现代电源技术2-4
开关电源及发展现状
开关电源及发展现状一、开关电源的基本原理和发展概述在现代电子设备中,开关电源广泛应用于各种领域,如计算机、通信、工业控制等。
开关电源可以将交流电转换为直流电,并通过高频开关器件(如功率MOSFET、IGBT)进行高效率的电能转换,同时使用电感元件对电流进行滤波,使输出具有较低的波动和噪声。
随着电子技术的快速发展,开关电源在以下几个方面得到了显著的改进和发展:1. 尺寸和重量的减小:通过改进电路设计和采用高效的器件和材料,现代开关电源相对于传统的线性电源来说,体积和重量更小。
因此,在移动电子设备和便携式设备中得到广泛应用。
2. 高效率和能量节约:开关电源的输出效率较高,通常可以达到90%以上,更加有效地利用电能。
这不仅有助于减少能源消耗,降低发热量,同时也减小了对环境的影响。
3. 可调性和稳定性:现代开关电源通常具有可调的输出电压和电流,以适应不同设备的需求。
同时,通过采用反馈控制技术和高精度的电压/电流传感器,可以实现较高的输出稳定性和精度。
4. 数字化和智能化:随着微处理器和数字信号处理技术的广泛应用,开关电源实现了数字化控制和智能化管理。
这使得对电源状态、过载保护、故障诊断等进行实时监测和管理成为可能。
二、开关电源发展的现状目前,开关电源领域的发展主要集中在以下几个方面:1. 高频功率器件的改进:高频开关器件的性能和可靠性对于开关电源的效率和稳定性至关重要。
近年来,功率MOSFET和IGBT等器件的性能不断提高,使得开关电源可以实现更高的开关频率和更高的输出功率。
2. 多电平拓扑的应用:传统的开关电源通常采用单级拓扑结构,但这种结构在高功率和高频率应用中存在一定的限制。
近年来,基于多电平(Multi-level)拓扑的开关电源得到了广泛研究和应用,例如三电平、多电平变频和混合拓扑结构,能够提高电能转换效率和减小电磁干扰。
3. 新型材料和元件的应用:随着功率电子技术的发展,新型材料和元件的应用进一步推动了开关电源的发展。
现代电力电子技术-概述
绪-11
第二节. 电力电子技术的发展史
史前期 (黎明期)
晶体管诞生
晶闸管问 世,(“公元
元年”)
电子学
电力学
电力 电子学
连续、离散
控制 理论
全世界普遍接受。
图1 描述电力电子学的倒三角形
绪-8
三. 与相关学科的关系
与电子学(信息电子学)的关系 都分为器件和应用两大分支。 器件的材料、工艺基本相同,采用微电子技术。 应用的理论基础、分析方法、分析软件也基本相 同。 信息电子电路的器件可工作在开关状态,也可工 作在放大状态;电力电子电路的器件一般只工作 在开关状态。 二者同根同源。
绪-5
二. 两大分支
电力电子器件制造技术 是电力电子技术的基础。
变流技术(电力电子器件应用技术) 是电力电子技术的核心。 用电力电子器件构成电力变换电路和对其进行
控制的技术,以及构成电力电子装置和电力电子 系统的技术。
绪-6
二. 两大分支
变流技术
电力——交流和直流两种
从公用电网直接得到的是交流,从蓄电池和干电池 得到的是直流。
绪-13
第三节. 电力电子技术的应用
1.一般工业
数控机床
自动控制
绪-14
第三节. 电力电子技术的应用
2.交通运输
绪-15
第三节. 电力电子技术的应用
3.电力系统
柔性交流输电FACTS
高压直流装置HVDC
绪-16
第三节. 电力电子技术的应用
现代电力电子及电源技术的发展趋势
现代
护署 1 2 6 1 9 年 月 7日 “ 9 能源之星 “ 计划规定 ,
1 前言 .
桌上型个人电脑或相关 的外 围设备 ,在 睡眠状
电力 电子技术早在 2 0世纪 中期就 已出现 ,
态下的耗电量若小于 3 0瓦,就符合绿 色电脑 的
色电脑相关的高效省 电电源 ,根据美 国环境保 便维护 ,且安装 、增加 非常方便 。一般都 可直
作者 简介 :高艳青 ,女 ,山西吕梁人 。本科 工程 师 ,研 究方向 :电子技术发展 。
一
3 — 3
维普资讯
接装在标准控制板上 ,对二次 电源 的要求是高 数 、多信息 的提取与分析 ,达到预知 系统各种 功率密度 。因通信 容量的不断增加 ,通信电源 工作状态 的 目的,进而提前对 系统做 出调整 和
飞猛进 ,人们将功率器件与微处理器进行有机 的发展。高频小 型化的开关 电源及其技术 已成 地结合 ,产生 了 自动 化 工业 的革命 。8 0年 代 为现代通 信供 电系统 的 主流。在通 信 领域 中 , 末 ,M SE O F T和 I B G T的问世和发展 ,使传统 电 通常将整流器称 为一 次电源,而将直流 一直流 D/C 力电子技术进入现代 电力 电子技术时代。其 发 ( C D )变换 器称 为二 次 电源 。一次 电源 的
同时使上述控制获得加速平稳 、快速响应的性 技术迅速发展 。德国西 门子公 司采用功 率晶体
能 ,并同时收到节约电能的效果。用直流斩波 管做主开关 元 件 ,将 电源 的开关 频 率 提 高 到
器代替变阻器可节约电能 (0 3 ) 。直流斩 2 k z 2 —0% 0 H 以上。并将 干式变压器技 术成功 的应用 波器不仅能起调 压的作用 ( 开关 电源) ,同时 于高频高压 电源 ,取消了高压变压器油箱 ,使 还 能起到有 效地 抑制 电 网侧 谐波 电流 噪声 的 变压器系统 的体积进一步减小 。
《现代电力电子技术》课件
交流调制技术
1
原理
用逆变器将直流电压转变为交流电压,再对交流电压进行调制,的信号与高频三角波叠加,得到PWM信号。
3
三角PWM控制
将需要控制的信号与低频三角波叠加,得到PWM信号。
开关电源技术
工作原理
