正弦、余弦、正切函数来求解其余的角度和边长。

此外,锐角三角形函数还可以应用于实际生活中的一些问题。

例如,在建筑设计中,我们需要计算一座斜塔的高度。

我们可以通过测量角度和斜塔与地面的距离,利用正切函数来求解其高度。

同样,在地理测量中,我们可以利用正弦、余弦、正切函数来计算两地之间的距离和方位角。

总之,锐角三角形函数是求解锐角三角形问题的重要工具,其应用广泛且实用。

锐角三角函数

锐角三角函数

锐角三角函数锐角三角函数指的是在单位圆上,与单位圆心的射线所夹角度小于90°的三角函数。

常见的锐角三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)以及它们的倒数函数(csc、sec、cot)。

锐角三角函数在数学、物理、工程等领域具有重要的应用。

正弦函数 (sin)正弦函数是指在单位圆上,与x轴正方向的夹角所对应的纵坐标。

可以用以下公式表示:sin(θ) = 对边 / 斜边正弦函数图示正弦函数图示在三角函数中,正弦函数具有以下特点: - 值域在[-1,1]之间; - 奇函数,即sin(-θ) = -sin(θ); - 周期为2π,即sin(θ + 2π) = sin(θ)。

余弦函数 (cos)余弦函数是指在单位圆上,与x轴正方向的夹角所对应的横坐标。

可以用以下公式表示:cos(θ) = 邻边 / 斜边余弦函数图示余弦函数图示在三角函数中,余弦函数具有以下特点: - 值域在[-1,1]之间; - 偶函数,即cos(-θ) = cos(θ); - 周期为2π,即cos(θ + 2π) = cos(θ)。

正切函数 (tan)正切函数是指在单位圆上,与x轴正方向的夹角所对应的纵坐标与横坐标的比值。

可以用以下公式表示:tan(θ) = 对边 / 邻边正切函数图示正切函数图示在三角函数中,正切函数具有以下特点: - 值域为全体实数; - 周期为π,即tan(θ + π) = tan(θ)。

倒数函数 (csc、sec、cot)在锐角三角函数中,除了正弦函数、余弦函数和正切函数,倒数函数也是常见的。

倒数函数分别为余弦函数的倒数 (csc)、正弦函数的倒数 (sec) 以及正切函数的倒数 (cot)。

倒数函数的定义如下:csc(θ) = 1 / sin(θ)sec(θ) = 1 / cos(θ)cot(θ) = 1 / tan(θ)这些倒数函数在数学中常用于简化关系式、求解方程等。

应用领域锐角三角函数在数学、物理、工程等领域有广泛的应用。

初中锐角三角函数及应用

初中锐角三角函数及应用

初中锐角三角函数及应用锐角三角函数是指角度小于90度的三角函数,包括正弦、余弦和正切。

这些函数在数学和物理学中有着广泛的应用。

首先,我们来介绍一下锐角三角函数的定义和性质。

在一个直角坐标系中,对于一个锐角ABC(角A小于90度), 我们可以定义正弦函数sinA 为点B的纵坐标除以斜边AC的长度,余弦函数cosA 为点B的横坐标除以斜边AC的长度,正切函数tanA 为点B的纵坐标除以横坐标。

其中,sinA、cosA和tanA都是角A的函数。

这些函数有许多重要的性质。

首先,它们的定义域都是锐角的正数集合,即(0,90)。

其次,它们的值域都是(-1,1),即在定义域内,这些函数的值都在-1到1之间变化。

此外,正弦函数和余弦函数还具有周期性,周期为360度或2π弧度。

也就是说,对于一个锐角A,sin(A+360k) = sinA,cos(A+360k) = cosA,其中k 为整数。

在应用方面,锐角三角函数有着广泛的作用。

首先,它们被广泛应用于三角计算。

例如,我们可以利用正弦定理或余弦定理,通过已知边和角来求解三角形的其他未知边和角。

这在测量、建筑、工程等领域都有着重要的应用。

其次,锐角三角函数在物理学中也有着重要的应用。

例如,对于一个斜抛运动的物体,我们可以利用正弦函数和余弦函数来分析其垂直和水平方向上的运动。

它们可以帮助我们计算物体的落点、飞行时间、最大高度等。

另外,锐角三角函数还与周期函数和图像有着密切的关系。

它们的图像可以通过函数的周期性来得到。

例如,正弦函数的图像是一个周期为2π的曲线,具有对称性和单调性,而余弦函数的图像是一个周期为2π的曲线,也具有对称性和反单调性。

此外,锐角三角函数还与三角恒等式有着重要的联系。

三角恒等式是指对于锐角A和B,成立的恒等关系。

利用三角恒等式,我们可以化简复杂的三角函数表达式,简化计算过程。

总的来说,锐角三角函数是数学中一类重要的函数,具有广泛的应用。

它们不仅在三角计算和几何题目中有着重要作用,还与物理学、周期函数和三角恒等式等有着紧密的联系。

锐角三角函数的应用

锐角三角函数的应用

锐角三角函数1.一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB 的坡度由1:0.75改为1坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花. (1)求整修后背水坡面的面积;(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?2.如图,某居民小区内A 、B 两楼之间的距离30MN =米,两楼的高都是20米,A 楼在B 楼正南,B 楼窗户朝南.B 楼内一楼住户的窗台离小区地面的距离2DN =米,窗户高 1.8CD =米.当正午时刻太阳光线与地面成30°角时,A 楼的影子是否影响B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由. 1.414≈ 1.732 2.236)3.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM 位置运动到与地面垂直的EN 位置时的示意图.已知0.64BC =米,0.24AD =米, 1.30AB =米. (1)求AB 的倾斜角α的度数(精确到x );(2)若测得0.85EN =米,试计算小明头顶由M 点运动到N 点的路径MN ⋂的长度.(精确到0.01米)4.某商场门前的台阶截面如图所示.已知每级台阶的宽度(如CD)均为30cm,高度(如BE)均为20cm.为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9度.请计算从斜坡起点A到台阶前的点B的水平距离.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)5.去年夏季山洪暴发,几所学校被山体滑坡推倒教学楼,为防止滑坡,经过地质人员勘测,当坡角不超过45°时,可以确保山体不滑坡.某小学紧挨一座山坡,如图所示,已知AF∥BC,斜坡AB长30米,坡角∠=︒.改造后斜坡BE与地面成45°角,求AE至少是多少米?(精确到0.1米)ABC606.某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且66.5∠=︒.DAB(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD AB BC++,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)7.如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行,请你根据图中数据计算回答:小敏身高1.78米,她乘电梯会有碰头危险吗?姚明身高2.29米,他乘电梯会有碰头危险吗?(可能用到的参考数值:sin27°=0.45,cos27°=0.89,tan27°=0.51)8.如图,在一个坡角为15°的斜坡上有一棵树,高为AB.当太阳光与水平线成50°时,测得该树在斜坡上的树影BC的长为7m,求树高.(精确到0.1m)9.某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠=︒,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超68BAD过50°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长(精确到0.1m);(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米?(精确到0.1m)(参考数据:sin68°=0.9272,cos68°=0.3746,tan68°=2.4751,sin50°=0.766O,cos50°=0.6428,tan50°=1.1918)10.如图,矩形ABCD是供一辆机动车停放的车位示意图,请你参考图中数据,计算车位所占街道的宽度EF.(结果精确到0.1m,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)11.如图,我市某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且5DB=m,则BC的长度是多少?现在在C点上方2m处加固另一条钢缆ED,那么钢缆ED的长度为多少?(结果保留三个有效数字)12.某数学兴趣小组,利用树影测量树高.已测出树AB的影长AC为9米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变,试求树影的最大长度.(计算结果精确到0.1米, 1.414≈ 1.732)13.同学们对公园的滑梯很熟悉吧!如图是某公园新增设的一台滑梯,该滑梯高度2AC=m,滑梯着地点B 与梯架之间的距离4BC=m.(1)求滑梯AB的长(精确到0.1m);(2)若规定滑梯的倾斜角(ABC∠)不超过45°属于安全范围.请通过计算说明这架滑梯的倾斜角是否符合要求?14.如图:学校旗杆附近有一斜坡.小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长20BC=米,斜坡坡面上的影长8CD=米,太阳光线AD与水平地面成26°角,斜坡CD与水平地面BC成30°的角,求旗杆AB的高度(精确到1米).15.如图,甲楼在乙楼的南面,它们的设计高度是若干层,每层高均为3米,冬天太阳光与水平面的夹角为30°.(1)若要求甲楼和乙楼的设计高度为6层,且冬天甲楼的影子不能落在乙楼上,则建筑时两楼之间的距离BD至少为多少米?(保留根号)(2)由于受空间的限制,两楼距离21BD=米,仍按上述要求使冬天甲楼的影子不能落在乙楼上,则设计甲楼时,最高应建几层?16.如图是一座人行天桥的示意图,天桥的高是10米,坡面的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面的倾斜角为30°,若新坡角下需留3米的人行道,问离原坡角10米的建≈ 1.732≈.)1.41417.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)18.如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长多少米?19.要求tan30°的值,可构造如图所示的直角三角形进行计算:作Rt △ABC ,使90C ∠=︒,斜边2AB =,直角边1AC =,那么BC 30ABC ∠=︒,tan 30AC BC ︒===,在此图的基础上通过添加适当的辅助线,可求出tan15°的值.请你写出添加辅助线的方法,并求出tan15°的值.20.如图,河流的两岸PQ 、MN 互相平行,河岸MN 上有一排间隔为50米的电线杆C 、D 、E …,某人在河岸PQ 的A 处测得30CAQ ∠=︒,然后沿河岸走了110米到达B 处,测得45DBQ ∠=︒,求河流的宽度.21.如图,铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度3:4i =(BFi CF=),路基高3BF =米,底CD 宽为18米,求路基顶AB 的宽.22.如图,某广场一灯柱AB 被一钢缆CD 固定,CD 与地面成40°夹角,且5CB =米. (1)求钢缆CD 的长度;(精确到0.1米)(2)若2AD =米,灯的顶端E 距离A 处1.6米,且120EAB ∠=︒,则灯的顶端E 距离地面多少米? (参考数据:tan400.84︒≈,sin400.64︒≈,3cos 404︒≈)23.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45°降为30°,已知5AC =米,点D 、B 、C 在同一水平地面上.(1)求改善后滑滑板AD 的长;(2)若滑滑板的正前方有3米长的空地就能保证安全,原滑滑板的前方有7米长的空地,象这样改善是否可行?说明理由.24.某厂家新开发的一种摩托车如图所示,它的大灯A 射出的光线AB 、AC 与地面MN 的夹角分别为8°和10°,大灯A 离地面距离1m .(1)该车大灯照亮地面的宽度BC 约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s ,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h 的速度驾驶该车,从60km/h 到摩托车停止的刹车距离是143m ,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:4sin825︒≈,1tan87︒≈,9sin1050︒≈,5tan1028︒≈)25.下图是某建筑物横断面示意图中的一部分,A是OD与⊙O的交点,已知:7AD=,4CE=,DE=,5 OH⊥DE,垂足为H,交⊙O于点C,坡面CE的坡度1:0.75i=,求⊙O半径r的值.26.如图1所示,一架长4m的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面所成的角α为60度.(1)求AO与BO的长;(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端NO下滑了多少米?②如图3所示,当A点下滑到'A点,B点向右滑行到'B点时,梯子AB的中点P也随之运动到'P点,若'15∠=︒,试求'POPAA的长.27.如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点≈)1.414≈ 1.732 2.236。

锐角三角函数及应用经典例题

锐角三角函数及应用经典例题

锐角三角函数及应用经典例题锐角三角函数是指在单位圆上,从原点出发,与 x 轴正半轴之间的夹角小于90° 的角的三角函数。

其中包括正弦函数sinα、余弦函数cosα、正切函数tanα,以及它们的倒数函数cscα、secα、cotα。

锐角三角函数在数学中有广泛的应用,尤其在几何、物理以及工程学中涉及到角度测量、距离计算等方面经常用到。

下面我们来看一些经典的例题,以加深对锐角三角函数的理解:例题1:已知在锐角 ABC 中,边长 BC = 5, AC = 13、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。