利用功率开关器件的导通和断开, 将高频电源变换成低压稳定直流电 源。
现代电力电子技术
电力电子技术涉及电能的控制、变换和传输等方面,已经成为现代电力工业、 交通运输、通讯、计算机等各个领域中的关键技术。
概述
定义
电力电子技术是控制和变换电 力的一种新兴技术领域。
应用领域
广泛应用于交通运输、轨道交 通、新能源、家电、通讯和计 算机等领域。
发展历程
20世纪50年代发展并日渐成熟, 80年代达到高峰,90年代后进 入了新的发展阶段。
结语
1
电力电子技术的未来
电力电子技术将继续发挥更大的作用,推动新能源发展。
2
相关学科和领域介绍
电机与电器、电力系统、电力电子等学科和领域紧密相连。
3
总结
电力电子技术在现代社会中扮演着重要的角色,将会继续深入发展和应用。
滤波器设计与优化
电源滤波器、信号滤波器、噪声滤波器等滤波器都 可以用来消除共模噪声。
变频技术
基本原理
将恒定电压变为可调电压、可以调 制频率的交流电源。
电机驱动
变频器是电机驱动的核心装置,根 据不同的负载条件可以调整输出频 率和电压。
实际应用案例
应用于风能、太阳能、水能、地热 能等大规模新能源并驱动各种电动 机械设备。
电路设计
4
电路包括逆变电路、滤波电路和输出负载等 部分。
共模噪声抑制技术
现代开关电源为什么要采用PFC技术----开关电源滤波电容的危害(1)
现代开关电源为什么要采用PFC技术----开关电源滤波电容的危害郝铭开关电源效率高、适应电压范围宽、功率大已经被电器设备广泛的采用,但是它的负面作用随着大量的应用也逐步显现,这就是在开关电源电路中一般是采用整流后直接滤波的方式向后级电路提供直流供电,这种整流后直接滤波的方式造成的供电线路中电流波形的严重畸变而产生的危害已经到了不解决不行的地步了。
为什么会有这么严重的危害?我们下面用二极管半波整流电路为例加以解释;图1是半波二极管整流电路的四种不同的电路(由上至下);图1-1是二极管整流后只有一只负载电阻R;图1-2是二极管整流后只有一只滤波电容C;图1-3是二极管整流后只有一只负载电阻R和滤波电容C;图1-4是二极管整流后只有两只负载电阻R和滤波电容C。
图1-1:当交流市电加到整流二极管上时;交流电的正半周二极管导通经过负载电阻R 形成电流;交流市电的每一个周期中(00~3600)只有正半周(00~1800)到来时整流二极管正偏导通,也就是在正弦波整流电路中;二极管的负载是阻性时,每一个正弦波的正半周二极管均导通;二极管的导通角为:1800,(图中阴影部分是电流波形)可以看出阻性负载的整流电路,二极管流过的电流其波形、相位和所加的市电电压波形、相位是相同的。
图1-2:当交流市电加到整流二极管上时;在第一个周期的00~3600中由00开始二极管开始导通施加于二极管上的电压瞬时值逐渐增大,随着导通角的增加,二极管的导通电流也逐渐加大,由于二极管的负载是一只滤波电容C,那么二极管流过电流对电容C充电,随着输入正弦波交流电角度的不断增加,输入电压的瞬时值不断增加,到达900时,达到最大值(峰值:311V),并且电容C上的电压也达到最大值(311V),接着输入电压的瞬时值由正半周的900~1800时,其瞬时值逐步下降,由于电容C在峰值时充电电压达到311V,此电压无法释放,始终维持在311V,此电压同时也加在整流二极管的输出端,这样在二极管输入端的电压不管在其它任何时候,(由00~3600~7200.。
电工电子技术基础知识点详解2-4-电源的两种模型及其等效变换
电源的两种模型及其等效变换
理想电压源(恒压源) I
+
E
_
特点:(1)内阻R0 = 0
+
U
E
U
RL
_
O 外特性曲线 I
(2) 输出电压是一定值,恒等于电动势。
对直流电压,有 U E。
(3)恒压源中的电流由外电路决定。
例1:设 E = 10 V,接上RL 后,恒压源对外输出电流。
当 RL= 1 时, U = 10 V,I = 10A;
电压恒定,电
当 RL = 10 时, U = 10 V,I = 1A。 流随负载变化。
电源的两种模型及其等效变换
2. 电流源模型
I
电流源是由电流 IS 和内阻 R0 并联的电源的电路模型。
+
U
IS
R0 R0 U
RL
_
U
理
U0=ISR0
想 电流源 电
流
O
IS 源I
电流源的外特性
电流源模型
由图可得: U
I IS R0 若 R0 =
理想电流源 : I IS
若 R0 >>RL ,I IS ,可近似认为是理想电流源。
电源的两种模型及其等效变换
理想电流源(恒流源)
I U
+
IS
U
RL
_
特点: (1)内阻R0 = ;
O
IS
I
外特性曲线
(2)输出电流是一定值,恒等于电流 IS ;
(3)恒流源两端的电压 U 由外电路决定。
电压源 由图a: U = E- IR0
等效变换条件:
E = ISR0 E
IS R0
《开关电源技术》PPT课件
CR
iS
t
O
uVD
t
O
t0
t1
a)
b)
图5-2 硬开关电路及波形
a)电路图 b)理想化波形
(显示放大图)
2021/4/25
6
5-31.2 零电压开关与零电流开关
❖ 零电压开通和零电流关断要靠电路中的谐振来实现。
❖ 零电压关断:与开关并联的电容能使开关关断后电 压上升延缓,从而降低关断损耗,有时称这种关断 过程为零电压关断。
❖ 软开关: – 在电路中增加了小电感、电容等谐振元件,在开关过程前后 引入谐振,使开关条件得以改善。 – 降低开关损耗和开关噪声。 – 软开关有时也被成为谐振开关。
❖ 工作原理: – 软开关电路中S关断后Lr与Cr间发生谐振,电路中电压和电流 的波形类似于正弦半波。谐振减缓了开关过程中电压、电流 的变化,而且使S两端的电压在其开通前就降为零。