解答:由于边长BC=5,AC=13,我们可以根据勾股定理求得边长AB=√(AC^2-BC^2)=12角 A 的正弦值 sinA = BC / AC = 5 / 13,余弦值 cosA = AB / AC = 12 / 13,正切值 tanA = BC / AB = 5 / 12例题2:已知在锐角 ABC 中,角B = 35°,边长 BC = 8、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。

解答:由于已知角B = 35°,边长 BC = 8,我们可以根据正弦函数的定义求得角 A 的正弦值为 sinA = BC / AC。

由于 sinA = BC / AC,我们可以得到 AC = BC / sinA = 8 /sin(180° - A - B)。

根据余弦定理,可以计算出边长AC = √(AB^2 + BC^2 - 2 * AB * BC * cosB)。

代入已知的B = 55° 和 BC = 8,我们可以求得AC = √(AB^2 +8^2 - 2 * AB * 8 * cos35°)。

我们可以进一步根据余弦函数的定义计算 AB 的值,即 cosA = AB / AC,所以 AB = AC * cosA。

锐角三角函数及应用

锐角三角函数及应用

锐角三角函数1. 锐角三角函数的定义:如图所示:在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边。

(1)∠A 的正弦:sinA =a cA ∠的对边=斜边; (2)∠A 的余弦:b cA ∠的邻边=斜边; (3)∠A 的正切:a bA A ∠∠的对边=的邻边; (4)∠A 的余切:A b A a ∠∠的邻边=的对边 (是正切的倒数)。

2.30°,45°,60°角的三角函数值:1sin 302︒=,2sin 452︒=,3sin 602︒=; 3cos302︒=,2cos 452︒=,1cos 602︒=; 3tan 303︒=,tan 451︒=,tan 603︒=。

例题1:求下列各式的值:(1)22cos 60sin 60︒+︒ (2)cos 45tan 45sin 45︒-︒︒3.锐角三角函数之间的关系:(1)平方的关系:22sin cos 1A A +=;(2)商的关系: sin tan cos A A A=; (3)互余两角的三角函数关系:sin(90)cos A A ︒-=,cos(90)sin A A ︒-=。

注意:锐角的正弦和正切值随着角度的增大而增大;锐角的余弦值随着角度的增大而减小;对于锐角A 有0sin 1,0cos 1,tan 0,A A A <<<<>且他们都没有单位。

4.直角三角形的有关性质及判定:(1)直角三角形的性质:①直角三角形两个锐角互余;②直角三角形斜边上的中线等于斜边的一半;③在直角三角形中,如果有一个锐角等于30︒,那么它所对的直角边等于斜边的一半;④在直角三角形中,如果有一条直角边等于斜边的一半,那么它所对的锐角等于30︒;⑤在直角三角形中,两条直角边a ,b 的平方和等于斜边c 的平方,即222a b c +=;⑥1122Rt S ch ab ==(h 为斜边上的高),外接圆半径R =2c =斜边上的中线,内切圆半径r =2a b c +-。

初三数学-锐角三角函数的概念及其应用

初三数学-锐角三角函数的概念及其应用

初三数学讲义——锐角三角函数的概念及应用(1)一、锐角三角函数的概念:例1.矩形ABCD 中,AB =8,BC =6,将矩形折叠,使点A 与点C 重合,求折痕EF 的长.例2.(1)将矩形纸片ABCD 沿对角线成AC 折叠,使点B 落在点E 处,AD 和CE 相交于点F. 求证:EF =DF.(2)已知,△ABC 中,D 为AB 的中点,DC ⊥AC ,且tan ∠BCD =13,求tanA 的值.例3.如图,在梯形ABCD 中,AB//DC ,∠BCD=90︒,且AB=1,BC=2,ta n ∠ADC=2. ⑴求证:DC=BC ;⑵E 是梯形内的一点,F 是梯形外的一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状,并证明你的结论;⑶在⑵的条件下,当BE:CE=1:2,∠BEC=135︒时,求sin ∠BFE 的值。

锐角三角函数的概念练习题:(1)在Rt △ABC 中,∠C =90°,AB =9,BC =3,则sinA = ,tanB (2)如果0°<α<90°,且sin α=45,则cos α的值等于 .EBFCDA(3)在△ABC 中,∠C =90°,且3AC = 3 BC ,则∠A 的度数等于 ,cosB = ,tanA = 。

(4)菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =6,BD =8,设∠ABD =α,则下列结论正确的是:( ) A .sin α=45 B. cos α=35 C. tan α=43D.cos α=54(5)Rt △ABC 中,∠C =90°,CD 是斜边AB 上的高,已知BC AB = 53 ,则sin ∠ACD = ,sin ∠BCD = ,tan ∠ACD = .二、特殊角的三角函数值: 例4.计算:(1)sin 245°−sin 260°+tan30° ∙ cos30°. (2)21cos60°+2∙ cos45°−sin30°∙ tan45°.三、解直角三角形:例5.在Rt △ABC 中,∠C =90°,解下列直角三角形 (1)a =5 3 ,b =15 3; (2)a =5,c =5 2 ;(3)∠A =30°,b =6;(4)∠B =60°,c =12.【例6】如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?A B P北 东【例7】如图,某拦河坝截面的原设计方案为:AH BC ∥,坡角74ABC ∠=,坝顶到坝脚的距离6m AB =.为了提高拦河坝的安全性,现将坡角改为55,由此,点A 需向右平移至点D ,请你计算AD 的长(精确到0.1m ).基础训练1. 在Rt △ABC 中,∠C =90°,AB =5,AC =4,则sinA 的值为_________。

锐角三角函数的简单应用(共10张PPT)