a)基本开关单元 b)降压斩波器中的基本开关单元
c)升压斩波器中的基本开关单元 d)升降压斩波器中的基 本开关单元
2021/4/25
9
5-3.2 软开关电路的分类
1. 准谐振电路 ❖ 准谐振电路中电压或电流的波形为正弦半波,因此称之为准谐振。 ❖ 为最早出现的软开关电路,可以分为:
– 零电压开关准谐振电路(Zero-Voltage-Switching Quasi-Resonant Converter—ZVS QRC);
– 零电压开关多谐振电路(Zero-Voltage-Switching Multi-Resonant Converter—ZVS MRC);
– 用于逆变器的谐振直流环节(Resonant DC Link)。
特点:
– 谐振电压峰值很高,要求器件耐压必须提高;
开关电源技术发展综述
开关电源技术发展综述引言开关电源技术作为一种高效、稳定的电源供应方案,在现代电子设备中得到广泛应用。
本文将全面、详细、完整地探讨开关电源技术的发展历程、现状和未来趋势。
开关电源的基本原理开关电源是通过周期性开关和断开来实现电源输出的一种电源供应方式。
其基本原理是利用开关管的导通和截止,控制输入电源与负载之间的有效连接和断开。
开关电源的发展历程1.第一代开关电源:早期的开关电源技术主要采用线性稳压方式,效率低下,体积庞大。
2.第二代开关电源:20世纪70年代,随着微电子技术的进步,开关电源逐渐发展为直流-直流转换器(DC-DC Converter),提高了效率和功率密度。
3.第三代开关电源:21世纪初,高频开关电源得到快速发展,采用谐振技术、软开关等新技术,进一步提高了效率和可靠性。
4.当前开关电源技术:当前,开关电源技术已广泛应用于电子设备、通信设备、工业控制等领域,并在功率密度、效率和可靠性方面实现了显著的进步。
开关电源技术的应用领域1.电子设备:开关电源广泛应用于计算机、手机、平板电脑等消费电子产品的电源模块中,提供稳定、高效的电源供应。
2.通信设备:移动通信基站、通信交换设备等通信设备对电源稳定性和效率要求高,开关电源成为首选。
3.工业控制:工业设备对电源的要求较高,开关电源可以提供稳定的电源输出,并具有较强的抗干扰能力。
4.其他领域:医疗设备、航空航天、车载设备等领域也都广泛应用了开关电源技术。
开关电源技术的优势和挑战优势1.高效率:开关电源相比线性稳压方式,具有更高的能量转换效率,减少能源浪费。
2.小体积:开关电源可以实现更小的体积和重量,有利于提高设备的便携性和集成度。
3.稳定性好:开关电源能够提供稳定的输出电压和电流,对电源波动和负载变化具有较强的适应性。
4.可靠性高:现代开关电源技术采用先进的保护电路和故障检测机制,提高了系统的可靠性和稳定性。
挑战1.电磁干扰:开关电源在切换过程中产生较大的电磁干扰,需要采取措施进行抑制,以免影响设备的正常工作。
现代电力电子技术
现代电力电子技术现代电力电子技术【1】摘要:电力电子技术是利用电力电子器件对电能转换技术的控制。
如果微电子技术是信息处理技术,电力电子技术就是电力处理技术。
电力电子技术是衔接控制、电子和电力的三大电气工程技术的交叉科学的融合。
由于新型的功率电子器件的广泛使用,使电子技术的发展大大超出信息处理和信息传输为主的弱电范围。
而在交流电源的电压和频率变换技术方面,得到进一步开发。
并且日益普及应用于工业生产中,使电子技术开辟了新的技术领域一一电力电子技术.随着工业设备机电一体化的技术改造,将使工业生产呈现新的面貌。
关键词:浅谈现代电力电子技术现如今的高新技术有很多都是和电网的相位、电压、电流和频率等基本参数的转换与控制相关。
现代电力电子技术能实现对这些参数的高效处理与精确控翻,对大功率的电能频率的变换能够得到很好的实现,这样可以支持多项高新技术的发展。
1现代电力电子技术的内涵现如今电力电子技术主要是处理的对象时功率,主要是来实现高效率和高品质的用电。
电力电子技术主要通过电力半导体器件和自动控制技术、计算机和电磁技术的三者综合运用来实现获取、传输、变换和利用。
在各种高质量、高效和高可靠性的电源中能够起到非常重要的作用,可以让当代的电力电子技术得到很充分的运用。
功率IGBT和MOSFET是非常具有代表性,其功率半导体复合器件主要具有高频、高压和大电流等的特点。
这类的特点也意味着传统的电力电子技术不能够适应现如今的社会发展,电力电子技术已经进入了一个全新的高速发展的时代。
具有功能驱动、节能明显和先进等特点的IGBT,MOSFET等新型电力电子器件,所以可以在新型家电、感应加热、通信、计算机电源和电动交通工具等领域中有很好的发展前景。
2现代电力电子技术的历史沿革电子技术和微电子技术在80年代以来在各自的发展滞后得到了有效的结合,也就产生了全新概念的全控型的高频化电力电子集成器件。
可关断晶体管(GTO)电力晶体管(GTR)以及此类晶体管的模块也得到了实用化。
精品课件-现代电源技术(王建辉)-第5章
第五章 太阳能供电系统
(2)占地面积大。由于太阳能能量密度低,这就使得光 伏发电系统的占地面积会很大,每10kW光伏发电功率占地约 需100m2,平均每平方米面积发电功率为100W。随着光伏建筑 一体化发电技术的成熟和发展,越来越多的光伏发电系统可以 利用建筑物、构筑物的屋顶和立面,将逐渐克服光伏发电占地 面积大的不足。
第五章 太阳能供电系统 表5-1 主要国家光伏发展中长期规划累计装机量
年份 2008 2010 2020 2030
日本 1.97 8 30 205
欧洲
10 41 200
美国
5 36 200