锐角三角函数的简单应用(共10张PPT)
分析:判断A市是否受到影响,只要求出A市到沙尘暴的行进路线的最短距离,看其是否大于
400km即可.如果要判断影响时间,则可以以A为圆心,画出一个半径为300km的圆,设该圆与行进路
线交于两点D、E,求出DE的长度,即可以算出影响时间.
解:过点A作BC的垂线(如图2),
在Rt△ABC中, ∵∠B=300,AB=400km, ∴AC=200km<300km, 因此,A市将受到沙尘暴的影响. 以A为圆心,300km为半径画圆, 交BC于点D、E,在Rt△ACD中,
分析:过点C作AB的垂线,构造两个直角三角形, 根据已知条件来解直角三角形。
例5、如图,海岛A四周20海里范围内是暗礁区,一艘货轮由东向西航行,在B处见 岛A在北偏西,航行24海里后到C处,见岛A在北偏西,货轮继续向西航行,有无触礁 危险?
分析:过点A作BC的垂线AD,比较线段AD
A
的长与20的大小关系,求线段AD的长是利用两 个直角三角形来解决。
分析:这道题实际上是要比较线段CD与线段AD+2.6×6+1.4=20,根据解直角三角形求
出AD的长;过点B作CD的垂线BE,ED=AB,BE=AD,解直
B
角三角形求线段CE的长。若线段CD大于线段AD,则说明小
明家的住宅楼需要拆迁;若线段CD小于线段AD,则说明小明
∵AD=300km, AC=200km ∴CD=100 km,∴DE=200 km,
这样,A市受到5 沙尘暴的影响时间为5
11(h) 200 5
40
评析:本题需要综合运用三角函数及圆的相关知识解题.
例7、如图,水库大坝的横截面是梯形,坝顶CD宽是5m,坝高DE为20m,斜坡的 坡度为 1: ,斜坡的坡度为 53:6,建造这样的大坝1000需要多少m3的土? (结果保留根 号)

锐角三角函数的应用举例

锐角三角函数的应用举例

03 锐角三角函数在物理问题 中应用
力学中角度与力关系问题
斜面问题
在斜面问题中,锐角三角函数可以用 来描述物体在斜面上的重力分量、摩 擦力等,从而解决物体在斜面上的运 动问题。
矢量合成与分解
在力学中,锐角三角函数可以用来进 行矢量的合成与分解,例如求解两个 力的合力或分力。
运动学中速度与加速度关系问题
运动轨迹计算
研究星体的运动轨迹是天文学的重要任务之一。利用锐角三角函数和相关物理原理,可 以计算出星体的运动速度、方向以及轨迹形状等信息,有助于深入了解宇宙的运行规律
和星体的性质。
06 总结与展望
回顾本次课程重点内容
锐角三角函数的基本概念
本次课程详细讲解了锐角三角函数(正弦、余弦、正切)的定义、 性质以及基本关系式,为后续应用打下了坚实基础。
锐角三角函数的应用举例
目 录
• 锐角三角函数基本概念 • 锐角三角函数在几何问题中应用 • 锐角三角函数在物理问题中应用 • 锐角三角函数在优化问题中应用 • 锐角三角函数在实际问题中应用举例 • 总结与展望
01 锐角三角函数基本概念
锐角三角函数定义
正弦函数(sine)
在直角三角形中,锐角的正弦值等于对边长 度除以斜边长度。
已知两边和夹角求第三边
利用余弦定理或正弦定理可以求出第三边。
面积与体积计算问题
三角形面积计算
已知三角形的两边和夹角,可以利用正弦定理求出面 积。
多边形面积计算
将多边形划分为多个三角形,分别求出每个三角形的 面积后相加。
立体几何体积计算
在立体几何中,锐角三角函数可以用于计算一些特殊 几何体的体积,如圆锥、式进行求解,避 免了计算二阶导数的复杂性。
05 锐角三角函数在实际问题 中应用举例

锐角三角函数帮你解决生活中的问题

锐角三角函数帮你解决生活中的问题

锐角三角函数帮你解决生活中的问题锐角三角函数是学好三角学及本章内容的关键和基础. 锐角三角函数, 既是本章的重点,也是难点. 此内容又是数形结合的典范. 这涉及数学各个分支,又在工程,测量,军事,工业,农业,航海,航空等诸领域都有应用. 因而,对本单元的学习必须引起足够的重视,特别是在日常生活中的应用更加广泛,下面举几例与同学们共赏一、车厢离地面多少米?问题1:如图,自卸车厢的一个侧面是矩形ABCD ,AB =3米,BC =0.5米,车厢底部离地面1.2米,卸货时,车厢倾斜的角度060=θ,问此时车厢的最高点A 离地面多少米?(精确到1米)【思路解析:】此题只需求出点A 到CE 的距离,于是过A 、D 分别作AG ⊥CE ,DF ⊥CE ,构造直角三角形,解Rt △AHD 和Rt △CDF 即可求解.过点A 、D 分别作CE 的垂线AG 、DF ,垂足分别为G 、F ,过D 作DH ⊥AG 于H ,则有:23323360sin 0=⨯=⋅=CD DF 41215.060cos 0=⨯=⋅=AD AH 于是A 点离地面的高度为42.141233≈++(米). 所以,车厢的最高点A 离地面约为4米.点评:本题只要将实际问题转化为解直角三角形的问题,然后,运用三角函数的有关知识即可解决.二、如何将角橱搬进房间?问题2:如图1所示是某立式家具(角书橱)的横断面,请你设计一个方案(角书橱高2米,房间高2.6米,所以不从高度方面考虑方案的设计),按此方案可以使该家具通过如图2中的长廊搬入房间,在图2中把你的设计方案画成草图,并说明按此方案可把家问题一图HG FDCB A具搬入房间的理由(注:搬动过程中不准拆卸家具,不准损坏墙壁).问题二图1问题二图2【思路解析:】如说理图所示,作直线AB ,延长DC 交AB 于E ,由题意可知,△ACE 是等腰直角三角形,所以CE =0.5,DE =DC +CE =2,作DH ⊥AB 于H ,则245sin 2sin 0==∠⋅=HED DE DH ,∵5.12<,∴可按此方案设计图将家具从长廊搬入房间. 答案:设计方案草图如图所示.设计方案图设计方案说理图.点评:本题是一道比较贴近生活的实际问题,学生看到题目感到比较亲切、自然,但本题重点考查学生综合运用所学知识解决实际问题的探究和创新能力.本题还反映了生活中常见的实际情况,很有创意,并充分体现了学数学用数学的价值,角书橱过长廊进入房间,必须要放倒倾斜搬进,不能正面直入,方案的设计也多种多样.三、是否有进入危险区域的可能?问题3:一艘渔船正以30海里/小时的速度由西向东追赶鱼群,在A 处看见小岛C 在船的北偏东600方向,40分钟后,渔船行至B 处,此时看见小岛C 在船的北偏东300方向,已知以小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区域的可能?【思路解析】此题是一个重要题型——航海问题,解这类题要弄清方位角、方向角的概念,正确地画出示意图,然后根据条件解题.此题可先求出小岛C 与航向(直线AB )的距离,再与10海里进行比较得出结论.解:过C 作AB 的垂线CD 交AB 的延长线于点D ∵CD AD =30cot ,CDBC =060cot , ∴030cot ⋅=CD AD ,60cot ⋅=CD BD ,∴20)60cot 30(cot 0=-=-CD BD AD ∴31033320=-=CD , ∵310>10.∴这艘渔船继续向东追赶鱼群不会进入危险区域.点评:正确解答这类问题,第一步,根据材料提供的生活背景,画出几何图形,并把实际问题数学化,分析出作为一个数学问题的已知条件和问题。

锐角三角函数的实际应用

锐角三角函数的实际应用

锐角三角函数的实际应用一、仰角、俯角问题例1. 某数学课外活动小组利用课余时间,测量了安装在一幢楼房顶部的公益广告牌的高度.如图,矩形CDEF 为公益广告牌,CD为公益广告牌的高,DM为楼房的高,且C、D、M三点共线.在楼房的侧面A处,测得点C与点D的仰角分别为45°和37.3°,BM=15米.根据以上测得的相关数据,求这个广告牌的高(CD的长).(结果精确到0.1米,参考数据:sin37.3°≈0.6060,cos37.3°≈0.7955,tan37.3°≈0.7618)例2.如图,在电线杆上的C处引拉线CE,CF固定电线杆,拉线CE和地面成57.5°角,在离电线杆6米处安置测角仪AB,在A处测得电线杆上C处的仰角为30°.已知测角仪AB的高为1.5米,求拉线CE的长.(结果精确到0.01米,参考数据:sin57.5°≈0.843,cos57.5°≈0.537,tan57.5°≈1.570,3≈1.732,2≈1.414)二、坡度、坡角问题例3. 如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:2≈1.414,3≈1.732)例4. 如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C 三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)三、测量问题例5、为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°.请你根据以上测量数据求出河的宽度.(参考数据:2≈1.41,3≈1.73;结果保留整数)例6、如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于A B的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)四、方向角问题例7:某海域有A、B两个港口,B港口在A港口北偏西30°的方向上,距A港口60海里.有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处.求该船与B港口之间的距离即CB的长(结果保留根号).例8:如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为612千米,且位于临海市(记作点B)正西方向603千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭?请说明理由.(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?巩固练习:1、如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈35,tan37°≈34,sin48°≈710,tan48°≈1110)2. 张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度.(结果精确到0.1米,参考数据:3≈1.732)3.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)4、如图,斜坡AC的坡度(坡比)为1:3,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.5、如图,某军港有一雷达站,军舰停泊在雷达站的南偏东方向36海里处,另一艘军舰位于军舰的正西方向,与雷达站相距海里.求:(1)军舰在雷达站的什么方向?(2)两军舰的距离.(结果保留根号)6、(某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45°。

锐角三角函数的应用(方位角)

锐角三角函数的应用(方位角)

如图, 海上有一灯塔P, 在它周围3海里处有 暗礁. 一艘客轮以9海里/时的速度由西向东 航行, 行至A点处测得P在它的北偏东60度的 方向, 继续行驶20分钟后, 到达B处又测得 灯塔P在它的北偏东45度方向. 问客轮不改变 方向继续前进有无触礁的危险?(结果精确到1 海里. 3 ≈1.73 )
小测1:A、B两镇相距60km,小山C在A镇的 北偏东60°方向,在B镇的北偏西30°方向.经 探测,发现小山C周围20km的圆形区域内储有 大量煤炭,有关部门规定,该区域内禁止建房 修路.现计划修筑连接A、B两镇的一条笔直的 公路,试分析这条公路是否会经过该区域?(结 果精确到0.01km , 3 ≈1.73)
cos 76°≈ 0.24
tan 76°)≈4.01
C D 60°
l E
A
感受中考:
1.(2013•遂宁)钓鱼岛自古以来就是我国的神圣领土, 为维护国家主权和海洋权利,我国海监和渔政部门对钓 鱼岛 海域实现了常态化巡航管理.如图,某日在我国钓 鱼岛附近海域有两艘自西向东航行的海监船A、B,B船 在A船的正东方向,且两船保持20海里的距离,某一时 刻两海监船同时测得在A的东北方向,B的北偏东15°方 向有一我国渔政执法船C,求此时船C与船B的距离是多 少.(结果保留根号)
(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,
sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,
2 ≈1.41, 5 ≈2.24)

D
B

C A观测点
5.(2014徐州)如图,轮船从点A处出发,先航行至位于 点A的南偏西15°且点A相距100km的点B处,再航行至 位于点B的北偏东75°且与点B相距200km的点C处. (1)求点C与点A的距离(精确到1km); (2)确定点C相对于点A的方向.

锐角三角函数应用举例

锐角三角函数应用举例
1 . 如 图 ,在 AAB C 中, A= 3 0 。 , AB = 5 , D
A c = 2 、 / 了, 求t a n B 的值.
2 . 已知 直 角 三 角 形 的 一 个 锐 角A满 足 条 件 : 0 。 < A< 4 5 。 且s i nAC O S A=
3 x / -  ̄ -

AD: ̄ v / — AB2 AD2
_




: 3 ,
1 ,

A 02 DC :  ̄ V / AC — 2
_

所 以B C = 3 + 1 = 4 ,
或B C = 3 — 1 = 2 .