中国 0.14 0.25 1.6 50
其他
4.75 89.8 1195
第五章 太阳能供电系统
我国的光伏发电市场需求发展速度一直较慢,在2008年 全球新装机容量中的比例和累计装机容量中的比例都很低, 2008年累计装机容量仅占世界总容量的1%,新装机容量在2% 左右。我国传统电价较低,使用光伏产品发电的经济性相对不 足。在财政部补贴政策公布之前,我国针对光伏产业的扶持政 策主要是《可再生能源法》中间接提到过的一些。2009年年 初,为了进一步加大减排力度,同时帮助两头在外的国内光伏 产业健康发展,我国政府出台了具有历史意义的国内光伏补贴 计划。此计划出台后我国的光伏产业走上了康庄大道,相继在 各地区建立了大型光伏发电站,装机量也一路攀升。图5-5所 示为2000—2008年我国光伏系统安装量及增速示意图。
第五章 太阳能供电系统
3. 对于太阳能发电来说,其发电过程没有机械转动部件,也 不消耗燃料,并且不排放包括温室气体在内的任何物质,具有 无噪声、无污染的特点,而且太阳能资源没有地域限制,分布 广泛且取之不尽,用之不竭,因此,与其他新型发电技术(风 力发电与生物质能发电等)相比,太阳能光伏发电是一种具有 可持续发展理想特征(最丰富的资源和最洁净的发电过程)的 可再生能源发电技术。其主要优点有以下几点:
PFC电源设计解读
PFC电源设计解读PFC(Power Factor Correction)电源设计在现代电子产品中起着至关重要的作用。
PFC技术可以改善电源的功率因数,提高电源效率,降低谐波污染,减少电网负荷,从而降低能源消耗和电费支出。
本文将对PFC电源设计进行解读,包括PFC的原理、应用、设计要点以及常见的PFC拓扑结构。
一、PFC的原理PFC技术是通过提高电源输入端的功率因数,减少谐波失真,实现电源的高效稳定运行。
传统的电源系统中,大多采用整流桥+滤波电容的方式直接将交流电转换为直流电,这种设计通常功率因数较低(0.6-0.7左右),谐波失真较高。
而PFC技术则是通过引入功率因数校正电路,使得输出端的电流与电压同相位,从而提高功率因数,减小电流谐波,符合电气标准要求。
PFC技术主要有两种类型,一种是主动PFC,一种是被动PFC。
主动PFC采用控制电路主动调节输入电流与电压的相位关系,以实现目标功率因数;被动PFC则是通过电感、电容等被动元件实现功率因数修正。
主动PFC的效果更为显著,但成本较高,适用于高端需求较高的电源系统;而被动PFC成本低廉,但功率因数改善效果较弱,适用于一般性电源系统。
二、PFC的应用PFC技术广泛应用于各类电源设备中,特别是涉及到能耗要求的行业,如通信、工控、医疗等。
在这些领域,PFC技术能够有效提高电源效率,降低能耗成本,减少对电网的干扰。
此外,PFC技术还有助于提高系统的稳定性和可靠性,减少电磁干扰,延长设备寿命,提高系统性能。
因此,PFC技术已成为未来电源设计的必备技术之一三、PFC电源设计要点在进行PFC电源设计时,需要考虑以下几个要点:1. 选择合适的PFC拓扑结构:常见的PFC拓扑结构包括Boost型PFC、Bridgeless PFC、Buck-Boost型PFC等,每种结构各有特点,应根据具体需求选择合适的拓扑结构。
2.选型合适的元器件:电源设计中,元器件的选型对整个系统的性能至关重要。
现代电力电子技术的发展及未来趋势
现代电力电子技术的发展及未来趋势摘要:电力电子技术是指利用电力电子器件对电能进行变换和控制的技术,对节省电能有重要意义,从根本上讲,电力电子技术也是研究电源的技术。
目前,电力电子作为智能化、自动化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。
在不远的将来,随着第三代半导件器件的成熟和应用,电力电子技术将使电源技术更加成熟、经济、实用且节能高效,实现高效率和高品质用电相结合。
关键词:电力电子技术;发展;未来趋势1. 电力电子技术的发展电力电子技术起始于五十年代末六十年代初,其发展先后经历了整流器时代、逆变器时代和变频器时代,八十年代末和九十年代初,是以IGBT为代表的、集高频、高压和大电流于一身的全控型功率半导体复合器件时代,其发展以低频技术向以高频技术方向转变。
1.1整流器时代大功率硅整流器能够高效率地把工频交流电转变为直流电,大功率硅整流管和晶闸管的开发与应用得以很大发展。
当时国内曾经掀起了一股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
但目前也只有国产晶闸管可在世界上与其他国家生产的同类产品相媲美,甚至略胜一筹。
1.2逆变器时代七十年代出现了全控型器件,它们在交流电机变频调速因节能效果显著而得到迅速发展和广泛应用。
随着变频调速装置的迅速发展,大功率逆变用的晶闸管、巨型功率晶体管和门极可关断晶闸管成为当时电力电子器件的主角。
类似的应用还包括高压直流输电,静止式无功功率动态补偿等。
这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3变频器时代进入八十年代后期,以绝缘栅双极晶体管为代表的复合型器件异军突起。
随之而来大规模和超大规模集成电路技术也得到迅猛发展。
将集成电路技术的精细加工技术和高压大电流技术有机结合,导致了中小功率电源向高频化发展,也为大中型功率电源向高频发展带来机遇。
新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电力电子技术不断向高频化发展,为用电设备的高效节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