/ \
C 占

所 以B C = 4 或2 .
ห้องสมุดไป่ตู้
例4 如 图所 示 ,建筑 物A B 高 为2 0 0 米 ,从 定 点A观 察 到另 一建 筑物

牙 吉林 宋 凤英
如 图, 在R t AAB C d ? , LC = 9 0 。 , LA, B, C 的对 边分 别为n , 6 , c - 则
( 3
例 l 已知 AAB C r  ̄/ _ AC B = 9 0 。 , LAB C = 1 5 0 7 B C = 1 , 拟 C 的长. 解: 如 图, 作 LB A D= 1 5 o , 交B C 于D,




3 . 由于 A: LB : C = 1 : 2 : 3 , 所 以 B : 2 LA, C = 3 6 LA= 1 8 0 。 , 得 , A+ LB + C = 1 8 0 o .
= 3 0 o , LB = 6 0 o , C = 9 0 。 ,

3.锐角三角函数的实际应用(10道)

3.锐角三角函数的实际应用(10道)

锐角三角函数的实际应用1. 如图为放置在水平桌面上的台灯的平面示意图,灯臂AO 长为40 cm ,与水平面所形成的夹角∠OAM 为75°,由光源O 射出的边缘光线OC 、OB 与水平面所形成的夹角∠OCA 、∠OBA 分别为90°和30°,求该台灯照亮水平面的宽度BC .(结果精确到 1 cm ,参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,3≈1.73).第1题图解:∵tan ∠OBC =tan30°=3OC BC ∴OC 3BC , ∵sin ∠OAC =sin75°=OC OA≈0.97, ∴3340BC ≈0.97, ∴BC ≈67(cm).答:该台灯照亮水平面的宽度BC 约为67 cm.2. 某种三角形台历放置在水平桌面上,其左视图如图②所示,点O是台历支架OA,OB的交点,同时又是台历顶端连接日历的螺旋线圈所在圆的圆心,现测得OA=OB=14 cm,CA =CB=4 cm,∠ACB=120°,台历顶端螺旋连接线圈所在圆的半径为0.6 cm.求点O到直线AB的距离.(结果保留根号)第2题图解:如解图,连接AB、OC,并延长OC交AB于点D,第2题解图∵OA=OB,AC=BC,∴OC垂直平分AB,即AD=BD,∠CDA=90°,又∠ACB=120°,∠ACD=60°,∴在Rt △ACD 中,sin ∠ACD =AD AC , ∴AD =AC ·sin60°=4×32=23cm ,∵在Rt △AOD 中,AD =2 3 cm ,AO =14 cm ,∴OD =AO 2-AD 2=142-(23)2=246 cm ,∴点O 到直线AB 的距离为246 cm.3. 如图①是一台仰卧起坐健身器,它主要由支架、坐垫、靠背和档位调节器组成,靠背的角度α可以用档位调节器调节,将图①仰卧起坐板的主体部分抽象成图②,已知OA =OD =81 cm ,OC =43 cm ,∠C =90°,∠A =20°.求BC 的长和点O 到地面的距离.(结果保留整数)(参考数据:sin20°≈0.3420,cos20°≈0.9397,tan20°≈0.3640;sin80°≈0.9848,cos80°≈0.1736,tan80°≈5.6713)第3题图解:根据题意可知AC =OA +OC =81+43=124 (cm),在Rt △ABC 中,tan A =BC AC ,∴BC =AC ·tan A ≈124×0.3640≈45(cm),如解图,过点O 作OE ⊥AB 于点E ,在Rt △AOE 中,sin A =OE OA ,∴OE =OA ·sin A ≈81×0.3420≈28(cm),第3题解图答:BC 的长和点O 到地面的距离分别约为45 cm 和28 cm.4. 为了给人们的出行带来方便,某市准备在部分城区实施公共自行车免费服务,如图①是公共自行车的实物图,如图②是公共自行车的车架示意图,点A ,D ,C ,E 在同一条直线上,点F 在AM 上,FD ⊥AC 于点D ,AF =30 cm ,DF =24 cm ,CD =35 cm ,∠EAB =71°.若∠B =49°,求AB 的长.(结果保留整数,参考数据:sin71°≈0.9,cos71°≈0.3,tan71°≈2.9,sin49°≈0.8,cos49°≈0.7,tan49°≈1.2,3≈1.7)第4题图解:如解图,过点A 作AG ⊥BC 于点G ,第4题解图∵∠CAB =71°,∠B =49°,∴∠ACB =60°,∵FD ⊥AC ,AF =30 cm ,DF =24 cm ,∴AD =18 cm.在Rt △AGC 中,sin ∠ACG =AG AC ,cos ∠ACG =CG AC ,∴sin60°=AG 18+35,∴AG=53×32=5332cm.在Rt△ABG中,AB=AGsin49°≈53320.8≈56 cm,答:AB的长约为56 cm.5. “高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90 cm.低杠上点C 到直线AB的距离CE的长为155 cm,高杠上点D到直线AB 的距离DF的长为234 cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°,求高、低杠间的水平距离CH的长.(结果精确到1 cm.参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.986,cos80.3°≈0.168,tan80.3°≈5.850)第5题图解:在Rt△CAE中,AE=CEtan∠CAE=155tan82.4°≈1557.500≈20.7,在Rt△DBF中,BF=DFtan∠DBF=234tan80.3°≈2345.850=40,∴EF=AE+AB+BF≈20.7+90+40=150.7≈151.∵四边形CEFH为矩形,∴CH=EF≈151.即高、低杠间的水平距离CH的长约为151 cm.6. 图①是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图②,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,2≈1.4)第6题图解:如解图,连接BC ,过点B 作BE ⊥AD 于点E ,作CF ⊥AD 于点F ,过点C 作CG ⊥BE ,交BE 的延长线于点G ,在Rt △ABE 中,∵AB =12AD =1米,∠A =37°,∴BE =AB ·sin37°≈0.6米,AE =AB ·cos37°≈0.8米,第6题解图在Rt △CDF 中,CD =12AD =1米,∠D =45°,∴CF =AB ·sin45°=22≈0.7米,DF =CD ·cos45°≈0.7米,∴EG =CF ≈0.7米,GC =EF =AD -AE -DF ≈2-0.8-0.7=0.5米,∴BC =BG 2+CG 2=(0.6+0.7)2+0.52≈1.4米.答:B 、C 之间的距离约为1.4米.7. 西成高铁自2017年12月6日正式开通运营,标志着华北地区至西南地区又增加一条大能力、高密度的旅客运输主通道.如图,西成高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离AO =75 cm ,展开小桌板使桌面保持水平时,有CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC (结果精确到 1 cm).(参考数据sin37°≈35,cos37°≈45,tan37°≈34)第7题图解:如解图,延长CB 交OA 于点E ,延长OB 交AC 于点F . 设BC =x ,则OB =OA -BC =75-x ,第7题解图∵∠AOB =∠ACB ,∠OBE =∠CBF ,∠AOB +∠OBE =90°, ∴∠ACB +∠CBF =90°,∴∠BFC =90°.在Rt △BFC 中,∵sin37°=BF BC ,∴BF =BC ·sin37°=sin37°·x ,在Rt △OAF 中,cos37°=OF AO ,即cos37°=75-x +sin37°·x 75, ∴x =75(1-cos37°)1-sin37°≈75×(1-45)1-35=37.5≈38(cm), ∴小桌板桌面的宽度BC 约为38 cm.8. 为促进农业发展,加快农村建设,某地政府计划扶持兴建一批新型钢管装配式大棚,如图①.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C 点的仰角分别为9°,15.6°,如图②.求保温板AC的长是多少米.(精确到0.1米)(参考数据:32≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)图①图②第8题图解:如解图,过点C作CE⊥BA交BA的延长线于点E,过点C作CF⊥BD于点F,第8题解图∵∠BAC=150°,∴在Rt△ACE中,∠EAC=30°,设EC=x,则AE=3x,AC=2x,∵EC⊥AB,BD⊥AB,CF⊥BD,∴四边形ECFB是矩形,∴CF=AB+AE=2+3x(米),在Rt△ABD中,AB=2,∠ADB=9°,∴BD=ABtan9°≈20.16=252(米),∴DF=BD-CE=12.5-x(米),在Rt△CDF中,CF=2+3x(米),DF=12.5-x(米),∴tan∠CDF=CFDF=2+3x12.5-x≈0.28,解得x=0.75米,∴AC=2x=1.5米.答:保温板AC的长约为1.5米.9. 某数码产品专卖店的一块摄像机支架如图所示,将该支架打开立于地面MN上,主杆AC与地面垂直,调节支架使得脚架BE与主杆AC的夹角∠CBE=45°,这时支架CD与主杆AC 的夹角∠BCD 恰好等于56°,若主杆最高点A 到调节旋钮B 的距离为40 cm ,支架CD 的长度为30 cm ,旋转钮D 是脚架BE 的中点,求支架最高点A 到地面的距离.(结果精确到0.1 cm.参考数据:sin56°≈0.83,cos56°≈0.56,tan56°≈1.48,2≈1.41)第9题图解:如解图,过点D 作DG ⊥BC 于点G ,延长AC 交MN 于点H ,则AH ⊥MN,第9题解图在Rt △DCG 中,根据sin ∠GCD =DG DC ,得DG =CD ·sin ∠GCD =30×sin56°≈30×0.83=24.9 (cm),在Rt △BDG 中,根据sin ∠GBD =DG BD ,得BD =DG sin ∠GBD =24.922≈24.91.412≈35.3 (cm). ∵D 为BE 的中点,∴BE =2BD =70.6 cm ,在Rt △BHE 中,根据cos ∠HBE =BH BE ,得BH =BE ·cos ∠HBE =70.6×22≈70.6×1.412≈49.8 (cm),∴AH =AB +BH =40+49.8=89.8 (cm).答:支架最高点A 到地面的距离约为89.8 cm.10. 某款折叠床其配套的折叠床板的实物图如图①所示,图②为其抽象的几何图形.将床板折叠到如图②所示位置,点A 、B 、C 在同一条直线上,AG =BG =BD =CD ,CD ∥BG ,BD ∥AG ,∠DCB =70°,BC =0.34米,四边形CDEF 为矩形.(1)求床板完全展开后的总长度;(2)若∠DCB =80°时,该床板折叠后具有最好的稳定性,当折叠该床板使其最稳定时,顶点D 在垂直方向上有何变化,请说明理由.(结果精确到0.01米,参考数据:sin70°≈0.94, cos70°≈0.34, tan70°≈2.75,sin80°≈0.98, cos80°≈0.17, tan80°≈5.67)第10题图解:(1)如解图,过点D 作DH ⊥BC 于点H ,由题意可知,△BCD 为等腰三角形,∠DCB =70°,BC =0.34米,第10题解图∴CH =BC 2=0.17米,DC =HC cos70°≈0.170.34=0.50米,∴床板完全展开后的总长度约为0.50×4=2.00米;(2)顶点D 会在垂直方向上升约0.02米.理由;当∠DCB=70°时,DH=0.5×sin70°≈0.47米,当∠DCB=80°时,DH=0.5×sin80°≈0.49米,∴0.49-0.47=0.02米,∴当折叠该床板使其最稳定时,顶点D会在垂直方向上升约0.02米.。

应用锐角三角函数解实际问题

应用锐角三角函数解实际问题

应用锐角三角函数解实际问题锐角三角函数是数学中一个重要的概念,它能够帮助我们解决日常生活中的实际问题。

本文将从四个方面来讨论锐角三角函数在实际问题中的应用。

首先,锐角三角函数可以解决根据两条边求三角形面积的问题。

设有一个三角形ABC,其中AB=2,BC=3,则可以使用锐角三角函数求解这个三角形的面积。

首先,我们需要根据已知条件计算出三角形ABC的内角度数,即α=60°,可以由两条边求出其它边的长度AC=2.5。

然后,我们可以使用锐角三角函数中的S=1/2absinα公式,来求出三角形ABC的面积,即S=1/2*2*3*sin60°=3.464。

其次,锐角三角函数可以解决根据两个内角和外角求三角形面积的问题。

设有一个三角形ABC,其中A=60°,B=30°,C=90°,则可以使用锐角三角函数求解这个三角形的面积。

首先,我们需要根据已知条件计算出三角形ABC的边长,即AB=2,BC=2,可以由两个内角求出外角的长度AC=3。

然后,我们可以使用锐角三角函数中的S=1/2a bsinα公式,来求出三角形ABC的面积,即S=1/2*2*2*sin90°=2.000。

此外,锐角三角函数还可以用来解决求抛物线焦点距离中心点的问题。

假设有一个抛物线y=-1/4x^2,其中x为横坐标,y为纵坐标,则可以使用锐角三角函数求出抛物线的焦点距离中心点的距离为2。

首先,我们需要根据抛物线的模型求出抛物线的焦点坐标(0,1/2),然后通过三角函数来求出焦点距离中心点的距离,即a=√(0-1/2)^2+(1/2)^2=√2。

最后,锐角三角函数还可以应用于光学中,用来求解折射率等问题。

假设有一个简单的透镜系统,镜片一边入射面和出射面之间有n条光线,可以使用锐角三角函数求出透镜系统的折射率。

这里,我们可以先分别求出入射面和出射面的角度α1、α2,再用反射率的定义,即n1sinα1=n2sinα2,求出折射率n2。

锐角三角函数在军 事情报分析中的应用有哪些

锐角三角函数在军 事情报分析中的应用有哪些

锐角三角函数在军事情报分析中的应用有哪些锐角三角函数这玩意儿,在咱们平常的数学学习里可能会让一些同学感到头疼,但你要是知道它在军事情报分析中的神奇应用,说不定会对它刮目相看!先来说说什么是锐角三角函数。