现代电力电子技术应用的探讨
Q
C ia N w T c n l isa d P o u h n e e h oo e n r d g
信 息 技 术
现代 电力 电子 技术应 用 的探讨
杨ቤተ መጻሕፍቲ ባይዱ学 斌
( 皇 岛 市 昌黎 县热 力供 应 公 司 , 宁 昌黎 0 6 0 ) 秦 辽 6 6 0
摘 要 : 着电 力电子 、 算机 技 术的迅 速发 展 , 随 计 交流 调速 取代 直流 调速 已成 为发展 趋 势。 变频调 速 以其 优异 的 调速 和 启 、 动性 能 制 被 国 内外公 认为是 最有 发展 前途 的调速 方式 。变频 技术 是 交流调 速的核 心技 术 , 力电子 和计 算机 技 术 又是 变频技 术 的核心 , 电 电 而 力 电子器件 是 电力 电子技 术 的基 础 。 电力 电子技 术是 近几 年迅速 发展 的 一种 高新技 术 , 泛 应 用于机 电一 体 化 、 广 电机传 动 、 空航天 航 等领 域 , 已成 为各 国竞相 发展 的一种 高新技 术 。 现
流, 一部 分能量给蓄 电池组充 电, 另一部 分能量 经逆 变器变成 交流 , 经转换开关送到负载。 了 为 在逆 变器故障时仍能 向负载 提供 能量 ,另一路 备用电源通过电源 转换开关来实现 。 现代 U S P 普遍 了采用 脉 宽调制技 术 和功
pdu电源技术参数
pdu电源技术参数摘要:1.引言2.PDU电源技术参数概述3.PDU电源技术参数详解a.电压b.电流c.频率d.功率e.插座类型f.安全性4.PDU电源技术的应用领域5.我国PDU电源技术的发展现状与趋势6.结论正文:随着信息化时代的到来,电源设备在现代社会中的地位日益重要,其中PDU电源作为一种通用的电源设备,广泛应用于数据中心、通信、计算机等领域。
本文将对PDU电源技术参数进行详细介绍。
1.引言PDU电源,即电源分配单元(Power Distribution Unit),是一种用于电力系统中对电源进行分配、控制和管理的设备。
为了满足不同场合的需求,PDU电源具备丰富的技术参数。
2.PDU电源技术参数概述PDU电源的技术参数主要包括电压、电流、频率、功率、插座类型以及安全性等方面。
这些参数共同决定了PDU电源的性能、功能及适用范围。
3.PDU电源技术参数详解(a) 电压:PDU电源的额定电压通常为100-240V,根据不同国家和地区的标准有所差异。
此外,有些设备还支持直流电压。
(b) 电流:电流是衡量PDU电源负载能力的重要参数。
常见的电流规格有10A、16A、20A等,用户可以根据实际需求选择合适的电流等级。
(c) 频率:PDU电源的工作频率通常为50/60Hz,这一参数与电压、电流相互配合,共同决定了设备的性能。
(d) 功率:PDU电源的额定功率根据其承载设备的功率需求而定,常见的功率等级有350W、500W、750W等。
(e) 插座类型:PDU电源通常提供多种插座类型,如国标插座、美标插座、英标插座等,以满足不同国家和地区的使用需求。
(f) 安全性:PDU电源应具备良好的安全性能,如过载保护、短路保护、漏电保护等,以保障设备及人身安全。
4.PDU电源技术的应用领域PDU电源广泛应用于数据中心、通信、计算机、家电等领域,为各种电子设备提供稳定、安全的电源供应。
5.我国PDU电源技术的发展现状与趋势目前,我国PDU电源技术已经取得了显著的进步,产品性能、品质与国际先进水平相差无几。
电源的功率因数校正及模块化设计
电源的功率因数校正及模块化设计随着电子设备的普及,电源的功率因数校正和模块化设计成为了重要的技术方向。
本文将就电源的功率因数校正和模块化设计进行讨论,并探索其在实际应用中的优势和挑战。
一、电源的功率因数校正1.功率因数校正的概念及意义功率因数是指电源输出的有功功率和视在功率之比。
功率因数低会引起电网电压波动和能量浪费,甚至可能损坏电源设备。
功率因数校正旨在提高电源的功率因数,减少对电网的负荷,实现能量的高效利用。
2.电源的功率因数不足问题传统的电源存在功率因数偏低的问题,主要原因是采用了整流器等方式进行电能转换。
功率因数过低不仅会引发能源浪费和电网压力增大,还容易形成谐波干扰,对其他设备产生不利影响。
3.功率因数校正的技术手段为了改善功率因数,现代电源采用了多种技术手段,如谐波滤波、有源功率因数校正等。
谐波滤波可以降低谐波电流对供电系统的影响,而有源功率因数校正则通过电子器件实时调整电压和电流波形,使功率因数接近1。
4.功率因数校正的应用功率因数校正技术已广泛应用于各种电源系统,如交流变频器、电动机驱动器、照明设备等。
在工业、商业和家庭领域,通过功率因数校正可以提高设备的运行效率,降低电费支出,并减少对电网的影响。
二、电源的模块化设计1.模块化设计的概念及特点模块化设计是将电源系统划分为若干独立的模块,每个模块负责独立的功能,通过模块之间的连接和通信实现协同工作。
模块化设计具有快速响应、灵活扩展和故障隔离等特点,对于大规模电源系统和系统维护具有重要意义。
2.模块化设计的优势模块化设计可以提高电源系统的可靠性和稳定性。
当一个模块发生故障时,可以通过更换单个模块而不必停机维修整个系统。
此外,模块化设计还便于系统的升级和功能扩展,适应不同功率需求的变化。
3.模块化设计的应用在大型数据中心、工业自动化和通信设备等领域,电源模块化设计已得到广泛应用。
通过模块化设计,可以实现可靠性高、效率高的电源系统,提高系统的可维护性和可管理性。
现代电源技术2-41 17页 0.3 PPT版