简单来讲,就是在一个直角三角形中,角的正弦、余弦、正切这些比值关系。

可别小瞧了这些比值,在军事情报分析里,那可是能发挥大作用的。

比如说,在侦察敌方阵地的时候,咱们的侦察兵通过望远镜观察到了敌方一个碉堡的位置和角度。

这时候锐角三角函数就派上用场啦!假设侦察兵观察到碉堡顶部与底部形成的仰角是一个锐角,通过测量自己与碉堡的距离,再利用三角函数,就能大致算出碉堡的高度。

这对于制定攻击计划,可太重要了!要是不知道碉堡多高,炮弹都不知道该打多远呢。

我给你讲个真实的事儿吧。

有一次,我方在执行一项重要的侦察任务。

侦察小组发现了敌方的一处隐藏火炮阵地,但由于敌方隐藏得很好,无法直接测量其关键数据。

这可急坏了大家。

就在这时,一位数学特别好的侦察兵想到了锐角三角函数。

他迅速找到几个合适的观测点,测量出相应的角度和距离。

经过一番紧张的计算,终于算出了敌方火炮阵地的大致位置和规模。

根据这些情报,我方成功制定了作战计划,打了敌人一个措手不及。

再比如,在分析敌方舰艇的运动轨迹时,我们也能用到锐角三角函数。

通过雷达监测到舰艇与我方观测点的角度变化,以及舰艇在一段时间内角度变化的速率,结合已知的距离信息,就能推测出舰艇的行驶速度和方向。

这就好像我们手里有了一个能预测敌人动向的魔法工具,让我方能够提前做好应对准备。

还有啊,在分析敌方飞机的飞行高度和航线时,锐角三角函数同样能帮上大忙。

通过地面多个观测点获取的飞机仰角和俯角等数据,进行综合计算,就能较为准确地确定飞机的飞行参数。

这对于防空作战来说,意义非凡。

要是没有这些准确的情报,咱们的防空武器可能就像没头的苍蝇,找不到目标啦。

总之,锐角三角函数在军事情报分析中就像是一把神奇的钥匙,能帮助我们打开敌人隐藏的秘密之门,为战争的胜利提供有力的支持。

锐角三角形应用题

锐角三角形应用题

锐角三角形应用题锐角三角形是指一个三角形的三个内角均小于90度的三角形。

在数学领域中,锐角三角形具有广泛的应用。

本文将介绍锐角三角形的应用,并给出相应的例题。

一、地质勘探在地质勘探中,利用锐角三角形的原理可以估算地质剖面中的未知部分。

假设我们已知某一部分的长度和角度,通过构造对应的锐角三角形,我们可以利用正弦定理、余弦定理等相关原理,计算出未知部分的长度和角度。

例如,已知某一地质剖面的高度差为100米,剖面与水平面的夹角为30度,我们可以通过构造相应的锐角三角形,利用三角函数计算出剖面的实际长度。

二、建筑设计在建筑设计中,锐角三角形的应用十分广泛。

例如,在设计房屋的屋顶坡度时,我们需要考虑降雨的排水情况。

通过利用锐角三角形的原理,我们可以计算出屋顶坡度的合理范围,保证雨水能够顺利排出,避免积水导致屋顶渗漏。

另外,在角度明确的情况下,利用锐角三角形的原理可以计算出房屋的高度、边长等相关参数,以便于设计出合理的建筑方案。

三、航海导航在航海导航中,锐角三角形被广泛用于确定船只和目标的位置。

通过观测双方之间的锐角和基准线的长度,利用三角函数可以计算出目标的坐标位置。

例如,在利用雷达进行航海导航时,我们可以测量雷达到目标之间的角度和距离,通过构造锐角三角形,应用三角函数计算出目标相对于雷达的实际位置坐标,以便进行航线规划和导航引导。

四、天文观测在天文观测中,锐角三角形是一种重要的测量工具。

通过观测天体的视差、视角等参数,利用锐角三角形的原理可以计算出天体的实际距离、大小、亮度等重要参数。

例如,在观测恒星时,我们可以利用地球公转产生的视差观测到同一恒星在不同时间的位置,通过构造锐角三角形并应用三角函数计算出恒星的距离。

综上所述,锐角三角形在各行各业中都有广泛的应用。

从地质勘探到建筑设计,从航海导航到天文观测,锐角三角形的原理和公式为我们提供了计算和测量的便利。

掌握锐角三角形的应用,对于学习和实践具有重要意义。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28.2.2 三角函数的应用举例(1)
宾阳县邹圩中学黄伟寿
教学目标:
知识与技能:
1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解
决.
2、逐步培养学生分析问题、解决问题的能力.
3、渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识。

过程与方法:
1、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐
步培养学生分析问题、解决问题的能力.
2、注意加强知识间的纵向联系.
情感态度与价值观:
渗透数形结合的数学思想,培养学生良好的学习习惯.
教学重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.
教学难点:实际问题转化成数学模型
教学过程:
一、复习旧知、引入新课
【复习引入】
1、直角三角形中除直角外五个元素之间具有什么关系?请学生口答.
2、在中Rt△ABC中已知a=12,c=13 求角B应该用哪个关系?请计算出来。

二、探索新知、分类应用
【活动一】课本例3:2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接. “神舟”九号与“天宫”一号的组合体当在离地球表面343km的圆形轨道上运行.如图,当组合体运行到地球表面上P点的正
上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P点的距离是多少?(地球半径约为 6 400 km,π取3.142,结果取整数)?
分析:从组合体上能直接看到的地球表面最远的点,应是视线与地球相切时的切点.
如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地
1 / 3。

相关文档
最新文档