器和电流限制闭锁器。在电源应用中选择100kHz额定频率,可使电磁干扰最 小,并使效率最高。微调电流基准可改进振荡频率精度。
(4)脉冲宽度调制器 脉冲宽度调制器提供电压型控制环,以驱动输出级 MOSFET,其占空比与流入控制脚的电流成反比例。该脚在RE两端产生一个 电压误差信号。RE两端的误差信号由一个典型角频率为7kHz的RC网络加以滤 波,以减少开关噪声的作用。该滤波误差信号与内部振荡器锯齿波相比较, 产生一定占空比的波形。当控制电流增加时,占空比则减小。由振荡器产生 的时钟信号置位一个寄存器,它使输出级功率管MOSFET变为截止。 占空比是由内部振荡器的对称性能来调节。调制器导通时间最短,可保持 TOPSwitch的电流消隐不受误差信号的影响。注意到在占空比开始变化之前, 必须使注入控制脚的电流为最小值。
源极脚(SOURCE):再TO-220封装中,它是输出级MOSFET的源极连 线,接直流高压和主变压器原边电路的公共端与参考点;在DIP封装中, 它是原边控制电路公共端和参考点,并且有6个引出脚接地。
TOPSwitch-II器件是一种具有自身偏置和保护功能的变换器,它用 线性控制电流来改变占空比,能断开漏极输出端。它利用CMOS和集成 尽可能多的功能来实现高效率。与双极管和分立元件电路相比,重要的 是CMOS减少了偏置电流,集成化使其省略了几个外部功率电阻器。它 们原设计用于电流采样或提供初始启动电流。
(7)逐个周期式电流限制 逐个周期式峰值漏极电流限制电路,是利用输出级 MOSFET的导通电阻作为采样电阻器。电流限制比较器把输出级MOSFET导通状态是 的漏-源电压与门限电压相比较。高的漏极电流使VDS超过门限电压,并使输出级的 MOSFET截止,直到下一个时钟周期开始之前。电流限制比较器的门限电压是受温度 补偿的,由于温度影响改变输出级MOSFET的导通电阻RDS(ON)值,它使有效峰值电 流限制的变化减到最小。
新能源电源变换技术 第4章 三相AC-DC整流电路及控制算法
出
线
电
压
Vbc
由于α>0,使得输出电压 波形在线电压的正向包络
线基础上减小了一块相应 于α=30°的面积,因而 使输出整流平均电压减小 。
4.1.1 六脉冲整流器
Va
Vb
Vc
Va
a+
b+
b-
c-
Vab
Vac
Vbc
Vba
c+
a+
a-
b-
c-
Vca
Vcb
Vab
Vac
α>60o 时,相电压瞬时值过 零变负,由于电感释放能量
c-
闸管触发顺序
4.1.1 六脉冲整流器
c+ a-
b+
1.采用间隔为60°的双触发脉冲,即在触发某一个晶闸
管时,同时给前一个晶闸管补发一个脉冲,使共阴极组
b-
和共阳极组的两个应导通的晶闸管都有触发脉冲。例如
当触发了a+时,给b-也送触发脉冲;给c-触发时,同时
再给a+送一次触发脉冲,等等。因此在采用双脉冲触发
A
B
C LA11 LB11 LC11
LA5 LB5 LC5
4.2 三相高频整流器
4.2.1 传统整流器的缺陷
传统的二极管不控整流和晶闸管相控整流器的主要缺陷:
(1)对公用电网产生大量的谐波;
(2)整流器工作于深度相控状态时,装置的功率因数极低;
(3)输出侧需要较大的平波电抗和滤波电容以滤除纹波。导致装置的 体积、重量增大;
Ea+ = Eab|Eac Ea- = Eba|Eca Eb+ = Ebc|Eba Eb- = Ecb|Eab Ec+ = Eca|Ecb Ec- = Eac|Ebc
pdu电源技术参数
pdu电源技术参数摘要:1.PDU电源的定义与作用2.PDU电源的技术参数概述3.常见PDU电源技术参数详解4.如何选择合适的PDU电源5.总结与展望正文:PDU电源,全称为Power Distribution Unit,即电源分配单元,是一种用于集中管理电气设备的电源供应系统。
在现代数据中心、机房等领域中,PDU电源发挥着至关重要的作用。
为了确保设备稳定运行,了解并选择合适的PDU电源技术参数至关重要。
一、PDU电源的定义与作用PDU电源作为电力系统的重要组成部分,主要负责将从配电柜引入的电能分配给各个电气设备。
其作用如下:1.确保电力供应的稳定性,防止因为电源波动、电压不稳等原因导致的设备损坏。
2.提高电力利用率,通过合理分配电源,降低浪费。
3.便于统一管理,降低维护成本。
4.提高数据中心的可用性,保证业务不间断。
二、PDU电源的技术参数概述在挑选PDU电源时,需要关注以下几个关键技术参数:1.输入电压:根据不同地区的电压标准,选择符合要求的输入电压。
2.输出电压:根据设备的电压需求,选择合适的输出电压。
3.电流容量:根据设备的功率需求,选择具备足够电流容量的PDU电源。
4.插座类型:根据设备的插头类型,选择相应的插座。
5.保护功能:了解PDU电源是否具备过载保护、短路保护等安全防护措施。
三、常见PDU电源技术参数详解1.电源模式:分为模块化电源和非模块化电源。
模块化电源具有良好的扩展性和灵活性,可根据需求增加或更换模块;非模块化电源结构相对固定,但价格较低。
2.散热方式:风冷和液冷。
风冷散热适用于中小型数据中心,具有成本低、维护简便的优点;液冷散热性能更强,但成本较高,适用于大型数据中心。
3.插槽数量:根据设备数量和扩展需求,选择合适的插槽数量。
4.负载能力:即PDU电源能够承受的最大负载,应根据设备的总功率进行选择。
四、如何选择合适的PDU电源1.了解设备电源需求,包括电压、电流、插座类型等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. TL431的电气参数 TL431外形见图,它相当于一只性能优良的稳压二极管。 · 阴极工作电压VKA: 2.5V(基准值)~37V(最大值) · 阴极工作电流IK: 1~100 m A (连续使用极限范围:-100~150 m A ) ; · 连续使用功耗:775mW(25℃); · 具有低动态输出电阻:0.22Ω · 基准输入电流范围:-50u A~ 10 m A ; · 参考电压源误差:±1.0%; · TL431的工作温度范围:0~70℃,全范围内温度特性平坦:50pptm/℃。 二、低压光耦控制电路试验,初步确定几个电阻值 由图电路结构,将TL494的1脚接地,2脚和15脚均接一半的参考基准电压 Vr/2=2.5V,它的16脚接过流检测电路。假定死区时间控制电路设计,已经确保 TL494的最大输出脉宽,不超过40%的振荡周期,即τmax≤0.4T(最大占空比为 0.5)。在TL494的工作频率为80kHz 时,其振荡周期为12.5us,死区控制使IC 最 大输出脉宽为5us。根据4N35和TL431的工作参数,在正常工作条件下设光耦 合控制器一次侧与二次侧两端电流为5~10 mA, TL494的3脚控制电压值低于 2.5V时输出脉宽最大,当3脚电压值高于3.6V时,则输出脉宽缩小到0(消失), 见图所示。 R7+R8=15V/(5~10mA)=3~1.5(kΩ)
图2-2 部功能方框图
图2-3 专空比与控制脚电流的关系曲线
图2-4TOPS witch-2电路的起始工作波形
图2-5 TOPSwitch-2在三种工作状态下的典型波形
(1)控制脚电压Vc的供给 控制脚电压Vc是控制脚与源极脚之间的电源或者 偏置电压。一只外部旁路电容器紧接在控制脚与源极脚之间,以提供所需的 栅极驱动电流。接到该脚的总电容量CT又设置了自动再启动功能,也同样控 制回路的补偿。Vc被调整在两钟状态之一模式。滞后调整用于初始启动和过 载工作。分流调整则用于分离占空比误差信号,它来自控制电路的电源电流。 在启动期间,控制脚电流由高压开关电流源提供,该开关在IC内部接于漏极 脚和控制脚之间。电流源提供足够的电流供给控制电路,它也对总的外部电 容CT进行充电。 首先Vc升到较高的门限电压值(5.7V),此时高压电流源被关断,而脉 宽调制器和输出级晶体管则被激活,如图2-4(a)所示。在正常工作期间(即当 输出电压可调节时),反馈控制电流提供了Vc电源电流。分流调节器可维持 Vc在典型值(5.7V),它是通过分流控制脚上的反馈电流实现的。该电流超 过流经PWM误差信号采样电阻器RE上的所需直流电源电流。当用于初级反 馈接法时,该脚的动态阻抗与外部电阻值和电容器数值,共同确定了电源系 统的控制回路补偿量。 TOPSwitch-II电路的起始工作波形如图2-4所示,图中给出了正常工作时 和自动再启动时的两种不同波形。 如果让控制脚的外部电容CT放电到较低的门限电平,那么输出级 MOSFET将被关断截止,此时控制电路进入一个低电流的准备状态。而高压 电流源则被接通,并向外部电容再次充电。在图2-5中可看到,充电电流具有 图示的负极性,而放电电流则具有正极性。在图2-4(b)中,通过接通和关断 高压电流源,滞后的自动再启动比较器可维持Vc值介于典型的4.7~5.7V窗口 范围内。自动再启动电路具有一个八分频计数器,它能阻止输出级MOSFET 再次导通,知道八个放电-充电周期已经过去为止。通过把自动再启动占空 比减小到典型的5%,计数器能有效地限制TOPSwitch的功率损耗。自动再启 动作用连续进行到输出电压再次变为可调节为止,如图2-5所示。
2-2-5取样与误差控制电路
+15V
R4
1 R1 7.6k 0.1u R3 3.3K 2 4 R7 2 5 1
+15V
14
4N35
TL494
9 10
3
TL431
W1
R8
R2
TL431功能方框图与内部等效电路
一.4N35、TL431的工作特性与主要电气参数 要正确计算TL431光电耦合控制系统4N35/TL431的外围电路元件值,需要首先了解4N35 和TL431的 工作特性与主要电气参数。从图看出,4N35光电耦合器件的控制端(又称 一次侧)是一只二极管,上方(正极)接正电压,下方(负极)接TL431的阴极(实际 上是接TL431内的一只三极管集电极脚,并通过导通的三极管对地构成回路)。4N35 的受控端是一只三极管(又称二次侧),它的集电极接+15V供电电压,它的发射极经 两个分压电阻器接地,控制电压从分压器中点引出加到TL494的输入端。正常工作时, 二极管电流引起的光电效应,使三极管也出现工作电流。查找光电器件手册得到如下 电气参数: 1. 4N35的主要工作特性与极限参数值 (1)极限值:一次侧 IFmax=60mA,PD1(max)=100Mw; VRmax=6V 二次侧 VCEmax=30V(Vcc),PD2max=300mW; IOLmax=100Ma; 全体(两侧间):最小直流冲击隔离电压值为3500V(-55~+100T℃)。 (2)工作特性: 一次侧 VFmax/IF=1.5V/10mA(发射体最大正向电压); CJmax(典型值)=100pF; 二次侧 trmax(典型值)=10us(上升时间) tfmax(典型值)=10us(上升时间);hfemin=100; 一次侧与二次侧之间 CTRmin/IF=100%/10mA(最小电流传送速率), VCESmax/ IF、IC=0.3V/10mA,0.5A(检测器最大VCE), C1-2max(典型值)=2.5p F。 4N35的工作速率(或带宽):150kHz 。
内部原理图:
2-2-4-2 三脚PWM/MOSFET复合单片TOPSwitch-2电路 TOPSwitch-II性能
1 功率范围明显扩大:在宽值输入交流电压(85-265V)时,最大输出功率由50W扩大到90W
;
在单值交流输入电压(110/115/230V)时,输出功率范围由100W扩大到150W;应用领域拓宽到小型 电视机和显示器,音响放大器等。 2 电路设计新特点:AC/DC变换效率提高到90%只有三个引脚的单片IC综合了控制系统,驱动电路, 功率MOSFET,脉宽调制,高压启动电路,环路补偿调节,故障保护电路等功能;TOP器件的 线性控制特性,在低成本上具有竞争力。 3 TOPSwitch-2有二种封装形式。除三脚TOP-220外,还有8脚DIP封装中有6个引脚接地,用于增大 散热功能,特别有利于微型电器设备的电源安装设计。 4引脚最少(DIP也只有三个有效接点)TOPSwitch,却集成了100KHZ脉宽调制稳压电源所需所有功能: 自设高压偏置电流源,偏分流调节器/误差电压放大器、振荡器、带隙参考基准、恒频的PWM、 受控导通的栅极驱动器、前沿消隐和自动保护功能。 5.该TOPSwitch输出极是可控导通速度的高压N沟道、低输出电容MOSFET,从功率管漏源低导通电阻 取样来控制导通时间。受控导通减少了开关电压的变化速率,它同连接散热片的源极一起,明 显减少了电磁干扰和系统噪声,使滤波器成本降到最低。 6. TOPSwitch具有完善的多种自动保护功能电路:过流限制、过压切断、欠压锁定、过热关闭、短路 保护等、 7. TOPSwitch-II的外围电路很简单,只需要十几只器件,就能制作高性能的小型电源。它的集成度 高,电路设计简化,比分立元件电路减少15~20只元件,并允许采用单面PCB板,可用于离线 反馈式、正向激励式和升压式功率因数校正等电源。
(2)带隙参考基准 所有临界的TOPSwitch内部电压,都由一个温度补偿的带隙 参考基准得出。该参考基准也用于产生一个温度补偿的电流源,它被微调节 在精确设置的振荡频率和调节MOSFET栅极的驱动电流。 (3)振荡器 内部振荡器对内部电容器线性地进行充电和放电,它在两个电压电 平之间产生锯齿波形,并送往脉冲宽度调制器。该振荡器在每个周期开始时, 置位脉冲宽度调制 器和电流限制闭锁器。在电源应用中选择100kHz额定频率,可使电磁干扰最 小,并使效率最高。微调电流基准可改进振荡频率精度。 (4)脉冲宽度调制器 脉冲宽度调制器提供电压型控制环,以驱动输出级 MOSFET,其占空比与流入控制脚的电流成反比例。该脚在RE两端产生一个 电压误差信号。RE两端的误差信号由一个典型角频率为7kHz的RC网络加以滤 波,以减少开关噪声的作用。该滤波误差信号与内部振荡器锯齿波相比较, 产生一定占空比的波形。当控制电流增加时,占空比则减小。由振荡器产生 的时钟信号置位一个寄存器,它使输出级功率管MOSFET变为截止。 占空比是由内部振荡器的对称性能来调节。调制器导通时间最短,可保持 TOPSwitch的电流消隐不受误差信号的影响。注意到在占空比开始变化之前, 必须使注入控制脚的电流为最小值。 (5)栅极驱动器 设计栅极驱动器是在一个受控的速率时使输出级MOSFET导通, 从而使共模电磁干扰减到最小。栅极驱动电流可微调节以改进精度。
(6)误差放大器 在初级反馈应用时,分流调节器也能完成一个误差放大器的功能。 该分流调节器的电压,是由温度补偿的带隙参考基准电压精确地加以提供的。误差放 大器的增益,则由控制脚的动态电阻来设定。控制脚把外部电率信号箝位在Vc电压电 平上。超过电源电流的控制脚电流,则由分流调节器加以分离,并作为误差信号流过 RE。 (7)逐个周期式电流限制 逐个周期式峰值漏极电流限制电路,是利用输出级 MOSFET的导通电阻作为采样电阻器。电流限制比较器把输出级MOSFET导通状态是 的漏-源电压与门限电压相比较。高的漏极电流使VDS超过门限电压,并使输出级的 MOSFET截止,直到下一个时钟周期开始之前。电流限制比较器的门限电压是受温度 补偿的,由于温度影响改变输出级MOSFET的导通电阻RDS(ON)值,它使有效峰值电 流限制的变化减到最小。 在输出级MOSFET导通之后的一个短时间里,前沿消隐电路将阻止电流限制比较 器工作。因前沿消隐时间已被确定,故由原边电容和副边整流器反向恢复引起的电流 尖峰,将不会造成开关脉冲过早地结束。 (8)关闭与自动再启动 为了使TOPSwitch的功耗降到最低,如果维持输出可调节的条 件,则关闭与自动再启动电路,是在占空比为5%典型值时使电源导通和截止。当丧失 调节能力时,将中断外部电流进入控制脚。Vc地调节可使分流状态变为滞后的自动再 启动状态。当故障条件消除、电源输出变为可调节时,Vc的调节再次变为分流状态, 则电源的正常工作又重新开始。 (9)过热保护 温度保护是由一个精密的模拟电路提供的,当结点温度超过热关闭温 度时(典型值为135摄氏度),该电路将使输出级MOSFET截止。激活加电复位电路, 可通过消除和恢复输入电源来进行,或者瞬间进入控制脚的、低于加电的复位门限电 压,可是阀门复位,并且让TOPSwitch恢复正常的电源工作状态。当电源被关闭时,Vc 则被调节在滞后状态,并且在控制脚出现一个4.7~5.7V(典型值)的锯齿波电压。 (10)高压偏置电流源 该电流源从漏极脚对TOPSwitch提供偏置,并在启动或者滞 后工作期间对控制脚外部电容CT进行充电。滞后工作出现在自动再启动和过热封锁关 闭期间。该电流源是按近似35%的有效占空比被开通和切断。这一占空比是由控制脚 充电电流Ic与放电电流(ICD1+ICD2)之比来确定的。当输出级MOSFET被开通时, 在正常工作期间该电流源则被切断。